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Abstract: IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime) is a specific c-Jun N-terminal kinase (JNK)
inhibitor with anticancer and neuro- and cardioprotective properties. Because aryloxime derivatives
undergo cytochrome P450-catalyzed oxidation to nitric oxide (NO) and ketones in liver microsomes,
NO formation may be an additional mechanism of IQ-1 pharmacological action. In the present
study, electron paramagnetic resonance (EPR) of the Fe2+ complex with diethyldithiocarbamate
(DETC) as a spin trap and hemoglobin (Hb) was used to detect NO formation from IQ-1 in the liver
and blood of rats, respectively, after IQ-1 intraperitoneal administration (50 mg/kg). Introducing
the spin trap and IQ-1 led to signal characteristics of the complex (DETC)2-Fe2+-NO in rat liver.
Similarly, the introduction of the spin trap components and IQ-1 resulted in an increase in the Hb-NO
signal for both the R- and the T-conformers in blood samples. The density functional theory (DFT)
calculations were in accordance with the experimental data and indicated that the NO formation of
IQ-1 through the action of superoxide anion radical is thermodynamically favorable. We conclude
that the administration of IQ-1 releases NO during its oxidoreductive bioconversion in vivo.

Keywords: c-Jun N-terminal kinase (JNK) inhibitor; IQ-1 (11H-indeno[1,2-b]quinoxalin-11-one oxime);
electron paramagnetic resonance; nitric oxide donor; spin trap; hemoglobin; DFT calculation

1. Introduction

Ischemia–reperfusion can result in organ failure through a complicated series of events
due to intracellular injury. These events include an activation of c-Jun N-terminal kinase
(JNK) [1] and a reduction in nitric oxide (NO) production [2]. Furthermore, investigating
the pathophysiology of brain injury indicates the potential role of NO as a protective
molecule [3]. In the brain, the effects of NO on ischemic injury are thought to be dependent
on the sources of its production and the stage of the ischemic process [4,5]. NO is produced
by endothelial, neuronal, and inducible NO synthases (eNOS, nNOS, and iNOS) [6]. eNOS
and nNOS are constitutively expressed in endothelial cells and neurons, respectively, and
the expression of iNOS is prevalent in macrophages [7]. The low concentration of NO that
is produced by eNOS confers protective effects during cerebral ischemia [4,8]. Based on
the coupling of NO and JNK pathways [9] and the protective role of exogenous NO in
reperfusion-induced brain injury [5,8], we hypothesized that agents with dual functions as
JNK inhibitors and NO donors could have neuroprotective effects against cerebral ischemic
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and reperfusion injury. To date, oxime derivatives have been demonstrated in vivo and ex
vivo as NO donors [10,11]. The biotransformation of oximes on microsomal cytochrome
P450 (CYP450) results in NO and keto derivatives [12,13].

Previously, we described a specific JNK inhibitor IQ-1, 11H-indeno[1,2-b]quinoxalin-
11-one oxime [14,15]. In the models of global and focal cerebral ischemia, the compound
IQ-1 effectively protected against stroke injury [16–18]. It was also found that a major
metabolite of IQ-1 is ketone IQ-18 [19]. Taking into account that the neutral form of IQ-1
has an oxime group, we suggested that, similarly to other aryloxime derivatives [10,12,13],
this compound could release NO during its redox bioconversion (Scheme 1):
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One of the most effective methods for detecting NO in biological tissues has become
the electron paramagnetic resonance (EPR) approach using spin-trapping [20–24]. The spin
trap method is based on the reaction of a radical (in this case, NO) with an iron-containing
spin trap: the trapping complex is diamagnetic, and its central Fe2+ ion has a high affinity
for NO radicals [25]. As a result of the reaction, an adduct with a characteristic EPR
spectrum is formed. In our experiments, the Fe2+ complex with diethyldithiocarbamate
(DETC) was used to capture NO and form a stable ternary complex (DETC)2–Fe2+–NO
in various animal tissues. This complex is characterized by an easily recognizable EPR
spectrum with g-factor in the range 2.035–2.040 and a triplet hyperfine structure [21,22,26].
The method has a sensitivity of 0.04–0.4 nM [22]. In addition, hemoglobin (Hb) inside red
blood cells forms a complex with NO exhibiting a specific EPR signal which could be usable
for NO registration in tissues [27,28]. Thus, we used the EPR-based approach to register
NO production in liver and blood of rats after IQ-1 administration. We found an increase
in the (DETC)2–Fe2+–NO signal levels in the liver and HbFe2+–NO signals for both the R-
and the T-conformers in blood with IQ-1 in comparison with the administration of the trap
alone. The density functional theory (DFT) calculations were performed to substantiate the
proposed mechanism of IQ-1 oxidation by the CYP450-originated superoxide anion radical
(O2·−). The processes of NO trapping by (DETC)2–Fe2+ complexes were also studied by
the DFT method.

2. Results and Discussion
2.1. EPR Signals of Samples from Liver

No NO-related EPR signals were registered in the control (group I, no IQ-1 and the
spin trap) and the group where IQ-1 was administered (group II) in samples from the
liver. The application of the spin trap (group III) led to the appearance of a NO-related
EPR signal, associated with the natural production of NO. The introduction of both IQ-1
and the spin trap (group IV) led to signal characteristics of the complex (DETC)2–Fe2+–NO
(Figure 1), confirming the formation of NO in the organism. However, the signal amplitude
for samples with IQ-1 in comparison with the trap alone was only ~2-fold higher. This
could be explained by enhanced O2·− formation on the CYP450 oxidoreductase [29], which
led to the degradation of the (DETC)2–Fe2+–NO complex and the decrease in the EPR
signal [30]. It should be noted that the spin trap was used by us for the first time to record
NO production during the bioconversion of aryloximes in vivo. Previously, the incubation
of para-hexyloxybenzamidoxime (AL1) and 4-(chlorophenyl)methyl ketone oxime with
microsomes in the presence of NADPH resulted in the appearance of characteristic EPR
signals from the complex P420/P450–Fe2+–NO [31]. Future studies are needed to optimize
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the method and increase efficiency of NO trapping using various doses of IQ-1 and the spin
trap, as well as different time points between spin trap/IQ-1 injections and tissue sampling.
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Figure 1. Typical EPR spectra of liver samples. The rats were injected with the (DETC)2–Fe2+ spin trap
components and IQ-1, as described in Materials and Methods. The temperature was 77 K. The spectral
amplitudes are normalized to the sample weight. Solid black lines show sample spectra and dashed
magenta lines display the contribution of the (DETC)2–Fe2+–NO signal in the sample spectrum.

2.2. EPR Signal of Blood Samples

Blood samples were received from the same animals used in the experiment with
a spin trap. A low EPR signal level in the blood samples of the control (group I) was
registered. The signal is associated with the natural production of NO in the blood vessels
by eNOS and the formation of HbFe2+–NO complexes. In group II (IQ-1 without the spin
trap), a low signal level is also observed in the form of the R-conformer and the T-conformer
of the HbFe2+–NO complexes. In group III (the spin trap alone), there are small signals of
the R- and T-conformers, similar to the control. In group IV (both IQ-1 and the spin trap
were injected), the introduction of spin trap components led to an increase in the interaction
of NO with HbFe2+, and large signals from both the R- and the T-conformers were observed
(Figure 2). The signal levels of R- and T-conformers with IQ-1 were ~4–6 times higher
compared to those of the control and samples with the trap alone.
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Figure 2. Typical EPR spectra of the blood samples (Panel A) and extracted signals for R- and T-
conformers of hemoglobin (Panel B). The rats were injected with (DETC)2–Fe2+ spin trap components
and IQ-1, as described in Materials and Methods. The temperature was 77 K. The spectral amplitudes
are normalized to the sample weight. Solid black lines (Panel A) show sample spectra. The dashed
magenta lines and solid blue lines (Panel B) show the contribution of the R- and T-conformer signals
to the sample spectrum, respectively.

2.3. A DFT Study of NO Complexes and NO Formation from IQ-1

In accordance with the obtained data, the injection of IQ-1 without the spin trap
(group II) did not lead to a significant increase in HbFe2+–NO signals, in contrast to group
IV (see above). This can be explained by the appearance of free Fe2+ ions in the blood of
group IV animals (as one of the injected parts of the spin trap), which can serve as NO
transporters. Indeed, the dissociation constants of complexes formed with NO by different
non-heme Fe2+ species, including hydrated iron [Fe(H2O)6]2+, are within 10−2–10−6 M,
while binding NO to HbFe2+ in R- and T-states is characterized by the dissociation constants
of about 10−12 and 10−10 M, respectively [32]. Hence, NO can be captured by HbFe2+ from
the Fe2+–NO species, resulting in the increase in HbFe2+–NO signals in the experimental
EPR spectra. On the other hand, NO cannot be transferred to hemoglobin from its complex
formed with the spin trap. Thus, the Gibbs free energy ∆G◦298 of the dissociation process
(1) estimated by the DFT method is equal to +25.0 kcal/mol, indicating very tight NO
binding with the (DETC)2–Fe2+ spin trap.

(DETC)2-Fe2+-NO→ (DETC)2-Fe2+ + NO (1)

The optimized geometries of the ferrous complexes participating in the reaction are
shown in Figure 3. The isotropic g-factor calculated by the DFT method for (DETC)2–Fe2+–
NO complex is equal to 2.045, which is close to the experimental data [21,22,26].
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(Panel B) optimized by the DFT method with PBE0 functional and def2-TZVPD basis set.

We also considered the possibility of binding one or two water molecules by the
(DETC)2–Fe2+ complex. However, these processes are non-spontaneous, as they are accom-
panied by positive changes in Gibbs free energy of +3.1 and +11.2 kcal/mol in aqueous
solution for binding the first and the second water molecules, respectively. With one water
molecule as a co-ligand to NO in the hypothesized H2O–(DETC)2–Fe2+–NO complex, we
did not obtain a stable structure for this coordination compound due to a cleavage of the
Fe···OH2 bond during the DFT geometry optimization. This result is in agreement with
the known ability of NO to expel trans-ligands from the coordination sphere of a ferrous
complex [32]. However, other ligands with higher coordination capabilities can promote
the dissociation of the trapped NO.

According to the literature data, ketoximes and amidoximes can be oxidized by
CYP450 with the release of NO via the intermediate formation of O2·−, the latter being
a dissociation product of the CYP450–Fe2+–O2 complex [31]. The proposed mechanism
of the C=N−OH group oxidative transformation “outside the active site” [33] involves
the nucleophilic attack of O2·− to the oxime carbon atom and the further transfer of the
electron pairs within the anion–radical adduct A·− (Scheme 2).
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Scheme 2. The proposed mechanism for the oxidative transformation of the C=N−OH group
“outside the active site”.

To investigate the possibility of the oxime group oxidation by O2·−, we calculated
Gibbs free energies (∆G◦298) of steps (1) and (2) (Scheme 2) using the DFT method for the
conversion of IQ-1 into NO and the corresponding ketone, in comparison with amidoxime
substrate AL1 (Table 1).
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Table 1. The Gibbs free energies of the oxidation steps calculated using the DFT method 1.

Substrate Step 2

∆G◦298, kcal/mol

Gas Phase CPCM
Solvation (Water)

IQ-1

(1) −13.06 11.66

(2) −24.85 −62.95

(1) + (2) −37.91 −51.29
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Compound AL1 is a well-known NO donor [12] with experimental support for the
NO formation “outside the active site” [31]. The optimized geometric structures of adduct
A·− obtained from compounds IQ-1 and AL1 are shown in Figure 4. In these adducts,
the oxime hydrogen atom is shifted towards the attached dioxygen fragment. Thus, the
OO···H interatomic distances equal 0.998 and 1.023 Å for IQ-1- and AL1-derived adducts,
respectively, while the corresponding lengths of NO···H bonds are enhanced up to 1.684
and 1.557 Å. The O−O bond in the adducts is lengthened by 0.11–0.12 Å as compared to
the optimized O−O distance in O2·− (1.346 Å). On the other hand, the N−O interatomic
distance in the adducts is shortened by 0.077 and 0.096 Å with respect to the optimized
N−O bond lengths in the oxime and amidoxime substrates IQ-1 and AL1 (1.365 and
1.427 Å, respectively). These geometric changes are in accordance with the subsequent
formation of OH− and NO species on step (2) (Scheme 2).

Molecules 2024, 29, x FOR PEER REVIEW 6 of 11 
 

 

Table 1. The Gibbs free energies of the oxidation steps calculated using the DFT method 1. 

Substrate Step 2 
ΔG°298, kcal/mol 

Gas Phase 
CPCM  

Solvation (Water) 

IQ-1 
(1) −13.06 11.66 
(2) −24.85 −62.95 

(1) + (2) −37.91 −51.29 

 
(AL1) 

(1) −3.64 19.36 
(2) −46.51 −83.18 

(1) + (2) −50.15 −63.82 
1 The calculations were performed using the spin-unrestricted Kohn–Sham method with B3LYP/G 
functional and 6-311+G(d,p) basis set. 2 The steps as indicated in Scheme 2. The values for the whole 
process shown in Scheme 2 are highlighted in bold. CPCM is the conductor-like polarizable contin-
uum solvation model. 

Compound AL1 is a well-known NO donor [12] with experimental support for the 
NO formation “outside the active site” [31]. The optimized geometric structures of adduct 
A·− obtained from compounds IQ-1 and AL1 are shown in Figure 4. In these adducts, the 
oxime hydrogen atom is shifted towards the attached dioxygen fragment. Thus, the 
OO···H interatomic distances equal 0.998 and 1.023 Å for IQ-1- and AL1-derived adducts, 
respectively, while the corresponding lengths of NO···H bonds are enhanced up to 1.684 
and 1.557 Å. The O−O bond in the adducts is lengthened by 0.11–0.12 Å as compared to 
the optimized O−O distance in O2·− (1.346 Å). On the other hand, the N−O interatomic 
distance in the adducts is shortened by 0.077 and 0.096 Å with respect to the optimized 
N−O bond lengths in the oxime and amidoxime substrates IQ-1 and AL1 (1.365 and 1.427 
Å, respectively). These geometric changes are in accordance with the subsequent for-
mation of OH− and NO species on step (2) (Scheme 2). 

 
Figure 4. The DFT-optimized geometric structures (gas phase) of the anion–radical adduct A·− 
formed from the compounds IQ-1 (Panel A) and AL1 (Panel B) in step (1) (see Scheme 2). The car-
bon, hydrogen, nitrogen, and oxygen atoms are shown as yellow, light-blue, magenta, and red balls, 
respectively. 

Figure 4. The DFT-optimized geometric structures (gas phase) of the anion–radical adduct A·− formed
from the compounds IQ-1 (Panel A) and AL1 (Panel B) in step (1) (see Scheme 2). The carbon, hydrogen,
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It should be noted that the starting compound AL1 is thermodynamically more stable
in the form of Z-isomer (∆G◦298 of E→Z isomerization equals −5.36 and −4.97 kcal/mol
for the gas phase and aqueous solution, respectively). However, for IQ-1, the Z- and
E-configurations of the oxime moiety are more favorable in the gas phase and aque-
ous medium (∆G◦298 of E→Z isomerization are −1.30 and +0.61 kcal/mol, respectively).
Previously, a higher thermodynamic stability of IQ-1 E-isomer in other solvents was re-
ported [19,34]. For each starting oxime-containing compound, the isomer with a lower
(or more negative) Gibbs free energy was used in the calculation of the values shown in
Table 1.

In the gas phase, both steps (1) and (2) are characterized by negative ∆G◦298 values,
resulting in ∆G◦298 =−37.91 and ∆G◦298 =−50.15 kcal/mol for the whole oxidation process
described by Scheme 2 for compounds IQ-1 and AL1 [see the “(1) + (2)” entries in Table 1].
It is noteworthy that the change in Gibbs energy on the formation of adduct A·− on step
(1) is more negative for IQ-1 than for the known NO donor AL1. We also applied the
approximate CPCM solvation model to account for the solvent effects on the reaction
thermodynamics. This approximation resulted in positive ∆G◦298 values for the formation
of anion–radical adduct A·−, mainly due to a very high calculated solvation energy of the
O2·− participating in step (1). Nevertheless, the conversion of A·− into the final products in
step (2) in the aqueous solution, according to the DFT data, is accompanied by a substantial
decrease in Gibbs free energy both for IQ-1 and AL1, indicating the spontaneous character
of the whole oxidation process (Table 1). The more negative ∆G◦298 values obtained with
the account of water solvation can be explained by the high calculated CPCM solvation
energy of the hydroxide anion as the reaction product.

3. Materials and Methods
3.1. Animals

This research was performed in accordance with the EU Directive 2010/63/EU con-
cerning the protection of animals used for scientific purposes and was approved by the
Animal Care and Use Committee of the Kazan Federal University. Experiments were
performed on 20 adult male Wistar rats (weight: 250–280 g). Rats were housed in groups of
five animals per cage (57 × 36 × 20 cm) under standard laboratory conditions (ambient
temperature of 22 ± 2 ◦C, relative humidity of 60%, and 12:12 h light–dark cycle) in cages
with sawdust bedding and were provided standard rodent feed and ad libitum water access.

3.2. Chemicals and the Studied Compound

Iron sulfate (FeSO4 · 7H2O), sodium citrate (C6H5Na3O7 · 2H2O), and DETC sodium
salt trihydrate (C5H10NNaS2 · 3H2O) were purchased from Sigma (USA). IQ-1 was synthe-
sized as described previously [35]. The IQ-1 chemical structure was confirmed by mass
spectrometry and nuclear magnetic resonance. The purity of the sample was 99.9%.

3.3. Experimental Protocol

Sodium DETC was introduced intraperitoneally (i.p.) in the concentration of 500 mg/kg
in 2.5 mL water [36]. The solution mixture, comprising 37.5 mg/kg iron sulfate and
187.5 mg/kg sodium citrate (all in 1 mL water to one animal) and prepared before injection,
was injected under the skin at three locations—left and right legs and withers. In aqueous
solution, iron sulfate and sodium citrate produce iron citrate. Sodium DETC and iron
citrate are distributed in an organism and their interactions generate the water-insoluble
hydrophobic (DETC)2-Fe2+ complex (spin trap), which can interact with NO to form the
paramagnetic mononitrosyl iron complex (MNIC) (DETC)2-Fe2+–NO detectable by EPR
spectroscopy [23].

Animals were randomly divided into 4 groups, with 5 rats in each: group I (control),
underwent only tissue sampling without the introduction of chemicals; group II (IQ-1),
IQ-1 (50 mg/kg) was injected i.p. 60 min before tissue sampling, no spin trap was used;
group III (spin trap), components of the spin trap were injected, then after 60 min, tissue
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sampling was performed; group IV (spin trap + IQ-1), components of the spin trap were
injected, then IQ-1 (50 mg/kg) was injected i.p. after 20 min, and tissues were collected
after 40 min.

The measurements were taken on an EPR spectrometer Bruker EMX/plus (Billerica,
MA, USA) with a temperature module ER 4112HV at X-band with the following parameters:
modulation, 100 kHz; amplitude modulation, 2 G; microwave power, 30 mW; time constant,
200 ms; and temperature, 77 K [37]. All experiments were performed in a Dewar flask
without microwave saturation and overmodulation. Microwave parameters were identical
for all the samples [38].

The liver and blood samples collected after the injections were weighed before the EPR
experiments. All the measurements were performed on two paramagnetic complexes of
the Fe2+ ion with NO, including the MNIC based on the spin trap and the iron hemoglobin
complex with NO (HbFe2+–NO). Blood EPR spectra represent a sum of the individual EPR
signals of 6- (R-conformer) and 5-coordinate (T-conformer) nitrosyl hemes [39–41]. The
amplitude of the EPR spectra was normalized to the sample weight and amplitude of the EPR
signal of the reference samples with known concentrations, as described previously [26,42].

3.4. DFT Calculations

The ORCA 5.0.4 computational chemistry software [43] was used for the DFT cal-
culations of the starting compounds and intermediate and final products of the oxime-
containing substrate oxidation by O2·−. Geometry optimizations were carried out through
the unrestricted Kohn–Sham method using the B3LYP/G functional [44] with the
6-311+G(d,p) basis set. The compounds participating in NO binding by the (DETC)2-Fe2+

spin trap were calculated with the PBE0 functional [45] and def2-TZVPD basis set [46,47].
The D3BJ dispersion correction [48] was used in all the calculations. To account for sol-
vent effects, the conductor-like polarizable continuum solvation model (CPCM) [49] was
applied with water as a solvent. The normal vibration analysis was performed for the
optimized geometries to confirm the attainment of the energy minima and calculate the
thermochemistry data. The analysis and visualization of the DFT results were carried out
with the Chemcraft 1.8 program. The ORCA 5.0.4 output files containing full DFT results
for some of the investigated compounds can be found in the Supplementary Materials.

The DFT functionals used in our study were chosen based on the literature data.
Thus, PBE0 is one of the functionals recommended for the calculations of transition metal
complexes [50], while B3LYP (or B3LYP/G in the ORCA software notation) is conventionally
used for the investigation of organic reactions and intermediates [51]. The “triple-zeta”
quality basis sets 6-311+G(d,p) and def2-TZVPD containing diffuse functions are suitable
for most chemical applications [52].

The isotropic g-factor of the (DETC)2–Fe2+–NO complex was calculated using the
long-range corrected LC-BLYP functional [53] and the correlation consistent aug-cc-pVTZ
basis set [54] with the molecular geometry of the complex optimized as described above.

4. Conclusions

Thus, using the EPR method with the spin trap, EPR spectra specific to the (DETC)2–
Fe2+–NO and HbFe2+–NO complexes in rat liver and blood samples after IQ-1 administra-
tion were obtained. The obtained results indicate that NO is formed in vivo through the
oxidation of IQ-1. The additional DFT calculations show the possibility of NO formation
via the interaction of CYP450-derived O2·− with IQ-1, which is in agreement with our EPR
experiments. The dual function of IQ-1 as a JNK inhibitor and NO donor may contribute
to the neuroprotective, anticancer, and other pharmacological effects of the compound.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29163820/s1. The ZIP archive containing the ORCA
5.0.4 output files for the compounds studied using the DFT method.
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