
Lecture 4. Systems of Particles,
Momentum and Collisions. Statics

Systems of Particles

An object such as a baseball is not really a particle. It is made of many, many particles – even
the atoms it is made of are made of many particles each. Yet it behaves like a particle as far as
Newton’s Laws are concerned.

We will obtain this collective behavior by averaging, or summing over at successively larger
scales, the physics that we know applies at the smallest scale to things that really are particles.
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Newton’s Laws for a System of Particles – Center of Mass

A system of N = 3 particles is shown, with various forces
�⃗�𝐹𝑖𝑖 acting on the masses (which therefore each their own
accelerations �⃗�𝑎𝑖𝑖). From this, we construct a weighted
average acceleration of the system, in such a way that
Newton’s Second Law is satisfied for the total mass.

Suppose we have a system of N particles, each of which is experiencing a force. Some (part)
of those forces are “external” – they come from outside of the system. Some (part) of them
may be “internal” – equal and opposite force pairs between particles that help hold the system
together (solid) or allow its component parts to interact (liquid or gas).
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We would like the total force to act on the total mass of
this system as if it were a “particle”. That is, we would
like for:

�⃗�𝐹𝑡𝑡𝑠𝑠𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡𝐴𝐴

where 𝐴𝐴 is the “acceleration of the system”. Newton’s
Second Law for a system of particles is written as:

�⃗�𝐹𝑡𝑡𝑠𝑠𝑡𝑡 = �
𝑖𝑖

�⃗�𝐹𝑖𝑖 =�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑2�⃗�𝑥𝑖𝑖
𝑑𝑑𝑡𝑡2

=

= �
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑡𝑡2

= 𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑡𝑡2

= 𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡𝐴𝐴
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�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑2�⃗�𝑥𝑖𝑖
𝑑𝑑𝑡𝑡2

= 𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑡𝑡2

Basically, if we define an 𝑋𝑋 such that this relation is true then Newton’s second law is recovered
for the entire system of particles “located at 𝑋𝑋” as if that location were indeed a particle of mass
Mtot itself. We can rearrange this a bit as:

𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

=
𝑑𝑑2𝑋𝑋
𝑑𝑑𝑡𝑡2

=
1

𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡
�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑2�⃗�𝑥𝑖𝑖
𝑑𝑑𝑡𝑡2

=
1

𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡
�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑�⃗�𝑣𝑖𝑖
𝑑𝑑𝑡𝑡

and can integrate twice on both sides. The first integral is:

𝑑𝑑𝑋𝑋
𝑑𝑑𝑡𝑡

= 𝑉𝑉 =
1

𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡
�
𝑖𝑖

𝑚𝑚𝑖𝑖�⃗�𝑣𝑖𝑖 + 𝑉𝑉0 =
1

𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡
�
𝑖𝑖

𝑚𝑚𝑖𝑖
𝑑𝑑�⃗�𝑥𝑖𝑖
𝑑𝑑𝑡𝑡

+ 𝑉𝑉0

and the second is: 𝑋𝑋 = 1
𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡

∑𝑖𝑖 𝑚𝑚𝑖𝑖�⃗�𝑥𝑖𝑖 + 𝑉𝑉0𝑡𝑡 + 𝑋𝑋0
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We define the position of the center of mass to be:

𝑀𝑀𝑋𝑋cm = ∑𝑖𝑖𝑚𝑚𝑖𝑖�⃗�𝑥𝑖𝑖 or 𝑋𝑋cm = 1
𝑀𝑀
∑𝑖𝑖𝑚𝑚𝑖𝑖�⃗�𝑥𝑖𝑖

Not all systems we treat will appear to be made up of point particles. Most solid objects or
fluids appear to be made up of a continuum of mass, a mass distribution. In this case we
need to do the sum by means of integration, and our definition becomes:

𝑀𝑀𝑋𝑋cm = ∫ �⃗�𝑥𝑑𝑑𝑚𝑚 or 𝑋𝑋cm = 1
𝑀𝑀 ∫ �⃗�𝑥𝑑𝑑𝑚𝑚
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Momentum

Momentum is a useful idea that follows naturally from our decision to treat collections as 
objects. It is a way of combining the mass (which is a characteristic of the object) with the 
velocity of the object. We define the momentum to be:

�⃗�𝑝 = 𝑚𝑚�⃗�𝑣
Thus (since the mass of an object is generally constant):

�⃗�𝐹 = 𝑚𝑚�⃗�𝑎 = 𝑚𝑚
𝑑𝑑�⃗�𝑣
𝑑𝑑𝑡𝑡

=
𝑑𝑑
𝑑𝑑𝑡𝑡

𝑚𝑚�⃗�𝑣 =
𝑑𝑑�⃗�𝑝
𝑑𝑑𝑡𝑡

is another way of writing Newton’s second law.
Note that there exist systems (like rocket ships, cars, etc.) where the mass is not constant. As
the rocket rises, its thrust (the force exerted by its exhaust) can be constant, but it continually
gets lighter as it burns fuel. Newton’s second law (expressed as �⃗�𝐹 = 𝑚𝑚�⃗�𝑎) does tell us what to
do in this case – but only if we treat each little bit of burned and exhausted gas as a “particle”,
which is a pain. On the other hand, Newton’s second law expressed as �⃗�𝐹 = 𝑑𝑑�⃗�𝑙

𝑑𝑑𝑡𝑡
still works fine

and makes perfect sense – it simultaneously describes the loss of mass and the increase of
velocity as a function of the mass correctly.
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Momentum

Clearly we can repeat our previous argument for the sum of the momenta of a collection of 
particles:

𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡 = �
𝑖𝑖

�⃗�𝑝𝑖𝑖 = �
𝑖𝑖

𝑚𝑚�⃗�𝑣𝑖𝑖

so that

𝑑𝑑𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡
𝑑𝑑𝑡𝑡

= �
𝑖𝑖

�⃗�𝑝𝑖𝑖
𝑑𝑑𝑡𝑡

= �
𝑖𝑖

�⃗�𝐹𝑖𝑖 = �⃗�𝐹𝑡𝑡𝑠𝑠𝑡𝑡

Differentiating our expression for the position of the center of mass above, we also get:
𝑑𝑑∑𝑖𝑖𝑚𝑚�⃗�𝑥𝑖𝑖

𝑑𝑑𝑡𝑡
= �

𝑖𝑖

𝑚𝑚
𝑑𝑑�⃗�𝑥𝑖𝑖
𝑑𝑑𝑡𝑡

=�
𝑖𝑖

�⃗�𝑝𝑖𝑖 = 𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡 = 𝑀𝑀𝑡𝑡𝑠𝑠𝑡𝑡�⃗�𝑣𝑠𝑠𝑚𝑚
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The Law of Conservation of Momentum

We are now in a position to state and trivially prove the Law of Conservation of Momentum.

If and only if the total external force acting on a system is zero, then the total momentum 
of a system (of particles) is a constant vector.

You are welcome to learn this in its more succinct algebraic form:

If and only if �⃗�𝐹𝑡𝑡𝑠𝑠𝑡𝑡 = 0 then 𝑃𝑃𝑡𝑡𝑠𝑠𝑡𝑡 = 𝑃𝑃𝑖𝑖𝑠𝑠𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑙𝑙 = 𝑃𝑃𝑓𝑓𝑖𝑖𝑠𝑠𝑎𝑎𝑙𝑙 = a constant vector.
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Impulse

As the surfaces of the two (hard) balls come into contact, they “suddenly” exert relatively
large, relatively violent, equal and opposite forces on each other over a relatively short time,
and then the force between the objects once again drops to zero as they either bounce apart or
stick together and move with a common velocity.
“Relatively” here in all cases means compared to all other forces acting on the system during
the collision in the event that those forces are not actually zero.

Let us imagine a typical collision: one pool ball
approaches and strikes another, causing both
balls to recoil from the collision in some
(probably different) directions and at different
speeds. Before they collide, they are widely
separated and exert no force on one another.
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Impulse

Let us begin, then, by defining the average force over the (short) time Δt of any given
collision, assuming that we did know �⃗�𝐹 = �⃗�𝐹21(𝑡𝑡), the force one object (say m1) exerts on the
other object (m2).
The magnitude of such a force (one perhaps appropriate to the collision of pool balls) is
sketched below in figure where for simplicity we assume that the force acts only along the line
of contact and is hence effectively one dimensional in this direction.

The time average of this force is
computed the same way the time
average of any other timedependent
quantity might be:
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Impulse

The time average of this force is computed the same way the time average of any other
time-dependent quantity might be:

�⃗�𝐹𝑎𝑎𝑎𝑎𝑔𝑔 =
1
∆𝑡𝑡
�
0

∆𝑡𝑡
�⃗�𝐹 𝑡𝑡 𝑑𝑑𝑡𝑡

We can evaluate the integral using Newton’s Second Law expressed in terms of momentum:

�⃗�𝐹 𝑡𝑡 =
𝑑𝑑�⃗�𝑝
𝑑𝑑𝑡𝑡

so that (multiplying out by dt and integrating):

�⃗�𝑝2𝑓𝑓 − �⃗�𝑝2𝑖𝑖 = ∆�⃗�𝑝2 = �
0

∆𝑡𝑡
�⃗�𝐹 𝑡𝑡 𝑑𝑑𝑡𝑡

Note that the momentum change of the first ball is equal and opposite. From Newton’s
Third Law, �⃗�𝐹12 𝑡𝑡 = −�⃗�𝐹21 𝑡𝑡 = �⃗�𝐹 and:

�⃗�𝑝1𝑓𝑓 − �⃗�𝑝1𝑖𝑖 = ∆�⃗�𝑝1 = −�
0

∆𝑡𝑡
�⃗�𝐹 𝑡𝑡 𝑑𝑑𝑡𝑡 = −∆�⃗�𝑝2
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Impulse

The integral of a force �⃗�𝐹 over an interval of time is called the impulse imparted by the force

𝐼𝐼 = �
𝑡𝑡1

𝑡𝑡2
�⃗�𝐹 𝑡𝑡 𝑑𝑑𝑡𝑡 = �

𝑡𝑡1

𝑡𝑡2 𝑑𝑑�⃗�𝑝
𝑑𝑑𝑡𝑡

𝑡𝑡 𝑑𝑑𝑡𝑡 = �
𝑙𝑙1

𝑙𝑙2
𝑑𝑑�⃗�𝑝 = �⃗�𝑝2 − �⃗�𝑝1 =∆�⃗�𝑝

This proves that the (vector) impulse is equal to the (vector) change in momentum over the
same time interval, a result known as the impulse-momentum theorem. From our point of
view, the impulse is just the momentum transferred between two objects in a collision in
such a way that the total momentum of the two is unchanged.
Returning to the average force, we see that the average force in terms of the impulse is just:

�⃗�𝐹𝑎𝑎𝑎𝑎𝑔𝑔 =
𝐼𝐼
∆𝑡𝑡

=
∆𝑝𝑝
∆𝑡𝑡

=
�⃗�𝑝𝑓𝑓 − �⃗�𝑝𝑖𝑖
∆𝑡𝑡
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Impulse, Fluids, and Pressure

Another valuable use of impulse is when we have many objects colliding with something –
so many that even though each collision takes only a short time Δt, there are so many
collisions that they exert a nearly continuous force on the object.
This is critical to understanding the notion of pressure exerted by a fluid, because
microscopically the fluid is just a lot of very small particles that are constantly colliding
with a surface and thereby transferring momentum to it, so many that they exert a nearly
continuous and smooth force on it that is the average force exerted per particle times the
number of particles that collide.

Suppose you have a cube with sides of length L
containing N molecules of a gas.
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Let’s suppose that all of the molecules have a mass m and an average speed in the x direction
of vx, with (on average) one half going left and one half going right at any given time.
In order to be in equilibrium (so vx doesn’t change) the change in momentum of any molecule
that hits, say, the right hand wall perpendicular to x is Δpx = 2mvx. This is the impulse
transmitted to the wall per molecular collision. To find the total impulse in the time Δt, one
must multiply this by one half the number of molecules in in a volume L2vx Δt. That is,

∆𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 =
1
2

𝑁𝑁
𝐿𝐿3

𝐿𝐿2𝑣𝑣𝑥𝑥∆𝑡𝑡(2𝑚𝑚𝑣𝑣𝑥𝑥)

Let’s call the volume of the box L3 = V and the area of the wall receiving the impulse L2 = A.

𝑃𝑃 =
𝐹𝐹𝑎𝑎𝑎𝑎𝑔𝑔
𝐴𝐴

=
∆𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡
𝐴𝐴∆𝑡𝑡

=
𝑁𝑁
𝑉𝑉

1
2
𝑚𝑚𝑣𝑣𝑥𝑥2 =

𝑁𝑁
𝑉𝑉

𝐾𝐾𝑥𝑥,𝑎𝑎𝑎𝑎𝑔𝑔

where the average force per unit area applied to the wall is the pressure, which has SI units of
Newtons/meter2 or Pascals.
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Impulse, Fluids, and Pressure

If we add a result called the equipartition theorem:

𝐾𝐾𝑥𝑥,𝑎𝑎𝑎𝑎𝑔𝑔 =
1
2
𝑚𝑚𝑣𝑣𝑥𝑥2 =

1
2
𝑘𝑘𝑏𝑏𝑇𝑇2

∆𝑝𝑝𝑡𝑡𝑠𝑠𝑡𝑡 =
1
2

𝑁𝑁
𝐿𝐿3

𝐿𝐿2𝑣𝑣𝑥𝑥∆𝑡𝑡(2𝑚𝑚𝑣𝑣𝑥𝑥)

where kb is Boltzmann’s constant and T is the temperature in degrees absolute, one gets:
𝑃𝑃𝑉𝑉 = 𝑁𝑁𝑘𝑘𝑇𝑇

which is the Ideal Gas Law.
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Collisions

A “collision” in physics occurs when two bodies that are more or less not interacting (because
they are too far apart to interact) come “in range” of their mutual interaction force, strongly
interact for a short time, and then separate so that they are once again too far apart to interact.

There are three general “types” of collision:
• Elastic
• Fully Inelastic
• Partially Inelastic
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Elastic collision
By definition, an elastic collision is one that also conserves total kinetic energy so that the
total scalar kinetic energy of the colliding particles before the collision must equal the total
kinetic energy after the collision. This is an additional independent equation that the solution
must satisfy.

General relationships:

1. Conservation of momentum �⃗�𝑝1𝑖𝑖 + �⃗�𝑝2𝑖𝑖 = �⃗�𝑝1𝑓𝑓 + �⃗�𝑝2𝑓𝑓

2. Conservation of kinetic energy: 1
2
𝑚𝑚1�⃗�𝑣1𝑖𝑖2 + 1

2
𝑚𝑚2�⃗�𝑣2𝑖𝑖2 = 1

2
𝑚𝑚1�⃗�𝑣𝑓𝑓2

′ + 1
2
𝑚𝑚2�⃗�𝑣2𝑓𝑓2

3. For head-on collisions: 𝑣𝑣1′ = (𝑚𝑚1−𝑚𝑚2)
(𝑚𝑚1−𝑚𝑚2)

𝑣𝑣1 ; 𝑣𝑣2′ = 2𝑚𝑚1
(𝑚𝑚1+𝑚𝑚2)

𝑣𝑣1

4. For head-on collisions the velocity of approach is equal to the velocity of separation
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Inelastic collision
A fully inelastic collision is where two particles collide and stick together. As always,
momentum is conserved in the impact approximation, but now kinetic energy is not!

�⃗�𝑝𝑖𝑖,𝑠𝑠 𝑡𝑡𝑠𝑠𝑡𝑡 = 𝑚𝑚1�⃗�𝑣1𝑖𝑖 + 𝑚𝑚2�⃗�𝑣2𝑖𝑖 = 𝑚𝑚1 + 𝑚𝑚2 �⃗�𝑣𝑓𝑓 = 𝑚𝑚1 + 𝑚𝑚2 �⃗�𝑣𝑠𝑠𝑚𝑚 = �⃗�𝑝𝑓𝑓,𝑡𝑡𝑠𝑠𝑡𝑡

In other words, in a fully inelastic collision, the velocity of the outgoing combined particle is
the velocity of the center of mass of the system, which we can easily compute from a
knowledge of the initial momenta or velocities and masses.
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Example: Ballistic Pendulum

The “ballistic pendulum”, where a bullet strikes and
sticks to/in a block, which then swings up to a
maximum angle θf before stopping and swinging back
down.
The classic ballistic pendulum question gives you the
mass of the block M, the mass of the bullet m, the
length of a string or rod suspending the “target” block
from a free pivot, and the initial velocity of the bullet
v0. It then asks for the maximum angle θf through which
the pendulum swings after the bullet hits and sticks to
the block (or alternatively, the maximum height H
through which it swings).

Solution:
During the collision momentum is conserved in the impact approximation, which in this
case basically implies that the block has no time to swing up appreciably “during” the
actual collision.
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Example: Ballistic Pendulum

Solution:
• During the collision momentum is conserved in the

impact approximation, which in this case basically implies
that the block has no time to swing up appreciably
“during” the actual collision.

• After the collision mechanical energy is conserved.
Mechanical energy is not conserved during the collision
(see solution above of straight up inelastic collision).

Momentum conservation: 𝑝𝑝𝑚𝑚,0 = 𝑚𝑚𝑣𝑣0 = 𝑝𝑝𝑀𝑀+𝑚𝑚,𝑓𝑓

kinetic part of mechanical energy conservation in terms of momentum:

𝐸𝐸0 =
𝑝𝑝𝐵𝐵+𝑏𝑏,𝑓𝑓
2

2(𝑀𝑀 + 𝑚𝑚)
=

𝑝𝑝𝑏𝑏,0
2

2(𝑀𝑀 + 𝑚𝑚)
= 𝐸𝐸𝑓𝑓 = 𝑀𝑀 + 𝑚𝑚 𝑚𝑚𝐻𝐻 = 𝑀𝑀 + 𝑚𝑚 𝑚𝑚𝜋𝜋(1 − cos𝜃𝜃𝑓𝑓)

Thus: 𝜃𝜃𝑓𝑓 = cos−1(1 − 𝑚𝑚𝑎𝑎0 2

2 𝑀𝑀+𝑚𝑚 2𝑔𝑔𝑔𝑔
) which only has a solution if mv0 is less than some 

maximum value.



Lecture 4. Systems of Particles,
Momentum and Collisions. Statics

Torque and Rotation

Rotations in One Dimension are rotations of a solid object about a single axis. Since we are
free to choose any arbitrary coordinate system we wish in a problem, we can without loss of
generality select a coordinate system where the z-axis represents the (positive or negative)
direction or rotation, so that the rotating object rotates “in” the xy plane. Rotations of a rigid
body in the xy plane can then be described by a single angle θ, measured by convention in
the counterclockwise direction from the positive x-axis.

Time-dependent Rotations can thus be described by:
a) The angular position as a function of time, θ(t).
b) The angular velocity as a function of time,

𝑤𝑤 𝑡𝑡 =
𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

c) The angular acceleration as a function of time,

𝛼𝛼 𝑡𝑡 =
𝑑𝑑𝑤𝑤
𝑑𝑑𝑡𝑡

=
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑡𝑡2
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Torque and Rotation

• Forces applied to a rigid object perpendicular to a line drawn from an axis of rotation
exert a torque on the object. The torque is given by:

𝜏𝜏 = 𝑣𝑣𝐹𝐹 sin 𝜑𝜑 = 𝑣𝑣𝐹𝐹⊥ = 𝑣𝑣⊥𝐹𝐹
• The torque (as we shall see) is a vector quantity and by convention its direction is

perpendicular to the plane containing 𝑣𝑣 and �⃗�𝐹 in the direction given by the right hand
rule. Although we won’t really work with this until next week, the “proper” definition of
the torque is:

𝜏𝜏 = 𝑣𝑣 × �⃗�𝐹
• Newton’s Second Law for Rotation in one dimension is:

𝜏𝜏 = 𝐼𝐼𝛼𝛼
where I is the moment of inertia of the rigid body being rotated by the torque about a
given/specified axis of rotation. The direction of this (one dimensional) rotation is the
righthanded direction of the axis – the direction your right handed thumb points if you grasp
the axis with your fingers curling around the axis in the direction of the rotation or torque.



Lecture 4. Systems of Particles,
Momentum and Collisions. Statics

Torque and Rotation

• The moment of inertia of a point particle of mass m located a (fixed) distance r from
some axis of rotation is:

𝐼𝐼 = 𝑚𝑚𝑣𝑣2

• The moment of inertia of a rigid collection of point particles is:

𝐼𝐼 = �
𝑖𝑖

𝑚𝑚𝑖𝑖𝑣𝑣𝑖𝑖2

• The moment of inertia of a continuous solid rigid object is:

𝐼𝐼 = �𝑣𝑣2𝑑𝑑𝑚𝑚

• The rotational kinetic energy of a rigid body (total kinetic energy of all of the chunks of
mass that make it up) is:

𝐾𝐾𝑚𝑚𝑠𝑠𝑡𝑡 =
1
2
𝐼𝐼𝑤𝑤2
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Conditions for Static Equilibrium

An object at rest remains at rest unless acted on by a net external force.
Previously we showed that Newton’s Second Law also applies to systems of particles, with
the replacement of the position of the particle by the position of the center of mass of the
system and the force with the total external force acting on the entire system.

We also learned that the force equilibrium of particles acted on by conservative force
occurred at the points where the potential energy was maximum or minimum or neutral
(flat), where we named maxima “unstable equilibrium points”, minima “stable equilibrium
points” and flat regions “neutral equilibria”.

However, we learned enough to now be able to see that force equilibrium alone is not
sufficient to cause an extended object or collection of particles to be in equilibrium. We can
easily arrange situations where two forces act on an object in opposite directions (so there is
no net force) but along lines such that together they exert a nonzero torque on the object and
hence cause it to angularly accelerate and gain kinetic energy without bound, hardly a
condition one would call “equilibrium”.
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Conditions for Static Equilibrium

The Newton’s Second Law for Rotation is sufficient to imply Newton’s First Law for
Rotation:

If, in an inertial reference frame, a rigid object is initially at rotational rest (not
rotating), it will remain at rotational rest unless acted upon by a net external torque.

That is, 𝜏𝜏 = 𝐼𝐼�⃗�𝛼 = 0 implies 𝑤𝑤 = 0 and constant. We will call the condition where 𝜏𝜏 = 0 and
a rigid object is not rotating torque equilibrium.

Therefore we now define the conditions for the static equilibrium of a rigid body to be:

A rigid object is in static equilibrium when both the vector torque and the vector force
acting on it are zero.

That is:

If 𝑭𝑭𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟎𝟎 and 𝝉𝝉𝒕𝒕𝒕𝒕𝒕𝒕 = 𝟎𝟎, then an object initially at translational and rotational rest
will remain at rest and neither accelerate nor rotate.
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Balancing a See-Saw

You are given m1, x1, and x2 and are asked to find m2 and F such that the see-saw is in static
equilibrium.

One typical problem in statics is balancing weights on a see-saw type arrangement – a
uniform plank supported by a fulcrum in the middle. This particular problem is really only
one dimensional as far as force is concerned, as there is no force acting in the x-direction or
z-direction.
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Balancing a See-Saw

Let’s imagine that in this particular problem, the mass m1 and the distances x1 and x2 are
given, and we need to find m2 and F.

We have two choices to make – where we
select the pivot and which direction (in or
out of the page) we are going to define to
be “positive”. A perfectly reasonable
choice is to select the pivot at the fulcrum
of the see-saw where the unknown force F
is exerted, and to select the +z-axis as
positive rotation.

�𝐹𝐹𝑦𝑦 = 𝐹𝐹 −𝑚𝑚1𝑚𝑚 −𝑚𝑚2𝑚𝑚 = 0

�𝜏𝜏𝑧𝑧 = 𝑥𝑥1𝑚𝑚1𝑚𝑚 − 𝑥𝑥2𝑚𝑚2𝑚𝑚 = 0
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Balancing a See-Saw

�𝐹𝐹𝑦𝑦 = 𝐹𝐹 −𝑚𝑚1𝑚𝑚 −𝑚𝑚2𝑚𝑚 = 0

�𝜏𝜏𝑧𝑧 = 𝑥𝑥1𝑚𝑚1𝑚𝑚 − 𝑥𝑥2𝑚𝑚2𝑚𝑚 = 0

𝑚𝑚2 =
𝑚𝑚1𝑚𝑚𝑥𝑥1
𝑚𝑚𝑥𝑥2

=
𝑥𝑥1
𝑥𝑥2

𝑚𝑚1

From the first equation and the solution for m2:

𝐹𝐹 = 𝑚𝑚1𝑚𝑚 + 𝑚𝑚2𝑚𝑚 = 𝑚𝑚1𝑚𝑚 1 + 𝑥𝑥1
𝑥𝑥2

= 𝑚𝑚1𝑚𝑚
𝑥𝑥1+𝑥𝑥2
𝑥𝑥2
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Tipping

Another important application of the ideas of static equilibrium is to tipping problems. A
tippingproblem is one where one uses the ideas of static equilibrium to identify the
particular angle or force combination that will marginally cause some object to tip over.

The idea of tipping is simple enough. An object placed on a flat surface is typically stable
as long as the center of gravity is vertically inside the edges that are in contact with the
surface, so that the torque created by the gravitational force around this limiting pivot is
opposed by the torque exerted by the (variable) normal force.
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Tipping Versus Slipping

A rectangular block either tips first or slips
(slides down the incline) first as the incline
is gradually increased. Which one happens
first? The figure is show with the block
just past the tipping angle.

At some angle we know that the block will start to slide. This will occur because the normal 
force is decreasing with the angle (and hence, so is the maximum force static friction can 
exert) and at the same time, the component of the weight of the object that points down the 
incline is increasing. Eventually the latter will exceed the former and the block will slide.
However, at some angle the block will also tip over. We know that this will happen because
the normal force can only prevent the block from rotating clockwise (as drawn) around the
pivot consisting of the lower left corner of the block.
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Tipping Versus Slipping

The tipping point, or tipping angle is thus the angle where
the center of gravity is directly over the pivot that the
object will “tip” around as it falls over.

Let’s find the slipping angle θs. Let “down” mean “down the incline”. Then:

�𝐹𝐹𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠 = 𝑚𝑚𝑚𝑚 sin 𝜃𝜃 − 𝐹𝐹𝑠𝑠 = 0

�𝐹𝐹⊥ = 𝑁𝑁 −𝑚𝑚𝑚𝑚 cos 𝜃𝜃 = 0

From the latter, as usual: 𝑁𝑁 = 𝑚𝑚𝑚𝑚 cos 𝜃𝜃 and 𝐹𝐹𝑠𝑠 ≤ 𝐹𝐹𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥 = 𝜇𝜇𝑠𝑠𝑁𝑁
When 𝑚𝑚𝑚𝑚 sin 𝜃𝜃𝑠𝑠 = 𝐹𝐹𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥 = 𝜇𝜇𝑠𝑠𝑁𝑁 cos 𝜃𝜃𝑠𝑠
The force of gravity down the incline precisely balances the force of static friction. We can 
solve for the angle where this occurs:𝜃𝜃𝑠𝑠 = tan−1(𝜇𝜇𝑠𝑠)
This happens when the center of mass passes directly over the pivot.
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Tipping Versus Slipping

From inspection of the figure (which is drawn very close to
the tipping point) it should be clear that the tipping angle
𝜃𝜃𝑡𝑡 is given by:

𝜃𝜃𝑡𝑡 = tan−1
𝑊𝑊
𝐻𝐻

So, which one wins? The smaller of the two, θs or θt, of
course – that’s the one that happens first as the plank is
raised. Indeed, since both are inverse tangents, the smaller
of: 𝜇𝜇𝑠𝑠, W/H

determines whether the system slips first or tips first, no
need to actually evaluate any tangents or inverse tangents!
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