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1 Introduction

Rejection of intermediates before machining is one of the main problem in production optimization.
For the selection of necessary intermediates that satisfy necessary requirements/criteria one can use
nondestructive testing methods. There are many different nondestructive testing methods that are
used in different manufacturing: magnetic methods [1], capillary [2], eddy current [3], acoustic [4],
radiation [5], optical [6] and etc. Each of them has its own range of applicability conditioned by cost,
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possibility of application, sensitivity and adaptability. Another important point in testing procedure
lies in the processing and analysis of data obtained after application of nondestructive testing method.
Frequently, the recorded data forms a large set and are “polluted” strongly by random fluctuations
(known as a ‘noise’) that make difficult them for extraction of significant information that is associated,
in particular, with identification of the desired defect located in the given intermediate. One of the most
ancient method of acoustic monitoring is acoustic free-oscillation method [7]. The main advantages of
this method are: 1) possibility of integral control of the complex high-curvature shape intermediates; 2)
there is no need for preliminary control surface preparing; 3) quickness of the desired results achieved.
The essential drawback of this method is sensitivity to the way of securing the intermediate and
to the place and direction of the excitation force. Usually acoustic free-oscillation method is used
in conjunction with the Fourier analysis [8]. Fourier analysis has its own area of applicability and
some essential drawbacks. Two basic drawbacks are listed below: 1) assumption about the normal
distribution of the noises; 2) uncontrollable errors injections during its application.

In this work we are trying to use another signal processing procedure that does not contain assump-
tions about the nature of the probability distribution function and does not create uncontrollable errors
during its application. This procedure is based on the use of the generalized mean value (GMV)-function
that has demonstrated its applicability for reliable selection of different probability distributions [9].

2 Experiment

The objects of investigation represent themselves 7 steel cylindrical rods with radius R = 8 mm and
length L =300 mm mounted on special supports. Six of them have transversal saw-cuts with penetration
depth 1, 2, 3, 4, 5 and 6 mm, accordingly. These saw-cuts simulates different defects with different
depths. The seventh rod is considered as the normal one and it does not contain this type of defect.

Experimental setup for investigation of the rods is depicted on figure 1. This setup is mounted
on vibration isolating table (concrete plate with rubber dampers) and contains the following elements:
base stand, rod laying device, striker assembly and microphone.

During experiment rods were fixed on H-frame supports that were made from transformer steel.
These supports were fastened on vertical stands that, in turn, were fixed on vibration isolating table.
Impact (strike contact) was made in the center of the rods and the proper acoustic response was
registered by the use of microphone and ADC connected with personal computer.

b

Fig. 1 Experimental setup for investigation of the rods. (1 - external screw for changing position of the
striker; 2 - striker assembly; 3 - investigated rod; 4 - knife supports; 5 - base stand; 6 - screw for regulation of
the distance between supports).
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Fig. 2 Acoustic response registered from rod without defect.
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Fig. 3 Acoustic response recorded from a rod with the saw-cut defect having the depth 5 mm.

On figures 2 and 3 one can see examples of acoustic responses from rods without defect and with
defect having saw-cut form and depth 5 mm.
For each rod we obtained 40 samples of acoustic data.

3 Description of the signal processing procedure

The idea of this treatment is to extract significant information that can be presented in an arbitrary
form for differentiation of rods having saw-cut defects with different depth from each other and from
normal rod without defect. For solution of this problem we apply the GMV- function.

This approach has been initially suggested by one of the authors (RRN) in paper [10]. It is based
on idea of generalization of the arithmetic mean value and takes into consideration the total set of
moments including the fractional and even complex values. The integer (or fractional) moment of the
pth order is determined as:
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N
Ay, =A(my) = z "0 <m, < Mx. (1)

where N is the number of points in the sampling considered, m signifies the order of the moment and
y — values of the points in the sampling.
The GMV-function is related to the moment of the pth order by means of relationship.

GMVy(m,) = [A(m,)]"/"™ 2)

This function reproduces the harmonic mean (m, = —1), geometric mean (obtained in the limit m, — 0),
arithmetic mean (m, = 1) as partial cases. The GMV-function is increasing (monotonous) function and
at m, — eo GMV-function recovers the right limit of the sequence (Jmax = ymx) and in the opposite case
(at mj, — —oo) it coincides with another limiting value i, = ymn. Mathematically, these properties are
expressed by the following expressions

GMVy(my) > GMVy(my), if my > my,
lim GMVy(m) = e (3)

m——+oo ymn

This function has a remarkable property, viz., being presented in the plot G2y(m) = Gly(m) it demon-
strates the statistical proximity of two random sequences compared if they satisfy to the linear rela-
tionship of the type

GMV2y(m) = AGMV 1y(m) +b. (4)

The linear relationship (4) can be chosen as a quantitative criterion for verification of the statistical
proximity for two arbitrary random sequences compared. However, for detection of the statistical
proximity it is necessary to calculate expressions (2) for two sequences and plot them with respect to
each other for approximate verification of expression (4).

The normalized moments (1) can be fitted by the linear combination of the exponential functions [10]
that was successfully demonstrated recently in differentiation of different 3D-video films [11]

S

Ay =ao+ Y aiexp(Aip). (5)
=

Here the upper limit § of this exponential decomposition is defined by the accuracy of the fitting
procedure applied. Application of this function shows [11] that for the most cases it is sufficient to use
S =3. So, using the GMV- function and function (5) one can “read” quantitatively any signal (with
trend or without trend) in terms of the fitting parameters a; and A; figuring in expression (5).

The first step in the proposed signal processing algorithm is data preparation. Under the “data
preparation” we mean extraction of the data that have informative significance for detection of the
desired defects.

Let N be the total length of the considered data set {y; = y(#;)} (forming in our case the considered
acoustic response). This sequence can be divided into M consecutive “segments” each one lasting m
samples, that is M = [N/m]. Now, let {P;} = {pi(1),pi(1),...,pi(m)} be the i-th segment. Reduction
of this “cloud” of points to two incident points translates into the calculation of two typical points for
each segment:

pi? = max{P}, pi" = min{P}, i = 1..N. (6)

The so obtained subsets, that is F*? = {p{¥, p5*,...,py7 } and F dn— fpdn pdn ..., p§i} form two curves,
describing the data trend on a compressed time scale (w1th a compression factor of m). If F' and Fd"
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Fig. 4 Curves F** and F from rod without defect.

keep their values very close each other, then it serves as an indication of the invariance of the data
set under analysis, with respect to self-similar transformations [12]. This is an advantage, because the
properties of the whole set can be inferred by using much less data samples.

Please note that, if observed, this behavior is independent on the value of m, which anyway should
be kept in a proper range to keep the statistical similarity of the compressed subsets. Choosing a too
high value of m would translate in a lower value of M with a consequent very strong data compression
and this surely destroys the possibility of detecting the data trend at a smaller time scale. On the
other side, m cannot be too small, to allow capturing the low-frequency behavior of the data set under
analysis. An empirical rule of thumb for a correct choice of m is based on the following compromise:
the number M of the compressed data samples should be less than N/3 (i.e., at least three original
samples per compressed sample), and at the same time it should be greater than 30-=-40. That is:

30%40§M§§:>3§m§iv—0+%. (7)
Application of this procedure (6) to the raw acoustic data (presented on figures 2 and 3) gives us curves
Fup and Fdn presented on figures 4 and 5 (m = 100).
On figures 6, 7 and 8 one can see curves obtained as difference between F' and Fd:

DF = F* —F®. (8)

Comparing figures 6, 7 and 8 one can see that DF curves become smoother with increasing of the

saw-cut depth.
The second step of our proposed signal processing algorithm is normalization procedure

DF — MeanValue(DF )
StDev(DF)

Normalized DF = + 10, (9)
where MeanValue(DF ) represents the mean value calculated from curve DF and StDev(DF) represents
the standard deviation value calculated from curve DF.

The third step of our proposed signal processing algorithm is calculation of the GMV functions using
normalized curves (9) as input data. As it has been mentioned above for each rod we get 40 samples
of acoustic data. Then after calculation of the GMV-function (2) to the normalized data expressed by
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Fig. 5 Curves Fup and Fdn from rod with saw cut 5 mm.
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Fig. 6 Curve DF from rod without defect.

(9) we get 40 GMV-curves for each rod. After that one can get the mean function from the set of the
GMV-functions corresponding to each rod. On figure 9 one can see the averaged curves obtained from
each sampling of the GMV-function for seven rods (one normal rod without defect and six rods with
saw-cuts with depths 1, 2, 3, 4, 5 and 6 mm, accordingly).

On the next figure 10 one can see the part of previous figure 9 for more clarity.

Here one can see the direct correlation between saw-cut depths and position of the averaged mean
value function. As one can see from this plot the smallest saw-cut defect with depth 1 mm cannot
be differentiated; while others starting from 2 mm can be definitely differentiated for forming of the
desired calibration curve (the relative distance between the limiting values, right-hand side of figures 9
and 10) of the rods with respect to the depth of the defect:
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Fig. 7 Curve DF from rod with saw cut 2 mm.
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Fig. 8 Curve DF from rod with saw cut 5 mm.

o GMV (sawcut, p = 500) — GMV (normal , p = 500)
Calibrat t depth) = 10
alibration(sawcut depth) 0.5-(GMV (sawcut, p = 500) + GMV (normal,, p = 500)) . (10)

Below on figure 11 one can see the desired calibration curve calculated from expression (10).

4 Results and conclusions

The basic result of this work can be formulated as follows. It becomes possible to present a novel
signal processing algorithm based on the specific behavior of the GMV-function. This algorithm helps
to extract the significant and quantitative information from the acoustic signals that are propagated
inside metal cylindrical slugs having saw-cut defects with different depths. This information allows to
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Fig. 10 The part of figure 9 - averaged general mean value functions for seven rods (one rod without defect
and six rods with saw cuts with depths 1, 2, 3, 4, 5 and 6 mm).

distinguish normal rods/intermediates (without defects) from rods with saw-cut defect and construct

the desired calibration curve (see figure 10) that helps to differentiate the rods with different saw-cuts

depths from each other.

The conclusion of this preliminary study is that the proposed signal processing method is suited
to be employed for acoustic signals acquired in frame of free-oscillation method in order to detect and
evaluate defects in metal rods. We think that proposed signal processing algorithm can be used as a
basic and simple procedure for development a really powerful, efficient and reliable signal processing

method for detection of different defects (not only transversal saw cuts but also inner cavities) in
essential improving of the free-oscillation method drawbacks.
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