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Objectives: Large full-thickness skin defects represent a serious veterinary problem.

Methods: We have developed novel bioactive 3D-matrixes based on fibrin glue

Tissucol (Baxter), containing the combination of the adenoviral constructs with genes

vascular endothelial growth factor 165 (VEGF165) and fibroblast growth factor two

(FGF2; construct Ad5-VEGF165 + Ad5-FGF2) or multipotent mesenchymal stem cells,

genetically modified with these constructs.

Results: In vitro studies confirmed the biosynthesis of VEGF165 and FGF2 mRNA in the

transduced cells. Ad5-VEGF165 + Ad5-FGF2- transduced multipotent mesenchymal

stem cells showed an enhanced capacity to form capillary-like tubes in vitro. Bioactive

3D-matrix application enhanced granulation tissue formation and epithelialization of

non-healing, large bite wounds in a dog. Successful wound healing was observed

with a positive clinical outcome for the canine patient. This research and application of

regenerative gene therapy alongside a novel bioactive 3D-matrix shows promising clinical

applications for the future in both dogs and other mammals including humans.
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INTRODUCTION

Skin of pets such as dogs and cats is usually movable and relatively excessive. However, in veterinary
practice, there are cases when it is impossible to close the skin defect with a simple apposition
of wound edges (1). For example, this situation is observed in cases of large defects, wounds on
distal parts of extremities or in oncology practice after radical resection of tumors. In veterinary
surgery skin grafts, myocutanous flaps plastic surgery techniques are used for the closing of such
skin defects (2). Unfortunately, in cases where extensive skin damage is a factor these methods are
inapplicable. To treat such wounds we have developed, a bioactive 3D matrix based on fibrin glue,
multipotent mesenchymal stem cells (MSCs), or/and vegf165a and fgf2 genes containing adenoviral
constructs and tested them both in vitro and in the veterinary clinic.

Healing of skin defects is a stepwise process, including hemostasis and inflammation in
the early stages, followed by cellular proliferation and extracellular matrix deposition and
ending with remodeling and scar formation (3). Wound healing requires the coordinated
work of cells, growth factors, and extracellular matrix components. MSCs can influence
all stages of wound healing process. They regulate immune responses and inflammation,
and recruit macrophages, lymphocytes, and granulocytes to the inflammation area.
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MSCs also enhance migration and proliferation of keratinocytes
and endothelial cells and secret growth factors [including
vascular endothelial growth factor (VEGF), basic fibroblast
growth factor/fibroblast growth factor 2 (bFGF/FGF2), epidermal
growth factor (EGF), keratinocyte growth factor (KGF)] during
proliferation phase of healing. MSCs can also differentiate into
various lineages of mesenchymal origin and form dermal and
hypodermal cell compartments (4, 5).

Angiogenesis is a key element of proliferative phase of
wound healing because the delivery of oxygen and nutrients
is crucial for reparation process. One of the most important
proangiogenic factors is VEGF (6). VEGF stimulates DNA
synthesis and proliferation and is involved in anti-apoptotic
signaling pathways. It promotes proliferation and migration of
endothelial and smooth muscle cells, monocytes, macrophages,
and granulocytes involved in the wound healing process,
stimulates the activity of pericytes and stabilizes newly formed
vessels (7).

Recently it has been shown that VEGF stimulates wound
healing not only due to its proangiogenic effects. In vitro
studies have demonstrated that keratinocytes express both
VEGF and its’ receptors and VEGF directly stimulates their
proliferation, migration and survival (8, 9). This factor stimulates
migration of macrophages and cell debris uptake on early stages
of wound healing and induces macrophage apoptosis during
the resolution of inflammation (10, 11). FGF2 is a classic
mitogen, which stimulates proliferation of target cells (including
endothelial cells, fibroblasts, and keratinocytes), their migration
and differentiation and also has a cytoprotective effect (12).

We developed a model of bioactive 3D-matrix based on fibrin
glue Tissucol (Baxter), containing in one case MSCs, modified
with a combination of adenoviral constructs with VEGF165
and FGF2 genes (MSC + Ad5-VEGF165 + Ad5-FGF2), and in
the second case—the combination of the adenoviral constructs
with genes VEGF165 and FGF2 (Ad5-VEGF165 + Ad5-FGF2)
without MSCs. The aim of our study was to prove experimentally
the feasibility and effectiveness of using a bioactive 3D-
matrixes based on fibrin glue Tissucol (Baxter), containing the
combination of the adenoviral constructs with genes VEGF165
and FGF2 (Ad5-VEGF165 + Ad5-FGF2) or MSC modified with
the adenoviral constructs in a veterinary surgery setting for
closing full-thickness skin defects in dogs.

MATERIALS AND METHODS

All procedures were performed in accordance with international,
national, and/or institutional guidelines for the care and use
of animals were followed. The Institutional Review Board of
the Kazan Federal University approved this study (protocol
No3; date 05.05.2015). A homeless dog, male, aged ∼3–5
years, was in the custody of the animal protection community
“Zoozabota” which took care of the animal and gave written
informed consent. The procedure was only undertaken after
conventional methods used to assist the dog had not helped
recovery. The animal was too cachectic to harvest fat from.
The mass of dog was 5 kg. During surgery the animal was

kept anesthetized with 0.1–0.15 mg/kg Zoletil-100 (Tiletamine
Hydrochloride, Zolazepam Hydrochloride, Virbac, France) and
1–3mg/kg XylaVet (Xylazine Hydrochloride, Holland) under full
veterinary care.

MSC Isolation and Immunophenotyping
Due to the severity of the patient’s condition we had to
use allogenic dog adipose derived MSC for the generation
of biologically active 3D matrix. MSCs were isolated using
standard techniques as described previously (13). Briefly, the
adipose tissue of donor dogs’ greater omentum was isolated in
a veterinary operating room during ovariohysterectomy under
sterile conditions. The tissue was transported in a sterile flask
with sterile 0.9% NaCl for further work in cell culture laboratory
(within 2 h). The adipose tissue was cut to pieces of about 1
cm2 in a laminar flow biosafety cabinet under sterile conditions.
Blood cells were washed out using centrifugation at 500 × g
for 5min. Adipose tissue was then incubated with the sterile
solution of crab hepatopancreas collagenase (Biolot, Russia)
to a final concentration of 0.2% for an hour at 37◦C with
shaking at 200 rpm. Next, the homogenate was centrifuged for
5min at 500 × g, the enzymatic solution was then decanted
and the cell pellet containing the stromal-vascular fraction
was suspended in Dulbecco’s phosphate-buffered saline (DPBS)
solution and centrifuged twice for 5min each at 500 × g to
remove any residual enzymes. The obtained cells were cultured
in α-MEM medium with 10% fetal bovine serum (FBS), 100
U/ml penicillin, 100µg/ml streptomycin, and 2mM L-glutamine
(all from PanEco, Russia). The culture medium was changed
every 3 days. Immunophenotyping ofMSCs was performed using
antibodies CD10 FITC, CD71 FITC (Sorbent, Russia), CD34
AF488, CD45 AF488, CD105 AF488 (Biolegend), CD44, stro-
1, and Thy-1 (Santa Cruz, USA) according to manufacturers’
protocols. Results were evaluated using a confocal fluorescence

scanning microscope LSM 780 (ZEISS, Germany).

Adenoviruses Ad5-VEGF165 and
Ad5-FGF2 Preparation
Recombinant replication-defective adenoviruses Ad5-VEGF165
and Ad5-FGF2 were obtained using Gateway cloning technology
as reported previously (14). Vegf165 gene cDNA fragments were
amplified using thermocycler C1000 Thermo Cycler (BioRad),
Phusion High fidelity DNA Polymerase (Finnzymes, Thermo
Fisher Scientific, USA), and specific primers (Synthol, Russia).
The purified PCR amplification products were cloned into a
plasmid vector pENTR-D/TOPO (Invitrogen Thermo Fisher
Scientific, USA) using topoisomerase followed by transformation
into competent E. coli Top 10 cells. PCR screening of the
colonies was carried out using vector-specific primers. Target
recombinant plasmid uptake was confirmed by sequencing and
restriction analysis.

PCR amplification of fgf2 gene fragments was carried out
in two stages. Initially attB—sites were connected using gene-
specific primers hFGF2—attB1 and hFGF2—attB2 (15). The
second stage was to increase the length of the nucleotide att-
sites sequence which was performed using the adapter primer
GW-attB1 and GW-attB2 (Liteh, Russia). BP- recombination
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was performed according to a standard protocol (Invitrogen
Thermo Fisher Scientific, USA) followed by transformation into
competent cells E. coli Top 10. PCR screening of colonies and
target recombinant plasmid uptake confirmations were carried
out as described above.

LR-recombination of gene cDNA from donor plasmids
pENTR- VEGF165 and pDONR-FGF2 into vectors plasmid
pAd/CMV/V5-Dest (Invitrogen Thermo Fisher Scientific, USA)
was performed to create adenoviral expression constructs.
Transformation of competent E. coli cells, the PCR screening of
colonies and target recombinant plasmid receiving confirmation
were carried out as described above.

To produce recombinant adenovirus Ad5-VEGF165 and
Ad5—FGF2, adenoviral plasmid vector was transferred into a
linear form using a restriction enzyme PacI. HEK293A cells
were transfected with purified linear plasmids using transfection
reagent TurboFect. On the 10th day after transfection, fields
of cytopathic effect became apparent and the cell suspension
was collected. Cells were cryolysed, cell debris was eradicated
using centrifugation to prepare a crude viral lysate. Amplification
of recombinant adenoviruses Ad5-VEGF165 and Ad5—FGF2
was performed in HEK293A cell cultures. Adenoviruses were
concentrated using ultracentrifugation in cesium chloride density
gradient. Viruses were purified from cesium salts by dialysis.
Determination of viral titers was performed by its capacity to
form plaques on agarose layer.

RT-PCR
Passage 3 MSCs were transfected with Ad5-VEGF165 and Ad5-
FGF2 at 100 MOI each. The transcriptional activity of genes
vegf 165 and fgf 2 were evaluated 24 h post-infection by qPCR.
Specific primers, probes and nucleotide sequences were described
previously (15). Serial dilutions of cDNA synthesized from
mRNA of the transfected cells were used to construct a standard
curve and determine the level of gene expression. The gene
expression level of non-transfected cells was taken as 100%.

Matrigel Tube-Formation Assay
Matrigel

TM
tube-formation assay with Ad5-VEGF165 and Ad5-

FGF2 co-transfected cells and non-transfected (control) cells was
performed as described previously (16). Briefly, 10,000 MSCs
co-transfected with Ad5-VEGF165 and Ad5-FGF2 or 10,000

non-transfected cells per well in triplicates were seeded in a
96-well plate pre-coated with 50 µl of Matrigel R© Growth
Factor Reduced Basement Membrane Matrix (Cat. #356231,
Becton Dickinson, USA) in DMEM/F12 media supplemented
with 1% FBS. The plates were incubated at 37◦C in a humidified
atmosphere containing 5% CO2 for 16 h. Tube formation was
evaluated using microscopy and ImageJ software.

Bioactive 3D Matrix Preparation
3D bioactive matrix was formed immediately prior to application
to the wound. Fibrin glue Tissucol was used as a matrix
basement. Two types of matrix were used. The first type of
matrix consisted of 3,000,000 genetically modified MSCs and
1ml of Tissucol. MSCs were co-transfected with Ad5-VEGF165
and Ad5-FGF2 at MOI 100 each the day before application.
Cell suspension, thoroughly washed from media and viruses
by centrifugation, was mixed with fibrin glue and uniformly
applied to the wound surface. The second type of matrix was
prepared from 1ml of Tissucol and a mixture of Ad5-VEGF165
and Ad5-FGF2 viruses in amounts equivalent to those used for
MSC transfection.

Statistical Analysis
Statistical analysis was performed using Student’s t-test in
Microsoft Excel 2007 software, P ≤ 0.05 was considered
statistically significant.

RESULTS

In vitro Studies
Adenoviruses Ad5-VEGF165 and Ad5-FGF2 were prepared
using standard methods of molecular genetics and used for gene
therapy as part 3D-matrix or to modify the MSCs with MOI
100. MSCs isolated from dog adipose tissue as was described
previously (17) had a fibroblast-like morphology, and expressed
markers of the MSCs CD10, CD71, CD44, CD105, stro-1, Thy-
1, and did not express the hematopoietic markers CD34 or
CD45 (Figure 1).

Biosynthesis of VEGF and FGF2 mRNA in transduced
cells was confirmed after 24 h after modification of MSC with

FIGURE 1 | Immunocytochemistry of multipotent mesenchymal stem cells: (A) stro-1, (B) Thy-1, (C) CD10, and (D) CD105 expressed in green (488 wavelength).

Nuclei were stained with DAPI (4
′
,6-diamidino-2-phenylindole, blue in color). Magnification: ×200.
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FIGURE 2 | (A) Analysis of VEGF 165 and FGF2 mRNA expression in genetically modified MSCs. Data are presented as Mean ± standard error of the mean.

Expression was normalized to 18s rRNA. MatrigelTM capillary-like structure formation by genetically modified canine MSCs (B) Ad5-VEGF165 and Ad5-FGF2

co-transfected cells in DMEM/F12 media supplemented with 1% FBS (C) non-transfected cells on nutritious medium (positive control) in DMEM/F12 media

supplemented with 1% FBS and 10 ng/ml recombinant VEGF, and (D) non-transected cells on poor medium (negative control) in DMEM/F12 media supplemented

with 1% FBS.

recombinant adenoviruses (Figure 2A). MSCs-Ad-VEGF165-
FGF2 had a higher (70± 5 units/well) capacity to form capillary-
like structures on MatrigelTM as compared with intact cells (47±
5 units/well, Figures 2A–D), p < 0.05.

In vivo Clinical Case Results
In vivo biologically active 3D matrix was tested in two
morphologically similar non-healing full-thickness bite wounds
measuring about 70 cm2 each in the back and groin areas
of a medium sized adult dog. The numerous bite wounds
were received during fights between the patient and another
dog. Immediately after injury, the wounds were sanitized
and sutured in a veterinary clinic. The post-operative period
proved complicated with extensive necrosis of the skin at
the wound edges. Necrotic tissue was dissected away, as
a result the closure of the wounds by matching their
edges became impossible. The effect of standard practice
conservative therapy was insignificant: after 2 weeks of
treatment marginal necrosis was observed and granulations
were almost absent. There was no wound contraction either.
As the patient had not responded to standard veterinary care,
treatment with the new therapy was administered. Necrotic
skin was dissected and tissues were flayed until pinpoint
bleeding (Figure 3).

In order to stimulate the regeneration of tissue growth
around the wounds, the biologically active matrix was applied.
The wound on the back was covered with matrix based on
Tissucol fibrin glue containing 3 million MSCs transfected with

FIGURE 3 | Canine wounds prior to 3D matrix application: (A) back, (B) groin.

combination of Ad5-VEGF165 and Ad5-FGF2 (MOI 100 for
each construct). Allogenic MSCs had to be used due to the
severity of the patients’ body condition. The wound in the groin
was covered with another type of matrix containing Tissucol
fibrin glue, Ad5-VEGF165 and Ad5-FGF2 in amounts equivalent
to those used to transduce the MSCs. Wounds were closed
with occlusive dressings. To prevent wound contamination,
Baytril 5% (enrofloxacin, Bayer Corporation, USA.) antibiotic
was subcutaneously injected in dose 0.1 ml/kg once a day for
7 days.

On the 3rd day after 3D matrix application the dressings were
removed. Juicy red granulations, edge epithelization up to 3–
4mm, wound contraction and minor exudation were observed.
On the 7th day, edge epithelization of from 6–7 to 10mm had
been achieved. There were no signs of necrosis or inflammation
throughout the entire healing period. The wound on dogs’ back
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FIGURE 4 | Canine wounds 1 month after 3D-matrix application: (A) back, (B)

groin.

was completely healed after 1 month and the wound in the groin
healed within 1.5 months with normal non-hypertrophic scar
formation (Figure 4). Following successful treatment the dog was
adopted and rehomed as a pet.

DISCUSSION

Large full-thickness skin defects pose a serious medical
and veterinary problem. In medicine if autodermoplasty is
impossible, skin can be obtained from tissue bank. In veterinary
medicine this is presently impossible. In addition large skin
defects cause a vicious circle: the bigger the total lesion area, the
worse the patients general condition, the worse local regeneration
of damaged skin.

The effects of MSC, various growth factors and genetic
constructs expressing them on the skin regeneration process have
been studied for a long time. Positive effects of MSCs, VEGF, and
FGF2 application on regeneration of skin defects in laboratory
animals and in the clinic have been shown (18). Application of
MSCs improves wound closure by accelerating epithelialization
and increasing angiogenesis and granulation tissue formation
(19, 20). The most beneficial effect of exogenous MSCs on
wound healing was shown in cases of chronic wounds with poor
trophicity (diabetic) (21, 22).

There is also evidence that VEGF and FGF2 can promote
wound healing. VEGF is highly expressed in normally healing
wounds but its excessive introduction doesn’t significantly
accelerate would closure and epithelialization (23, 24).
However, in delayed healing diabetic wounds or ischemic
skin flaps VEGF delivery enhances skin regeneration (25, 26).
FGF2 is normally expressed in healthy skin an increased
expression is observed upon skin damage. A number of
studies have shown that FGF2 promotes tissue regeneration,
and its deficiency causes wound healing disorders (27).
Therefore, it has been suggested that FGF2 reduces hypertrophic
scar formation (28).

There is a lack of studies of combined use of several
growth factors together with a carrier matrix. Research has
shown increased angiogenesis and keratinocyte growth after
application of VEGF and FGF2-loaded collagen biomatrix on

skin defects created on the back of fetal lambs (29). Our group
has also had positive previous experiences of the use of genetic
constructs containing the combination of VEGF and FGF2 genes
in the treatment of chronic wounds (such as trophic ulcers in
diabetes) (30) and injuries to tendons or ligaments in domestic
animals (31, 32).

Our present study shows enhanced wound healing by
combining the use of fibrin glue and MSCs, modified for
increased production of VEGF165 and FGF2, or adenoviral
constructs Ad5-VEGF165 and Ad5-FGF2. Our in vitro
studies confirmed the biosynthesis of mRNA of vegf165
and fgf2 in the transduced MSCs. The resulting proteins
VEGF and FGF2 exhibited their normal physiological activity.
In addition they stimulated the formation of capillary-like

tubes on Matrigel
TM

, which is equivalent to the process of
angiogenesis in vivo.

Upon application to wounds in a patient, satisfactory
clinical results were achieved. Non-healing large bitten wounds
were treated and enhanced granulation tissue formation, rapid
epithelialization and wound contraction were observed and full
recovery was achieved in a relatively short period of time. The
difference in healing rate of two wounds (4 weeks for the back
and 6 weeks for the groin) could be due to the location and shape
of the wounds and/or MSCs secretion of the various biologically
active substances which stimulated regeneration. These results
highlight the need to further studies to investigate differing
wound types inmore patients as it shows great promise as a future
treatment technique.

In conclusion the present clinical case has shown that fibrin
glue based 3D matrices enhanced with Ad5-VEGF165 and
Ad5-FGF2 or MSCs, transfected with Ad5-VEGF165 and Ad5-
FGF2, have beneficial effect in the treatment of large non-
healing wounds. This provides promising avenues of treatment
for wounds and other conditions requiring tissue regeneration
in animals.
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