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Abstract. The article presents a method for determining critical loads for cen-
trally compressed wooden bars with a cross-sectional stiffness variable along the
length. Rectangular cross-section bars are considered, the section height of which
varies according to a linear law, and the width is constant. The solution is carried
out in the elastic formulation. To obtain a solution that is valid for an arbitrary bar
geometry, dimensionless parameters are introduced. When solving the stability
problem, the basis is the static Euler criterion. The solution of the main resolving
equation is performed numerically by the finite difference method. As a result, the
task is reduced to the problem of matrix eigenvalues. The implementation of the
calculation is performed in the MATLAB environment. Comparisons are made
with the current Russian standards for the design of wooden structures. In Russian
design standards, a controversial provision is that the variable stiffness of the bars
is estimated by the same calculation formula, regardless of the type of fastening.
It has been established that the error of Russian design codes for a bar hinged at
the ends can in some cases exceed 5%. Corrected calculation formulas suitable
for engineering calculations are proposed. In addition, to confirm the reliability
of the results, a finite element analysis is performed in the LIRA-SAPR software
package.
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Difference Method · Finite Element Method

1 Introduction

Wood has been one of the main structural materials in construction for many centuries,
due to its high physical, mechanical and technical qualities. At the present stage of the
construction industry development, there has been significant progress in the field of
design and construction of buildings and structures using wood due to the use of glued
wooden structures [1–3].
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To improve design solutions and reduce the material consumption of construction,
it is necessary to develop scientifically based methods for calculating and optimizing
building structures. In many designs, elements with a constant cross-sectional geometry
along the length are used, however, for reasons of reducing material consumption, in
some cases it is advisable to use elements of variable stiffness [4–9].

A lot of works are devoted to the solution of problems for compressed elements
stability with a section variable along the length, including [10–14]. In the current Rus-
sian standards for the design of wooden structures (SP 64.13330.2017), for compressed
elements with a cross-sectional height that varies along the length, the variable stiff-
ness is taken into account by the coefficient kzhN , which for various fastening options is
proposed to be determined using the same calculation formula, with which one cannot
agree.

The purpose of this work is to improve the normative methods for calculating the
stability of compressed structural elements made of wood with a section variable in
length.

2 Methods

We consider a centrally compressed rack hinged at the ends with a rectangular cross
section (Fig. 1), the height of which varies according to a linear law. The law of height
change can be written as:

h(x) = h0

(
β + (1 − β)x

l

)
. (1)

We assume that the rack material is elastic. To determine the critical load, we use
the differential equation for the buckling of the bar:

EI(x)
d2w

dx2
+ Fw = 0 (2)

with the boundary conditions w(0) = w(l) = 0.
To make the solution valid for an arbitrary bar geometry, we introduce a dimension-

less coordinate ξ = x/l, ξ ∈ [0;1]. Then expression (1) will take the form:

h(x) = h0(β + (1 − β)ξ) = h0ϕ(ξ). (3)

In case of stability loss in the xz plane, in Eq. (2) as the axial moment of inertia, the
moment of inertia Iy should be substituted, which is determined by the formula:

Iy(ξ) = bh3

12
= bh30

12
ϕ3(ξ) = I0y ϕ3(ξ). (4)

The transition from the derivative with respect to x to the derivative with respect to
ξ in Eq. (2) is performed as follows:

dw

dx
= dw

dξ

dξ

dx
= 1

l

dw

dξ
;

d2w

dx2
= 1

l2
d2w

dξ2
.

(5)
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Fig. 1 Design scheme

Substituting (5) and (4) into (2), we get:

EI0y ϕ3(ξ)
1

l2
d2w

dξ2
+ Fw = 0 (6)

Or

ϕ3(ξ)
d2w

dξ2
+ λw = 0, (7)

where λ = Fl2

EI0y
.

The critical force is expressed in terms of the dimensionless parameter λ as:

Fcr = λEI0y
l2

. (8)

This formula coincides in structure with the Euler formula. For EI(x) = const, i.e. β
= 1: λ = π2.
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In the current Russian standards for the design of wooden structures, the variable
stiffness of the bar is taken into account by the coefficient kzhN , which depends on the
parameter β. This coefficient for a bar hinged at the ends is expressed in terms of the
parameter λ as follows:

kzhN (β) = λ(β)

π2 . (9)

To solve Eq. (7), we use the finite differencemethod. On the interval [0; 1], a uniform
grid with step �ξ is introduced. The finite difference approximation of Eq. (7) for the
i-th node is written as:

ϕ3(ξi)
wi+1 − 2wi + wi−1

�ξ2
+ λwi = 0. (10)

Compiling this equation for all grid nodes, except for the extreme ones, in which w0
= wn = 0, we obtain a system of linear algebraic equations:

([A] + λ[E]){X } = 0, (11)

where {X } = {w1w2 . . .wn−1}T , [E] is the identity matrix,

[A]�ξ2 =

⎡
⎢⎢⎢⎢⎢⎣

−2ϕ3(ξ1) ϕ3(ξ1) 0 0 . . . 0 0 0
ϕ3(ξ2) −2ϕ3(ξ2) ϕ3(ξ2) 0 . . . 0 0 0

0 ϕ3(ξ3) −2ϕ3(ξ3) ϕ3(ξ3) . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0 ϕ3(ξn−1) −2ϕ3(ξn−1)

⎤
⎥⎥⎥⎥⎥⎦

.

The system of Eqs. (11) is homogeneous and has a nonzero solution only if its
determinant is equal to zero:

|[A] + λ[E]| = 0. (12)

The parameter λ corresponding to the critical load is the minimum eigenvalue of the
matrix [A], taken with a minus sign:

λ = min(−eig(A)), (13)

where eig(A) is a function returning the eigenvalues of the matrix [A].

3 Results and Discussion

The calculationwas implemented in theMATLABenvironment. Thefirst step to estimate
the required number of intervals in ξwas to solve the problem for a bar of constant cross
section. Table 1 shows the values of the parameter λ for a different number of intervals
n in ξ, as well as the deviation from the exact result equal to π2.

In further calculations, the number of intervals n was assumed to be 100.
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Table 1 Dependence of the parameter λ for a bar of constant cross section on the number of
intervals n in ξ

n 2 3 4 5 6 7 8 9 10

λ 8 9 9.37 9.55 9.65 9.71 9.74 9.77 9.79

δ, % 18.9 8.8 5.1 3.2 2.2 1.6 1.3 1.0 0.8

Fig. 2 The dependence of the coefficient kzhN on the parameter β at loss of stability in the xz
plane

Figure 2 shows the dependence of the coefficient kzhN on the parameter β obtained
as a result of the calculation. The dashed line corresponds to the formula presented in
Russian standards:

kzhN = (0.4 + 0.6β)β. (14)

The greatest discrepancy between the results is 5.7% at β = 0.3. For the dependence
kzhN (β) shown in Fig. 2 we have selected a refined approximating formula:

kzhN (β) = 0.5116β2 + 0.5004β − 0.0103. (15)

We consider next the case of stability loss in the xy plane. In this case, the moment
of inertia Iz should be substituted into Eq. (2) as I(x), determined by the formula:

Iz(x) = b3h(x)

12
= b3h0

12
ϕ(ξ) = I0z ϕ(ξ). (16)
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The differential equation for buckling takes the form:

ϕ(ξ)
d2w

dξ2
+ λw = 0, (17)

where λ = Fl2

EI0z
.

This equation is solved similarly to Eq. (7). In Russian design standards for wooden
structureswith buckling in the xy plane, the coefficient kzhN is determined by the formula:

kzhN = 0.4 + 0.6β. (18)

Figure 3 shows the graph of the coefficient kzhN dependence on β obtained as a result
of the calculation. The dashed line corresponds to a straight line constructed according
to formula (18).

Fig. 3 The dependence of the coefficient kzhN on the parameter β at loss of stability in the xy
plane

The maximum deviation of the author’s solution from the normative values is also
observed at β = 0.3 and is, as before, 5.7%. We propose the following refined formula
for the coefficient kzhN :

kzhN = − 0.1305β2 + 0.7193β + 0.4079. (19)

To confirm the reliability of the results, a calculation was made for the stability of
the bar with variable cross section in the LIRA-SAPR software package at β = 0.5, h0
= 15 cm, b = 10 cm, l = 3 m. The critical force was 100.79 kN. The Euler force for
a bar of constant section b × h0 is 137 kN. The actual coefficient kzhN = 0.735. The
normative value of the coefficient calculated by formula (18) was 0.7. According to the
refined formula (19) proposed by us it is equal to 0.735. The model in LIRA-SAPR and
the form of buckling are shown in Fig. 4.
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Fig. 4 Model of a bar with variable cross section and the form of buckling in LIRA-SAPR

4 Conclusion

A technique has been developed for determining the critical load for compressedwooden
bars with a linearly varying cross-sectional height based on the finite difference method.
A comparison was made with the calculation dependencies presented in Russian design
codes SP 64.13330.2017. It is established that the error of normative formulas exceeds
5%. Using the least squares method, refined formulas are proposed. The reliability of
the results obtained by the authors is confirmed by finite element modeling in the LIRA-
SAPR software package.
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