
Non Linear Fitting Methods for Machine
Learning

Edgar A. Mart́ınez-Garćıa1(B), Nancy Ávila Rodŕıguez2,
Ricardo Rodŕıguez-Jorge1, Jolanta Mizera-Pietraszko3,

Jaichandar Kulandaidaasan Sheba4, Rajesh Elara Mohan5,
and Evgeni Magid6

1 Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Mexico,
edmartin@uacj.mx

2 University of Texas at El Paso, El Paso, USA
nsavila@miners.utep.edu

3 Opole University, Opole, Poland
jolanta.mizera-pietraszko@pwr.edu.pl

4 Singapore Polytechnic, Singapore, Singapore
jai@sp.edu.sg

5 Singapore University of Technology and Design, Singapore, Singapore
rajesh.elara@sutd.edu.sg

6 Kazan Federal University, Kazan, Russian Federation
evgeni.magid@kfu.edu.ru

Abstract. This manuscript presents an analysis of numerical fitting
methods used for solving classification problems as discriminant func-
tions in machine learning. Non linear polynomial, exponential, and
trigonometric models are mathematically deduced and discussed. Analy-
sis about their pros and cons, and their mathematical modelling are
made on what method to chose for what type of highly non linear multi-
dimension problems are more suitable to be solved. In this study only
deterministic models with analytic solutions are involved, or parameters
calculation by numeric methods, which the complete model can subse-
quently be treated as a theoretical model. Models deduction are sum-
marised and presented as a survey.

1 Introduction

So far today, modern intelligent machines are becoming part of numberless fields
of application. Learning must be an implicit function inherent in intelligent con-
trol systems to enhance industrial robots, face and voice recognition systems,
self-driving vehicles, artificial vision, domotics, air crafts control, mechatronic
systems and so forth. Intelligent machines relay on their capabilities of percep-
tion and sensing, planning, acting, and gradually increasing the capability for
learning. Machine learning inherently develops critical functions which may be

c© Springer International Publishing AG 2018
F. Xhafa et al. (eds.), Advances on P2P, Parallel, Grid, Cloud and Internet Computing,
Lecture Notes on Data Engineering and Communications Technologies 13,
https://doi.org/10.1007/978-3-319-69835-9_76



808 E.A. Mart́ınez-Garćıa et al.

summarised as patterns extraction, classification and recognition [3]. Recogni-
tion issues are also referred to as discrimination functions. Regardless a classi-
fication and training process is supervised or automatic, it needs to minimise
the learning errors and enable itself to recover from faults. A classifier’s pur-
pose is to enhance multiple class separability, and reduce data sparseness in an
information hyperspace. Discriminant functions with enough degree of dimen-
sion must warranty non linearity to recognise any data class [7]. Since a major
common tasks is fitting a model for data class discrimination, the concepts of
over-fitting and under-fitting are relevant [1,8,9]. A too complex model that has
been over-fitted (usually non bijective mapping) has too many parameters w.r.t.
the number of observations. It produces poor performance overreacting to minor
fluctuations in the training data. Under-fitting occurs when a machine learning
algorithm cannot track the underlying trend of the data, such as when fitting a
linear model to non-linear data, having poor performance. This work concerns
the mathematical analysis of non linear fitting functions f(xi) that are used
for class discrimination di during a machine learning process [2]. In this study
only deterministic models with analytic solutions are involved, or parameters
calculation by numeric methods, where the complete model can subsequently
be treated as a theoretical model. Let g(di) be an arbitrary data model that is
fitted by the model f(xi) such that f(xi) ≈ g(di). For empirical data d ∈ R

d

such that di = (x1, x2, . . . , xd)�. To treat the data as a bijective function such
that f : xi → di = f(xi), then the Cartesian origin of the function f(x) is
transformed with angles λ for any fitting convenience through

d′
i = Rd(λ) · d (1)

and Cartesian translation in a multidimensional space, by using the translation
vector τ = (Δx1,Δx2, · · · Δxd)�

d′
i = Rd(λ) · di + τ (2)

For instance, for a 3D case, let us assume that R3 = R1R2R3, and λ =
(λ1, λ2, λ3)�

d′ = R1(λ1) · R2(λ2) · R3(λ3) · d + τd (3)
For any transformed data into a bijective system, the discrimination function is
obtained f(x) = g(d), where now the new theoretical function is re-fitted in the
discrimination space

f(x) = R−1
3 (λ3) · R−1

2 (λ2) · R−1
1 (λ1) · (f ′(x) − τd) (4)

In Sects. 2, and 3 the exponential and polynomial methods to fit high order
continuous non linear data are described. In Sect. 4 an interpolation method
for high non linear order with discontinuities is described. In Sect. 5 a non
polynomial fitting method for non linear functions is analysed. Subsequently,
Sect. 6 treats the topic of transformation of trigonometric functions into purely
polynomial functions. Section 7 discusses the topic of multivariate polynomials.
Section 8 describes the multi-layer perceptron training method, which is nat-
urally fitting model non linear highly multi-dimension data. Finally in Sect. 9
conclusion is summarised.



Non Linear Fitting Methods for Machine Learning 809

2 Exponential and Polynomial Regression

When data (xi, f(xi)) model an exponential discrimination function with ampli-
tude a, and shape form b, such that

f(x) = aebx (5)

We firstly may algebraically manipulate such a general model, by applying the
Napierian logarithm in both sides of the equation,

ln f(x) = ln
(
ebx

)
(6)

thus, developing the logarithm laws, we find that

ln(f(x)) = ln(a) + bx (7)

We linearise the equation by redefining and substituting ln(f(x)) .= y, as well as
ln(a) .= c, in such a way that,

y = c + bx (8)

now substituting into the previous linear function to solve parameters b, and c
by linear regression based on the mean square method,

b =
n(

∑
xy) − (

∑
x)(

∑
y)

n(
∑

x2) − (
∑

x)2
; c =

∑
y

n
− b

∑
x

n
(9)

substituting logarithm-based parameters and solving its algebraic inverse

e (ln(f(x)) = c + bx) (10)

since c
.= ln(a),

f(x) = ecebx = exp
(∑

ln(f(x))
n

− b

∑
x

n

)
ebx (11)

Now for a logarithmic function, a linear regression is developed

f(x) = a + b ln(x) (12)

and
z

.= ln(x) (13)

hence, we temporally substitute z,

f(z) = a + bz (14)

the parameters are obtained through the mean squared linear regression,

b =
n(

∑
zf(z)) − (

∑
z)(

∑
f(z))

n(
∑

z2) − (
∑

z)2
=

n(
∑

ln(x)f(x)) − (
∑

ln(x))(
∑

f(x))
n(

∑
ln2(x)) − (

∑
ln(x))2

(15)



810 E.A. Mart́ınez-Garćıa et al.

and

a =
∑

f(z)
n

− b

∑
z

n
(16)

Substituting in z, and dropping off x from Eq. (12)

f(x) =
(∑

f(x)
n

− b

∑
ln(x)
n

)
+ b ln(x) (17)

When data exhibit a significant degree of error, unlike intersecting all points,
but a single curve that represent the data trend as a group, is known as Regres-
sion. Reducing such trend error by the square least allows to adjust data fitting
non linear functions [12]. The empirical model y = ym + ε approximates a suit-
able theoretical model ym. For instance, fitting the data assuming a 2nd degree
polynomial by the form,

ym = a0 + a1x + a2x
2 (18)

Thus, the sum of the squared differences yields the residual formula sr. The
residual of the squared sum of the empirical and theoretical fitting model is
sr = (y − ym)2,

sr =
n∑

i=1

(
yi − (a0 + a1xi + a2x

2
i + · · · + akxk

i )
)2

(19)

By partial derivatives the rate of change of the function w.r.t. each coefficient is
determined by the next three equations.

∂sr

∂a0
= −2

n∑

i=1

(yi − a0 − a1xi − a2x
2) (20a)

∂sr

∂a0
= −2

n∑

i=1

xi(yi − a0 − a1xi − a2x
2) (20b)

∂sr

∂a0
= −2

n∑

i=1

x2
i (yi − a0 − a1xi − a2x

2) (20c)

Equating to zero each function and algebraically factorising them, a set of linear
equations in terms of their coefficients ai are stated for subsequent solution,

(n)a0 +

(
∑

i

xi

)

a1 +

(
∑

i

x2
i

)

a2 =
∑

i

yi (21a)

(
∑

i

xi

)

a0 +

(
∑

i

x2
i

)

a1 +

(
∑

i

x3
i

)

a2 =
∑

i

xiyi (21b)

(
∑

i

x2
i

)

a0 +

(
∑

i

x3
i

)

a1 +

(
∑

i

x4
i

)

a2 =
∑

i

x2
i yi (21c)



Non Linear Fitting Methods for Machine Learning 811

Algebraically ordering in the matrix form as a linear system v = A · a,
⎛

⎝

∑
i yi∑

i xiyi∑
i x2

i yi

⎞

⎠ =

⎛

⎝
n

∑
i xi

∑
i x2

i∑
i xi

∑
i x2

i

∑
i x3

i∑
i x2

i

∑
i x3

i

∑
i x4

i

⎞

⎠ ·
⎛

⎝
a0

a1

a2

⎞

⎠ (22)

solving the system of equations by an algebraic inverse matrix method,

a = A−1 · v (23)

for the actual quadratic problem, the coefficients are a0, a1, and a2. In addition,
with standardised error sy/x, and coefficient of determination r2 = (st − sr)/st.

3 Nonlinear Interpolation

For known precise data set points, a basic procedure is to fit a series of curves
crossing through each point directly. This inter-point values estimation is known
as interpolation. Let us state the general form polynomial

fn(x) = b0+b1(x−x0)+b2(x−x0)(x−x1)+ · · ·+bn(x−x0) . . . (x−xn−1) (24)

where the coefficients are obtained from the next expression,

b0 = f(x0); b1 = f(x1, x0); b2 = f(x2, x1, x0); bn = f(xn, xn−1, . . . , x0)
(25)

The divided differences are described by,

f(xi, xj) =
f(xi) − f(xj)

xi − xj
(26)

likewise, the second divided difference is deduced in the next expression,

f(xi, xj , xk) =
f(xi, xj) − f(xj − xk)

xi − xk
(27)

In such a way, the nth finite divided difference is

f(xn, xn−1, . . . , x1, x0) =
f(xn, xn−1, . . . x1) − f(xn−1,xn−2,...x0)

xn − x0
(28)

Such differences are useful to evaluate the coefficients of Eq. (25) substituted in
Eq. (24) to obtain the interpolating polynomial, as defined next:

fn(x) = f(x0) + (x − x0)f(x1, x0)+(x − x0)(x − x1)f(x2, x1, x0) + · · · +
(x − x0) · · · (x − xn−1)f(xn, . . . , x0)

(29)

which is known as the Newton’s interpolation polynomial of divided differences.
To avoid the divided differences calculus, the Newton interpolation is alge-
braically reformulated to state the Lagrange interpolation, which is concisely
represented by

f(x) =
n∑

i=0

[Li(x)yi] ; ∀ Li(x) =
n∏

j=0
i�=j

x − xi

xj − xi
(30)



812 E.A. Mart́ınez-Garćıa et al.

or directly written as

f(x) =
n∑

i=0

⎡

⎣

⎛

⎝
n∏

j=0

x − xi

xj − xi

⎞

⎠ yi

⎤

⎦ (31)

The general model produces a polynomial equation that fits data of degree n−1.

yi(xi) = ao + a1xi + a2x
2
i + · · · + anxn

i (32)

4 Splines Fitting

Spline functions are concatenation of different same degree polynomials allowing
to fit data segments properly [10]. Yielding better error minimisation that tradi-
tional polynomial interpolations [5]. Given a function f(x) that is continuously
derivable and divided in n segments along the interval [t0, tn] and interpolates
data set. Thus, f(ti) = yi, ∀ 0 ≤ i ≤ n.

f(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x), x ∈ [t0, t1]
f2(x), x ∈ [t1, t2]
...
fn−1(x), x ∈ [tn−1, tn]

(33)

where the kth degree polynomial fi(x) = a0 + a1x + a2x
2 + · · · + akxk is a part

of the whole function f(x). The function f(x) continuity at an arbitrary point s
may be defined by the next limits condition,

lim
x→s+

f(x) = lim
x→s−

f(x) = f(s) (34)

For a quadratic function that is continuously derivable for the interval [t0, ta],
and interpolate the data. Thus if f ′(x) is continuous zi ≡ f ′(ti), and

fi(x) =
zi+1 − zi

2(ti+1 − ti)
(x − ti)2 + zi(x − ti) + yi (35)

If so, we must prove the next three conditions fi(ti), f ′
i(ti) = zi, and f ′(ti+1) =

zi+1. These define the function fi only for the interval [ti, ti+1] as in Eq. (35).

zi+1 = −zi + 2
(

yi+1 − yi

ti+1 − ti

)
; (0 ≤ i ≤ n). (36)

And, following the Subbotin condition for interpolating beyond the interval
extremes [a, b], and the inner points in the sub-intervals, f(τi) = yi ∀ 0 ≤ i ≤
n + 1, where τ0 = t0, τi = 0.5(ti + ti+1), (1 ≤ i ≤ n), τn+1 = tn with the form,

fi(x) = yi+1 +
1
2
(zi+1 − zi)(x − τi+1) +

1
2hi

(zi+1 − zi)(x − τi+1)2 (37)



Non Linear Fitting Methods for Machine Learning 813

where hi = ti+1− ti, the coefficients zi are found by solving the next tri-diagonal
system,

⎧
⎪⎨

⎪⎩

3h0z0 + h0z1 = 8(y1 − y0)
hi+1zi−1 + 3(hi−1 + hi)z + hizi+1 = 8(yi+1 − yi) (1 ≤ i ≤ n − 1)
hn−1zn−1 + 3hn−1zn = 8(yn+1 − yn)

(38)

5 Trigonometric Functions

Non linear periodical functions are fitting methods through calculation of
trigonometric function models [6], and are capable to basically approximate any
function. The general Fourier model is provided next (39),

f(x) = α0 + αm cos(mωx) + βm sin(mωx) (39)

Through expressions (40) the Fourier series independent coefficient is calculated.

α0 =
1
T

∫ T

0

f(x)dx (40)

and the subsequent Fourier coefficients are calculated by

αm =
2
T

∫ T

0

f(x) cos(mω0x)dx; βm =
2
T

∫ T

0

f(x) sin(mω0x)dx (41)

The function is expressed with the numerical coefficients of the Fourier series.

f(x) =
1
T

∫ T

x=0

f(x)dx +

(
2
T

∫ T

x=0

f(x) cos(mω0x)dx

)

cos(mω0x)

+

(
2
T

∫ T

x=0

f(x) sin(mω0x)dx

)

sin(mω0x)

(42)

6 Taylor Series

Taylor’s theorem provides a way of expressing a function as a power series w.r.t.
the independent variable x, but only applied to those functions that are continu-
ous and differentiated within the x-range of interest [6]. The theorem establishes
that any smooth function is approximated by a multivariate polynomial of the
series,

f(x0, x1, . . . , xn) ∼
∞∑

k=0

1
k!

(
n∑

i=1

(xi − hi)
∂

∂xi

)k

f(x0, x1, . . . , xn) (43)



814 E.A. Mart́ınez-Garćıa et al.

for n variables given in a vector x ∈ R
n, such that x = {x1, x2, . . . , xn}. And

the k degree Taylor expansion is developed,

f(x) ≈ f(x) +
(

(x1 − h1)
∂

∂x1
+ (x2 − h2)

∂

∂x2
+ · · · + (xn − hn)

∂

∂xn

)k

f(x)

(44)

For instance, the expansion of Taylor series for two variables x1 and x2, and for
h1,2 = 0, with k = 2 degrees (second order derivative) is developed next.

f(x1, x2) ≈ f(x1, x2) +
(

x1
∂

∂x1
+ x2

∂

∂x2

)2

f(x1, x2) (45)

by algebraically expanding the two degree binomial,

f(x1, x2) ≈ f(x1, x2) +
(

x2
1

∂2

∂x2
1

+ 2x1x2
∂

∂x1∂x2
+ x2

2

∂2

∂x2
2

)
f(x1, x2) (46)

thus, the second order derivative approximation is

f(x1, x2) ≈ f(x1, x2) + x2
1

∂2f(x1, x2)
∂x2

1

+ 2x1x2
∂f(x1, x2)
∂x1∂x2

+ x2
2

∂2f(x1, x2)
∂x2

2

(47)

7 Multivariate Non-linear Functions

A multivariate series develops polynomials that may be used to discriminate
nonlinear separable multi-class in hyper-dimension spaces [4,13] by the next
general expression

f(x) = a0 +
n∑

i1

wi1xi1 +
n∑

i1

n∑

i2

wi1i2xi1xi2 +
n∑

i1

n∑

i2

n∑

i3

wi1i2i3xi1xi2xi3 + . . .

(48)

where a0 is the independent coefficient; n determines the space dimension. The
polynomial degree is established by the number of summed terms.

∑
i wi deter-

mines the coefficients, and
∑

i xi are the independent variables at ith dimension.
This approach makes particularly complex to determine all coefficients value,
because multi-dimension numerical recursive methods have to be used, assum-
ing that the independent variables are initially known values.

For instance, a linear polynomial in three dimension

f(x) = w0 +
3∑

i=1

wi1xi1 = w0 + w1x1 + w2x2 (49)

Another example, for a quadratic polynomial in 2D,

f(x) = w0 +
2∑

i=1

wi1xi1 +
2∑

i1=1

2∑

i2=1

wi1i2xi1xi2 (50)



Non Linear Fitting Methods for Machine Learning 815

hence by developing the series and algebraically arranging,

f(x) = w0 + w1x1 + w2x2 + w11x
2
1 + w2x

2
2 + x1x2(w12 + w21) (51)

8 Multi-layer Artificial Neural Networks

The ANN are discriminant functions native multidimensional and non linear
that are trained by linear models [15–18]. Once the synapses parameter con-
verged during training, the feed forward model to be used is particularly a fast
and simple expression [11]. Thus, let us define the weighting sum of inputs and
weights in the first layer as netj = w� · fj . Where the first neurons layer outputs
toward the hidden layer is yj = g(netj). For the hidden layer netk = w�

k ·y, and
the hidden layer outputs [13,14],

z = f(w�
k · f(w�

j · x)) (52)

The general squared absolute differences error ε of the output neurons layer
vector zt and their output model vector zo is stated by

ε(w) =
1
2
‖zo − zt‖ (53)

The general back-propagation (BP) learning rule has fundamentals on the gra-
dient descendent. The weights vector w recursively changes its direction until
minimise the error. Thus,

Δw = −η
∂ε

∂w
(54)

where η is the learning factor that by numerical approximations represents the
magnitude of the change of direction of w. Such that wt+1 = wt + Δwk. Thus,
by using the chain rule for the hidden neurons layer,

∂ε

∂wkj
=

∂ε

∂netk
· ∂netk

∂wkj
= −Dk

∂netk
∂wkj

(55)

where the sensitivity of the hidden neurons k is Dk = − ∂ε
∂netk

and, the output
of a single neuron, Dk is

Dk = − ∂ε

∂netk
= − ∂J

∂zk
· ∂zk

∂netk
= (zo

k − zk)f ′(netk) (56)

and given the activation function f(·), and its derivative f ′(·) as a sigmoid for
the hidden layer,

f(w · x) =
1

1 + e−wx
; and f ′(w · x) =

ew·x

(1 + e−w·x)2
(57)

defining netk = w� · y, thus ∂netk
∂wkj

= yj . Therefore, the learning rule for the
hidden layer to the outputs is Δwkj = ηDkyi = η(zo

k − zk)f ′(netk)yj , and

∂ε

∂wji
=

∂ε

∂yj
· ∂yj

∂netj
· ∂netj

∂wji
(58)



816 E.A. Mart́ınez-Garćıa et al.

the error rate of change

∂ε

∂yj
=

∂

∂yj

(
1
2

∑

k=1c

(zo
k − zk)2

)

(59)

thus, algebraically arranging previous expression,

∂ε

∂yj
= −

c∑

k=1

(zo
k − zk)f ′(netk)wij (60)

the hidden layer sensitivity is defined as

Dj = f(netj)
c∑

k=1

wijDk (61)

Hence, the learning rule for the weights w of the input layer toward the hidden
layer,

Δwji = ηw� · xf ′(netj)x (62)

9 Conclusion and Results

This manuscript presented an analysis of numerical fitting methods purposed
to be used for solving highly non linear discriminant functions in classification
problems of machine learning. We found that numerous problems present non
bijective discriminant paths. A partial solution that alleviates the problem is
to firstly transform the path of discriminant points by geometric rotations for
subsequent model fitting. Some fitting models are depicted in Fig. 1 applied to

Fig. 1. Left: Different nonlinear fitting methods. Right: Same data set in 3-dimension
labelled by a multi-layer Perceptron ANN. Classification performance: regression
99.8%, interpolation 99.82%, cubic splines 100%, Fourier series 99.95%, and multi-layer
ANN 100%.



Non Linear Fitting Methods for Machine Learning 817

the same data set. Where only interpolation Splines, Fourier series, and multidi-
mensional ANNs are methods capable to over-fit a set of discriminant threshold
points that are sequentially nonlinear discontinuous. The rest of the methods
yielded small degrees of classification errors.

Regressions and interpolations are numeric fitting methods that are more
suitable for off-line systems with prior data. The former performs numerical com-
putation for matrix inversion particularly for massive data. The latter, requires
reduced numbers of data representing their trend, requiring symbolic calcula-
tion, hence computation becomes more complex than polynomial regressions.
Although, regressions and interpolations fit to non linearity, they may fail track-
ing discontinuities. Thus, a more sophisticated and accurate fitting approach is
by using splines. Fitting curves using the Fourier series may work better than
polynomials, and even could fit major non linear discontinuities. But yielding
complex and long trigonometric functions, limiting mathematical solutions. To
diminish this problem, trigonometric/exponential models may further be trans-
formed and approximated to polynomials by the Taylor series. Solving exact
parameters for highly multivariate functions becomes too complex. An alterna-
tive solution is the multi-layer ANN, where highly dimensional spaces do not
represent any problem. ANN overcome numerous discontinuities by increasing
the number of hidden layers. Nevertheless, ANN are tided to off-line training for
deep learning.

References

1. Jabbar, H.K., Khan, R.Z.: Methods to avoid over-fitting and under-fitting in super-
vised machine learning (comparative study). Comp. Sci., Comm. Instr. Dev. 163–
172 (2015)

2. Tetko, I.V., Livingstone, D.J., Luik, A.I.: Neural network studies. 1. Comparison
of overfitting and overtraining. J. Chem. Inf. Comput. Sci. 35, 826–833 (1995)

3. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York
(2001)

4. Riley, K.F., Hobson, M.P., Bence, S.J.: Mathematical Methods for Physics and
Engineering, 3rd edn. Cambridge University Press, Cambridge (2006)

5. Cheney, W., Kincais, D.: Numerical Mathematics and Computing, 6th edn. Cen-
gage, Boston (2011)

6. Kreyszig, E.: Advanced Engineering Mathematics, 3rd edn. Limusa Wiley, Mexico
City (2009)

7. Van, D.A., Rubin, W.M., Rubin, V., Verbeek, H.M.W., Van Dongen, B.F., Kindler,
E., Gunther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

8. Loughrey, J., Cunningham, P.: Using early-stopping to avoid overfitting in
wrapper- based feature selection employing stochastic search (2005)

9. Schaffer, C.: Overfitting avoidance as bias. Mach. Learn. 10(2), 153–178 (1993)
10. Ruppert, D., Carroll, R.J.: Spatially-adaptive penalties for spline fitting. J. Statist.

42, 205–224 (2000)
11. Lawrence, S., Giles, C.L., Tsoi, A.C.: Lessons in neural network training: overfitting

may be harder than expected. In: Proceedings of the 14th National Conference on
AI, USA, pp. 540–545 (1997)



818 E.A. Mart́ınez-Garćıa et al.

12. Raskutti, G., Wainwright, M.J., Yu, B.: Early stopping and non-parametric regres-
sion: an optimal data-dependent stopping rule. J. Mach. Learn. Res. 15(1), 335–366
(2014)

13. Bishop, C.M.: Neural Networks for Patter Recognition. Oxford University Press,
Oxford (2005)

14. Freeman, J.A., Skapura, D.M.: Neural Networks, Algorithms, Applications and
Programming Techniques. Computation and Neural Systems Series. Addison-
Wesley, Reading (2002)

15. Wen, U.P., Lan, K.M., Shih, H.S.: A review of Hopfield neural networks for solving
mathematical programming problems. Eur. J. Oper. Res. 198(3), 675–687 (2009)

16. Caruana, R., Lawrence, S., Giles, L.: Overfitting in neural nets: backpropaga-
tion, conjugate gradient, and early stopping. In: Advances in Neural Information
Processing Systems, pp. 402–408 (2011)

17. Kazushi, M.: Avoiding overfitting in multilayer perceptrons with feeling-of-knowing
using self-organizing maps. Biosystems 80(1), 37–40 (2005)

18. Gaurang, P., Amit, G., Parth, S., Devyani, P.: Determination Of over-learning and
over-fitting problem in back propagation neural network. Int. J. Soft Comput. 2(2),
40–51 (2011)


	Non Linear Fitting Methods for Machine Learning
	1 Introduction
	2 Exponential and Polynomial Regression
	3 Nonlinear Interpolation
	4 Splines Fitting
	5 Trigonometric Functions
	6 Taylor Series
	7 Multivariate Non-linear Functions
	8 Multi-layer Artificial Neural Networks
	9 Conclusion and Results
	References




