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ПРОСТРАНСТВАХ-ВРЕМЕНАХ
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Получено аналитическое приближение для 〈ϕ2〉 квантованного скалярного поля в статических сфериче-
ски симметричных пространствах-временах. Предполагалось, что поле является массивным или без-
массовым, с произвольной константой ξ связи скалярного поля с кривизной и находится в квантовом со-
стоянии с нулевой температурой. Выражение для 〈ϕ2〉 разделено на низко- и высокочастотные части.
Вклады высокочастотных мод в эти величины вычислены для произвольного квантового состояния. В
качестве примера, низкочастотный вклад в 〈ϕ2〉 вычислен в асимптотически плоских пространствах-
временах в квантовом состоянии, соответствующем вакуумуМинковского (квантовое состояние Буль-
вара). Обсуждаются пределы применимости этих приближений.
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1. Введение

Исследование эффектов квантованных полей на фоне внешнего гравитационного поля имеет
долгую историю [1]. Эти эффекты оказались весьма важными, например, при описании ранней все-
ленной [2] и квантового испарения черных дыр [3]. Наиболее важными величинами, характеризую-
щими квантованные поля во внешнем гравитационном поле, являются 〈ϕ2〉 и 〈T µ

ν 〉, где ϕ есть кван-
тованное поле, а T µ

ν – оператор тензора энергии-импульса для ϕ. Однако, получить точную функци-
ональную зависимость этих величин от метрики даже в однопетлевом приближении невозможно, за
исключением ряда высокосимметричных пространств-времен (см., например, [4, 5, 6, 7, 8, 9, 10, 11]).
Численные вычисления, как правило, являются весьма трудоемкими [12, 13, 14, 15, 16, 25, 17, 18].
Очевидно, таким образом, что получение аналитических приближений для 〈φ2〉 и 〈Tµν〉, когда это
возможно, является полезным. Одним из наиболее широко используемых методов получения при-
ближенных выражений для 〈ϕ2〉 и 〈T µ

ν 〉 является разложение ДеВитта-Швингера этих величин в ряд
по 1/(m2l 2

g ), гдеm есть масса квантованного поля, а lg – характерныймасштаб радиуса кривизныфо-
нового гравитационного поля [19]. Для конформно связанных безмассовых полей в некоторых клас-
сах пространств-времен, не фиксированных явно заданием функционального вида метрики, при-
ближенные вычисления также производились. Например, аналитическое приближение для 〈Tµν〉 в
статических Эйнштейновских пространствах-временах (Rµν =Λgµν) было получено Пэйджем, Брау-
ном и Оттевилом [20, 21, 22]. Эти результаты были обобщены на случай произвольных статических
пространств-времен Занниасом [23]. Подход к вычислению приближенных выражений для 〈φ2〉 и
〈Tµν〉, предложенный Фроловым и Зельниковым [24], основывается скорее на геометрических ар-
гументах и общих свойствах тензора энергии-импульса, чем на теории поля. Приближение же Ан-
дерсона, Хискока и Самюэля [25] основывалось на методах квантовой теории скалярного поля. Они
предполагали, что поле может находиться в вакуумном квантовом состоянии с нулевой или ненуле-
вой температурой, может бытьмассивнымили безмассовымииметь произвольную константу связи
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ξ поля с кривизной. Их результат был представлен в виде суммы двух частей: численной и аналити-
ческой

〈T µ
ν 〉r en = 〈T µ

ν 〉numer i c +〈T µ
ν 〉anal y ti c . (1)

Аналитическая часть их выражений удовлетворяла закону сохранения и имела след, равный ано-
мальному следу в случае конформно инвариантного поля. По этой причине они предложили ис-
пользовать 〈T µ

ν 〉anal y ti c непосредственно как приближение для 〈T µ
ν 〉r en . Аналогичный результат был

получен Гровесом, Андерсоном и Карлсоном [26] для безмассового поля спина 1/2 в произвольном
статическом сферически симметричном пространстве-времени.

Принципиально важной проблемой всех этих приближений для безмассовых полей или мас-
сивных полей с массой mlg <∼1 является определение области их применимости. Некоторую уверен-
ность в справедливости полученных приближений давало авторам сравнение полученных резуль-
татов с численными или аналитическими расчетами, проведенными для пространств-времен с за-
данным функционально видом метрики.

В этой лекции строятся приближенное выражение для 〈ϕ2〉r en квантованного скалярного поля
в статических сферически симметричных асимптотически плоских пространствах-временах. Поле
предполагается массивным или безмассовым, имеющим произвольную константу связи скалярно-
го поля с кривизной и находящемся в вакуумном состоянии с нулевой температурой. Выражение
для 〈ϕ2〉r en разбивается на низко и высокочастотные части. Для аппроксимации высокочастотных
частей используется подход Андерсона, Хискока и Самюэля [25]. Эти части содержат все ультрафи-
олетовые расходимости и могут быть перенормированы. Низкочастотный вклад в 〈ϕ2〉r en определя-
ется в общем случае глобальной структурой пространства-времени и вычислен в статическом сфе-
рически симметричном асимптотически плоском пространстве-времени для квантового состояния,
соответствующего вакууму Минковского (в общепринятой терминологии это соответствует выбору
квантового состояния Бульвара). Важной частью исследования является получение пределов приме-
нимости рассмотренных приближений.

2. Высокочастотный вклад в 〈ϕ2〉 и 〈Tµ
ν 〉 квантованного скалярного поля

Запишем метрику статического сферически симметричного пространства-времени в виде

d s2 = f dτ2 +dρ2 + r 2(dθ2 + sin2θdϕ2), (2)

где f и r являются функциями собственной радиальной координаты ρ, а τ есть евклидово время (τ=
i t , где t координата, соответствующая времениподобному вектору Киллинга, всегда существующему
для статического пространства-времени).

Вакуумное среднее оператора φ2 квантованного скалярного поля φ может быть вычислено с
использованием метода раздвижки точек [27, 28] из евклидовой функции Грина GE (x, x̃) следующим
образом

〈φ2〉unr en =GE (x, x̃), (3)

где GE (x, x̃) удовлетворяет уравнению

[
�x −m2 −ξR(x)

]
GE (x, x̃) =−δ

4(x, x̃)√
g (x)

, (4)

а�x и g (x) вычисляются с использованием евклидовой метрики (2),m есть масса скалярного поля, ξ
константа связи скалярного поля с кривизной пространства-времени R.

В метрике (2) правая часть (4) может быть представлена в виде

δ4(x, x̃)√
g (x)

= δ(τ− τ̃)δ(ρ, ρ̃)δ(Ω,Ω̃)

r 2
√

f
, (5)

где δ(Ω,Ω̃) может быть разложена по полиномам Лежандра Pl

δ(Ω,Ω̃) = 1

4π

∞∑

l=0
(2l +1)Pl (cosγ), (6)
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cosγ= cosθcos θ̃+ sinθ sin θ̃cos(ϕ− ϕ̃) (7)

Если скалярное поле находится в квантовом состоянии с температурой T , определенном по отноше-
нию к времениподобному вектору Киллинга, то евклидова функция Грина является периодической
по τ−τ̃ с периодом 1/T . Однако, здесь мы будем рассматривать случай квантового состояния скаляр-
ного поля с нулевой температурой. В этом случае

δ(τ− τ̃) = 1

π

∫ ∞

0
dωcos[ω(τ− τ̃)] . (8)

Таким образом, евклидова функция Грина может быть представлена в виде

GE (x; x̃)= 1

4π2

∫ ∞

0
dωcos[ω(τ− τ̃)]

∞∑

l=0
(2l +1)Pl (cosγ) χωl , (9)

где χωl (ρ, ρ̃) удовлетворяет уравнению
{

d 2

dρ2 +
[

1

2 f

d f

dρ
+ 1

r 2

dr 2

dρ

]
d

dρ
−

[
ω2

f
+ l (l +1)

r 2

+m2 +ξR
]}
χωl =−δ(ρ− ρ̃)

r 2
√

f
. (10)

Если обозначить независимые решения соответствующего однородного уравнения pωl (ρ) и qωl (ρ)
{

d 2

dρ2 +
[

1

2 f

d f

dρ
+ 1

r 2

dr 2

dρ

]
d

dρ
−

[
ω2

f
+ l (l +1)

r 2

+m2 +ξR
]}{

pωl

qωl

}
= 0, (11)

то χωl (ρ, ρ̃) можно представить в виде

χωl (ρ, ρ̃) =Cωl pωl (ρ<) qωl (ρ>) (12)

гдеCωl есть нормировочная постоянная, ρ< and ρ> есть меньшее или большее значение ρ или ρ̃, соот-
ветственно.Фиксирование нормировочной константыCωl может быть достигнуто интегрированием
(10) по ρ от ρ̃−δ до ρ̃+δ и стремлением δ→ 0. Это дает следующее условие на вронскиан

Cωl

[
pωl

d qωl

dρ
−qωl

d pωl

dρ

]
= −1

r 2 f 1/2
. (13)

В выше приведенных обозначениях выражение для GE (x; x̃) имеет вид

GE (x; x̃)= 1

4π2

∫ ∞

0
dωcos[ω(τ− τ̃)]

∞∑

l=0
(2l +1)Pl (cosγ) Cωl pωl (ρ<) qωl (ρ>). (14)

Легко увидеть, что после подстановки

pωl =
1p

2r 2W
exp

{∫ ρ

W f −1/2dρ

}
,

qωl =
1p

2r 2W
exp

{
−

∫ ρ

W f −1/2dρ

}
,

(15)

условие на вронскиан (13) тождественно выполняется, если

Cωl = 1 (16)

а уравнение на радиальные моды pωl (ρ) и qωl (ρ) (11) дает, в этом случае, следующее уравнение на
функциюW (ρ)

W 2=ω2 + f

r 2 l (l +1)+ f m2 + f

4r 2
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+V + f ′

8

(W 2)′

W 2 + f

4

(W 2)′′

W 2 − 5 f

16

(W 2)′2

W 4 , (17)

где

V =
(
2ξ− 1

4

)
f

r 2 + f

(
(r 2)′′

2r 2 + f ′(r 2)′

4 f r 2 − (r 2)′2

4r 4

)

+ξ f

(
− f ′′

f
−2

(r 2)′′

r 2 + f ′2

2 f 2 + (r 2)′2

2r 4 − f ′(r 2)′

f r 2

)
. (18)

В случае достаточно массивного поля, т.е.

m = 1

rc
≫ 1

lg
, (19)

где
1

lg
= max

{
1

|r | ,
∣∣∣
[
ln( f r 2)

]′∣∣∣ ,
∣∣∣
[
ln( f r 2)

]′′∣∣∣
1/2

,
∣∣∣
[
ln( f r 2)

]′′′∣∣∣
1/3

, . . .

}
, (20)

существует малый параметр
εWKB =

rc

lg
≪ 1 (21)

по степеням которого может быть разложено решение уравнения (17). При этом нулевой член раз-
ложения может быть выбран в виде

(W 2)(0) =ω2 + f

r 2 l (l +1)+ f m2. (22)

Тогда член следующего порядка имеет вид

(W 2)(2) =
f

4r 2 +V + f ′

8

(W 2)(0)
′

(W 2)(0)
+ f

4

(W 2)(0)
′′

(W 2)(0)
− 5 f

16

(W 2)(0)
′2

(W 2)(0)
2 (23)

и т.д. . Для удобства вычислений к нулевому члену разложения может быть добавлено слагаемое
второго порядка малости по εWKB.

(W 2)(0) =ω2 + f

r 2 l (l +1)+ f m2 + 1

4r 2 =ω2 + f

r 2

(
l + 1

2

)2

+ f m2, (24)

поскольку это не меняет соотношений

(W 2)(0) ≫ (W 2)(2) ≫ (W 2)(4) ≫ . . . (25)

или
(W 2)(2) ∼ ε2

WKB(W 2)(0), (W 2)(4) ∼ ε4
WKB(W 2)(0), . . . (26)

и
W 2 = (W 2)(0) + (W 2)(2) + (W 2)(4) + . . . . (27)

Такой подход дает [19, 25] разложение ДеВитта-Швингера величины 〈ϕ2〉 по степеням 1/(mlg ). Сле-
дует отметить, что добавление к нулевому члену итерационной процедуры членов второго порядка
малости может потребовать дополнительного разложения полученного выражения для 〈ϕ2〉 по ма-
лому параметру 1/(mlg ).

Здесь мы рассмотрим случай безмассового скалярного поля или поля с малой массой, т.е.

rc =
1

m
>∼ lg . (28)

В этом случае малого параметра не существует, однако можно вычислить вклад в 〈ϕ2〉 высокочастот-
ных мод. Такой вклад может быть получен учетом в интегралах по w в выражении (14)) только тех
частот, для которых

w ≥ w0 (29)
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или
u ≥ u0 = w0

√
r 2/ f , (30)

то есть

〈ϕ2〉HFCunr en = 1

4π2

∫ ∞

u0

du cos(uε)
∞∑

l=0

1

r 2




√
f

r 2

(l +1/2)

W
−1


 , (31)

ε=
√

f

r 2 (τ− τ̃), u = r√
f
ω. (32)

В качестве малого параметра итерационной процедуры решения уравнения (17) может быть выбран
следующий

εWKB =
√

f

w0lg
= |r |

u0lg
≪ 1. (33)

Это также означает (см. определение lg (20) и u (32) )

u0 ≫
|r |
lg

≥ 1. (34)

Решение нулевого порядка по εWKB уравнения (17) может быть выбрано в виде

(W 2)(0) =ω2 + f

r 2

(
l + 1

2

)2

. (35)

Тогда решение второго есть

(W 2)(2) =V + f ′

8

(W 2)(0)
′

(W 2)(0)
+ f

4

(W 2)(0)
′′

(W 2)(0)
− 5 f

16

(W 2)(0)
′2

(W 2)(0)
2 , (36)

Высокочастотная часть величины 〈φ2〉unr en получается подстановкойW 2 (27) в выражение (31)

〈ϕ2〉HFCunr en = 1

4π2

{
1

r 2 S0
0(ε,u0)− V

2 f
S0

1(ε,u0)− r 2

16 f 2

[
f ′

(
f

r 2

)′

+2 f

(
f

r 2

)′′]
S1

2(ε,u0)+ 5r 4

32 f 2

(
f

r 2

)′2
S2

3(ε,u0)+ r 2

16 f 2

[
6V 2 − f ′V ′

−2 f V ′′
]

S0
2(ε,u0)+ r 4

128 f 3

[(
20V f ′+40 f V ′− f ′ f ′′

(
f

r 2

)′

−2 f f ′′′
)
+

(
40 f V −3 f ′2 −8 f f ′′

)(
f

r 2

)′′
−12 f f ′

(
f

r 2

)′′′

−4 f 2
(

f

r 2

)′′′′]
S1

3(ε,u0)+ r 6

512 f 4

[(
21 f ′2 +56 f f ′′

−280 f V
)(

f

r 2

)′2
+84 f 2

(
f

r 2

)′′2
+112 f 2

(
f

r 2

)′( f

r 2

)′′′

+252 f f ′
(

f

r 2

)′( f

r 2

)′′]
S2

4(ε,u0)+ r 8

512 f 5

[
−231 f f ′

(
f

r 2

)′3

−462 f 2
(

f

r 2

)′2( f

r 2

)′′]
S3

5(ε,u0)

+ r 10

2048 f 6

[
1155 f 2

(
f

r 2

)′4]
S4

6(ε,u0)

}
+O

(
ε2
WKB

L2

)
, (37)

Величины Sk
n(ε,u0) в этих выражениях имеют вид

Sk
n(ε,u0)=

∫ ∞

u0

du cos(εu)
∞∑

l=0

{ (l +1/2)2k+1

(
u2 + (l +1/2)2)(2n+1)/2
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−расходящиеся члены
}

, (38)

где k и n есть целые числа, k ≥ 0 и n ≥ −1. ”Расходящиеся члены” в суммах по l получаются разло-
жением суммируемых функций по обратным степеням l и отбрасыванием членов, стремящихся к
нулю при l → ∞. Такое вычитание соответствует удалению расходимостей в суммах по l , которое
обсуждалось выше

Sn
n−1(ε,u0)=

∫ ∞

u0

du cos(εu)
∞∑

l=0

{
(l +1/2)2n+1

[u2 + (l +1/2)2](2n−1)/2

−
(
l + 1

2

)2

+ (2n −1)
u2

2

}
, (39)

Sn
n (ε,u0) =

∫ ∞

u0

du cos(εu)
∞∑

l=0

{
(l +1/2)2n+1

[
u2 + (l +1/2)2](2n+1)/2

−1

}
. (40)

Для других величин Sk
n(ε,u0) расходящихся членов нет. Детали вычисления Sk

n(ε,u0) в пределе ε→ 0
приведены в Приложении

S0
−1(ε,u0)=− 2

ε4 − 1

24ε2 + u4
0

12
− u2

0

48
+ 7

1920

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)

− 31

129024

1

u2
0

+O

(
1

u4
0

)
+O

(
ε2 ln |ε|) , (41)

S1
0(ε,u0)= 4

ε4 − u4
0

6
+ 7

960

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)
− 31

32256

1

u2
0

+O

(
1

u4
0

)
+O

(
ε2 ln |ε|) , (42)

S0
0(ε,u0)= 1

ε2 + u2
0

2
− 1

24

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)
+ 7

3840

1

u2
0

+ε2

[
−u4

0

8

+u2
0

96
− 7

2560
+ 7

3840

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)
− 31

86016

1

u2
0

]

+O

(
1

u4
0

)
+O

(
ε2

u4
0

)
+O

(
ε4) , (43)

S1
1(ε,u0)= 2

ε2 +u2
0 −

7

1920

1

u2
0

+O

(
1

u4
0

)
+O

(
ε2 ln |ε|) , (44)

Sn
n (ε,u0)= (2n)!!

(2n −1!!)

1

ε2 + (2n)!!

(2n −1!!)

u2
0

2
+O

(
1

u4
0

)
+O

(
ε2 ln |ε|) ,

(n ≥ 2), (45)

S0
1(ε,u0)=−

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)
+ 1

48

1

u2
0

+ε2

[
u2

0

4
+ 1

48

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)

− 1

32
− 7

2560

1

u2
0

]
+O

(
1

u4
0

)
+O

(
ε2

u4
0

)
+O

(
ε4) , (46)

S1
2(ε,u0)=−2

3

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)
+ε2

[
u2

0

6
+ 7

3840

1

u2
0

]
+O

(
1

u4
0

)
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+O

(
ε2

u4
0

)
+O

(
ε4) , (47)

Sn
n+1(ε,u0)= (2n)!!

(2n +1)!!

[
−

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)
+ε2 u2

0

4

]
+O

(
1

u4
0

)

+O

(
ε2

u4
0

)
+O

(
ε4) , (n ≥ 2), (48)

S0
2(ε,u0)= 1

6u2
0

+ε2

[
−1

4
+ 1

6

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)
− 1

96u2
0

]
+O

(
1

u4
0

)

+O

(
ε2

u4
0

)
+O

(
ε4) , (n ≥ 2), (49)

Sn
n+2(ε,u0)= (2n)!!

(2n +3)!!

{
1

2u2
0

+ε2
[
−3

4
+ 1

2

(
C + 1

2
ln

∣∣ε2u2
0

∣∣
)]}

+O

(
1

u4
0

)
+O

(
ε2

u4
0

)
+O

(
ε4) , (n ≥ 1), (50)

Sn
n+3(ε,u0)=− (2n)!!

(2n +5)!!

3ε2

4u2
0

+O

(
1

u4
0

)
+O

(
ε2

u4
0

)
+O

(
ε4) ,

(n ≥ 0), (51)

Sk
n(ε,u0)=O

(
1

u4
0

)
+O

(
ε2

u4
0

)
+O

(
ε4) , (k ≥ 0, n ≥ k +4). (52)

Подстановка этого выражения в (37) дает 〈ϕ2〉HFCunr en - высокочастотный вклад в 〈ϕ2〉unr en . Отметим,
что разложение 〈ϕ2〉HFCunr en по степеням u0 соответствует разложению ДеВитта-Швингера 〈ϕ2〉unr en по
степеням mlg .

Перенормировка 〈ϕ2〉 достигается вычитанием ренормализационных контрчленов из 〈ϕ2〉unr en

с последующим вычислением предела τ̃→ τ:

〈ϕ2〉r en = lim
τ̃→τ

[〈ϕ2〉unr en −〈ϕ2〉DS
]

, (53)

где

〈φ2〉DS=
1

8π2σ
+ 1

8π2

[
m2 +

(
ξ− 1

6

)
R

][
C + 1

2
ln

(
m2

DS|σ|
2

)]

− m2

16π2 + 1

96π2 Rαβ
σασβ

σ
, (54)

константа mDS равна массе m поля для массивного скалярного поля. В случае безмассового поля эта
константа является известным параметром инфракрасного обрезания в 〈T µ

ν 〉DS . Конкретный выбор
величиныmDS соответствует конечной перенормировке коэффициентов при членах гравитационно-
го лагранжиана, квадратичных по тензору Вейля и скалярной кривизне, и должен быть фиксирован
экспериментомилинаблюдениями. Величиныσµ дляметрики (2), рассчитанные с необходимой сте-
пенью точности, есть

σt=(t − t̃ )+ f ′2

24 f
(t − t̃ )3 − 1

120

(
f ′4

8 f 2 − 3

8

f ′2 f ′′

f

)
(t − t̃ )5

+O
(
(t − t̃ )7) ,
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σρ=− f ′

4
(t − t̃ )2 − f ′ f ′′

96
(t − t̃ )4 +O

(
(t − t̃ )6) ,

σθ=σφ = 0,

σ=1

2
gµνσ

µσν, (55)

Все ультрафиолетовые расходимости 〈ϕ2〉 содержатся в 〈ϕ2〉HFCunr en . Вычитая из последнего ренормали-
зационные контрчлены, получим

〈ϕ2〉WKB = lim
τ̃→τ

[
〈ϕ2〉HFCunr en −〈ϕ2〉DS

]
= (

ϕ2)
(0) +

(
ϕ2)

(2) +O

(
1

u0
2L2

)
, (56)

где
(
ϕ2

)
(0),

(
ϕ2

)
(2) величины нулевого и второго ВКБ порядка для 〈ϕ2〉WKB соответственно

(
ϕ2)

(0) =
u0

2

8π2r 2 , (57)

(
ϕ2)

(2)=
m2

16π2 + 1

16π2

[
m2 +

(
ξ− 1

6

)
R

]
ln

∣∣∣∣∣
4u2

0

m2
DSr 2

∣∣∣∣∣−
f ′2

96π2 f 2

+ f ′′

96π2 f 2 + f ′(r 2)
′

96π2 f r 2 , (58)

u0 = w0

√
r 2/ f ≫ 1. (59)

3. Низкочастотный вклад в 〈ϕ2〉

Вклад низкочастотныхмод в 〈ϕ2〉 в общем случае определяется граничными условиями и топо-
логией пространства-времени. Если пространство-время является асимптотически плоским, а ха-
рактерный масштаб λ области, в которой гравитационное является сильным (пример дан ниже),
много меньше параметра

√
f /ω0

λ√
f /ω0

≪ 1, (60)

то в асимптотически плоской области низкочастотный вклад в 〈ϕ2〉 может быть разложен в ряд по
степеням этого малого параметра. Ниже нулевой член такого разложения используется для прибли-
женного описания низкочастотного вклада в 〈ϕ2〉. Такой подход означает, что мы считаем длинно-
волновые моды приближенно совпадающими с длинноволновыми модами вакуума Минковского (в
общепринятой терминологии теории черных дыр это соответствует вакуумному состоянию Бульва-
ра в асимптотически плоской области). Для этих мод в координатах

d s2 = dT 2 +d x2 +d y2 +d z2 = dT 2 +dr 2 + r 2(dθ2 + sin2θdϕ2) (61)

евклидова функция Грина имеет вид

GE (T, xα; T̃ , x̃)= 1

(2π)4

∫
dΩd 3p

exp
[
iΩ

(
T − T̃

)+ i pα (xα− x̃α)
]

(
Ω2 +p2

x +p2
y +p2

z +m2
)

= 1

4π3

∫
dΩe iΩ∆T

∫ ∞

0
d p

p sin(p∆r )

∆r
(
Ω2 +p2 +m2

)

= 1

8π2

∫
dΩe iΩ∆T

exp
(
−∆r

p
Ω2 +m2

)

∆r

= 1

8π2

∫
dΩe iΩ∆T

[
1

∆r
−

√
Ω2 +m2 +O(∆r )

]
. (62)

Первое слагаемое в подынтегральном выражении соответствует обсуждавшейся выше, а также в ра-
ботах [12, 13, 30, 31], расходимости. И также, как и выше, такая расходимость должна быть удалена.
Таким образом, приближенным выражением для низкочастотного вклада в 〈ϕ2〉 может служить

〈ϕ2〉LFC= lim
∆τ→0

{
− 1

8π2

∫ Ω0

−Ω0

dΩe iΩ∆τ
√
Ω2 +m2

}
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=− 1

8π2

(
Ω0

√
Ω0

2 +m2 +m2 ln

∣∣∣∣∣
Ω0 +

√
Ω0

2 +m2

m

∣∣∣∣∣

)
. (63)

В случае безмассового поля или поля с массой, удовлетворяющей условию Ω0 ≫ m, это выражение
может быть переписано следующим образом

〈ϕ2〉LFC=−
Ω0

2

8π2 − m2

16π2 − m2

16π2 ln

∣∣∣∣
4Ω0

2

m2

∣∣∣∣+O

(
m4

Ω0
2

)
. (64)

И если принять во внимание соотношение Ω0 =ω0/
√

f , то

〈ϕ2〉r en=lim
τ̃→τ

[〈ϕ2〉unr en −〈ϕ2〉DS
]= lim

τ̃→τ

[〈ϕ2〉HFCunr en −〈ϕ2〉DS
]+〈ϕ2〉LFC

=〈ϕ2〉WKB+〈ϕ2〉LFC

= R

16π2

(
ξ− 1

6

)
ln

∣∣∣∣
4u0

2

m2
DSr 2

∣∣∣∣−
f ′2

96π2 f 2 + f ′′

96π2 f
+ f ′(r 2)

′

96π2 f r 2

+O

(
1

L2u0
2

)
. (65)

4. Заключение

В этой лекции получено аналитическое приближение для 〈ϕ2〉r en квантованного скалярного
поля в статических сферически симметричных асимптотически плоских пространствах-временах.
Предполагается, что константа ξ связи скалярного поля с кривизной произвольна, поле находится в
квантовом состоянии с нулевой температурой и имеет произвольную массу m.

Условиями применимости аналитического приближения (65) являются

λ≪
√

f (ρ)

w0
≪ L(ρ), (66)

где λ есть характерный размер области асимптотически плоского пространства-времени, в которой
гравитационное поле является сильным, а w0 есть константа ВКБ разложения.

В качестве примера, рассмотрим гравитационное поле, создаваемое сферическим телом ра-
диуса r0 > rg , где rg есть гравитационный радиус этого тела. Тогда λ ∼ r0, а метрика пространства-
времени вне этого тела есть

d s2 =−
(
1− rg

r (ρ)

)
d t 2 +dρ2 + r (ρ)2(dθ2 + sin2θdϕ2), (67)

где r (ρ) - обратная функция к функции

ρ(r )=ρ0 + rg

[√
r

rg

(
r

rg
−1

)
−

√
r0

rg

(
r0

rg
−1

)

+1

2
ln

∣∣∣∣∣

(√
r /rg −1+√

r /rg
)(√

r0/rg −1−√
r0/rg

)
(√

r /rg −1−√
r /rg

)(√
r0/rg −1+√

r0/rg
)
∣∣∣∣∣

]
. (68)

При r (ρ) ≫ r0

f (ρ) ∼ 1, L(ρ) ∼ r (ρ), (69)

и условия (66) могут быть удовлетворены выбором w0,

r0 ≪ w0 ≪ r (ρ). (70)

Это означает, что вдали от тела (т.е. в области, где r (ρ) ≫ r0) приближение (65) является справедли-
вым.

Присутствие в выражении (65) произвольного параметра u0 = w0r /
√

f является общей чертой
аналитических приближений [25, 26, 32, 33, 34]. Для безмассовых полей этот параметр может быть
объединен с константой mDS.



96 ЛЕКЦИИ МЕЖДУНАРОДНОГО СЕМИНАРА «GRACOS-18»

Для конформно инвариантного скалярного поля приближение (65) совпадает с приближени-
ями Пейджа, Брауна и Оттевила [20, 21, 22], Фролова, Зельникова [24] (для некоторого выбора про-
извольных параметров в их выражениях) и аналитическим приближением Андерсона, Хискока, Са-
мюэля [25]. Отметим, что в этом случае низкочастотный вклад в 〈ϕ2〉r en эквивалентен низкочастот-
ному вкладу, который дает процедура работы [25]. Это означает, что приближения, полученные в
[35, 36, 37], является корректными для конформно инвариантного квантованного скалярного поля,
находящегося в вакуумном состоянии Бульвара, в статическом сферически симметричном асимп-
тотически плоском пространстве-времени.

Приложение: Детали вычислений Sk
n (ε, u0)

Первым шагом при вычисления величин Sk
n(ε,u0) является вычисление различных сумм по l .

Начнем с вычисления суммы в выражении (39):

S(u,n)=
∞∑

l=0

{ (
l + 1

2

)2n+1

[u2 + (l +1/2)2](2n−1)/2
−

(
l + 1

2

)2

+ (2n −1)
u2

2

}
,

n ≥ 0. (71)

Для вычисления воспользуемся методом Абеля-Плана [34, 38]

∞∑

l=0
F (l +1/2) =

∫ ∞

q
F (x)d x +

∫ q

q−i∞
F (z)

1+e i 2πz
d z −

∫ q+i∞

q

F (z)

1+e−i 2πz
d z, (72)

где −1/2 < q < 1/2, f (z) является голоморфной функцией для Rez ≥ q и f (z) удовлетворяет условию
∣∣F (x + i y)

∣∣< ϵ(x)ea|y |, 0 < a < 2π, (73)

а ϵ(x) является произвольной функцией с асимптотическим поведением

ϵ(x) → 0 for x →+∞. (74)

Используя эту формулу, мы можем вычислить сумму (71):

S(u,n)= lim
q→+0

{∫ ∞

q

[
x2n+1

(u2 +x2)(2n−1)/2
−x2 + (2n −1)

u2

2

]
d x

+
∫ q

q−i∞

[
z2n+1

(u2 + z2)(2n−1)/2
− z2 + (2n −1)

u2

2

]
d z

(1+e i 2πz )

−
∫ q+i∞

q

[
z2n+1

(u2 + z2)(2n−1)/2
− z2 + (2n −1)

u2

2

]
d z

(1+e−i 2πz )

}

= (2n −1)

3

(2n)!! u3

(2n −1)!!
+2(−1)m lim

δ→+0

[∫ u+δ

0

x2n+1d x

(u2 −x2)(2n−1)/2(1+e2πx )

−
(

члены этого интеграла,
расходящиеся в пределе δ→+0

)]

= (2n −1) u3

(2n −1)!!

{
(2n)!!

3
−2

(
d

udu

)n
[

u2n
∫ 1

0

y
√

1− y2d y

1+e2πuy

]}

(n ≥ 0). (75)

Сумма в выражении (40) может быть вычислена дифференцированием S(u,n):

∞∑

l=0

{ (
l + 1

2

)2n+1

[u2 + (l +1/2)2](2n+1)/2
−1

}
= −1

(2n −1)

(
d

udu

)
S(u,n)

=− (2n)!! u

(2n −1)!!
+ 2

(2n −1)!!

(
d

udu

){
u3

(
d

udu

)n
[

u2n
∫ 1

0

y
√

1− y2d y

1+e2πuy

]}
,

(n ≥ 0). (76)
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Другие суммы в выражениях для Sk
n(ε,u0) (38) также могут быть вычислены дифференцированием

S(u,n):

∞∑

l=0

(
l + 1

2

)2n+1

[u2 + (l +1/2)2](2n+2k+3)/2
= (−1)k (2n −1)!!

(2n −1)(2n +2k +1)!!

(
d

udu

)k+2

S(u,n)

=− (2n)!!

(2n +2k +1)!!

(2k −1)!!

u2k+1

− 2(−1)k

(2n +2k +1)!!

(
d

udu

)k+2
{

u3
(

d

udu

)n
[

u2n
∫ 1

0

y
√

1− y2d y

1+e2πuy

]}
,

(
n ≥ 0,

k ≥ 0

)
. (77)

Интегралы по y во всех этих выражениях могут быть вычислены приближенно, поскольку подынте-
гральные выражения уменьшаются экспоненциально при y > 1/(2πu). Параметр u во всех выражени-
ях (38) удовлетворяет условию u > u0 ≫ 1. Поэтому основной вклад в этот интеграл дают малые ве-
личины y (y ≪ 1), а, следовательно, квадратный корень в подынтегральном выражении может быть
разложен в ряд по y . Затем верхний предел интегрирования может быть сдвинут к бесконечности:

∫ 1

0

y
√

1− y2d y

1+e2πuy =
∫ ∞

0

yd y

1+e2πuy

[
1− y2

2
− 1!!

4!!
y4 − 3!!

6!!
y6 +O(y8)

]

= 1

48u2 − 7

3840u4 − 31

129024u6 +O

(
1

u10

)
. (78)

Подставляя это выражение в (75)-(77) и интегрируя в (38) мы получим окончательные выражения
(41)-(52).
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VACUUM POLARIZATION OF A QUANTIZED SCALAR FIELD IN STATIC SPHERICALLY SYMMETRIC
ASYMPTOTICALLY FLAT SPACETIMES

A.A. Popov

Analytical approximations for 〈ϕ2〉 of a quantized scalar field in static spherically symmetric spacetimes are obtained. The
field is assumed to be both massive and massless, with an arbitrary coupling ξ to the scalar curvature, and in a zero tem-
perature vacuum state. The expression for 〈ϕ2〉 is divided into low- and high-frequency parts. The contributions of the
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high-frequency modes to these quantities are calculated for an arbitrary quantum state. As an example, the low-frequency
contribution to 〈ϕ2〉 is calculated in asymptotically flat spacetimes in a quantum state corresponding to the Minkowski vac-
uum (Boulware quantum state). The limits of the applicability of these approximations are discussed.
Keywords: vacuum polarization, quantized scalar field, gravitation.


