# Tripotents in Algebras: Ideals and Commutators 

Khattab Fawwaz ${ }^{1 *}$ and Rinat Yakushev ${ }^{1 * *}$<br>(Submitted by E. A. Turilova)<br>${ }^{I}$ N. I. Lobachevskii Institute of Mathematics and Mechanics, Kazan (Volga Region) Federal University, Kazan, Tatarstan, 420008 Russia Received January 15, 2022; revised March 14, 2022; accepted April 5, 2022


#### Abstract

We establish some new properties of $n$-potent elements in unital algebras. Particular attention is paid to ideals in these algebras. As a consequence, we obtain the compactness conditions for the product $A B$ of a Hilbert space tripotents $A$ and $B$. In year 2011 we studied the following question: under what conditions do tripotents $A$ and $B$ commute? Here we try to find out when do tripotents $A$ and $B$ anticommute. We also determine under what conditions $A+B$ is an idempotent. We establish similarity of certain idempotents in unital algebras.


DOI: 10.1134/S1995080222100109
Keywords and phrases: algebra, idempotent, tripotent, Hilbert space, linear operator, compact operator.

## 1. INTRODUCTION

Let $\mathcal{A}$ be an algebra, $n \in \mathbb{N}$. An element $A \in \mathcal{A}$ is said to be an $n$-potent if $A^{n}=A$. For $n=2$ and $n=3$ we have the standard definitions of idempotents and tripotents, resp. Let $P, Q$ be idempotents on a Hilbert space $\mathcal{H}$, i.e., $P, Q \in \mathcal{B}(\mathcal{H})^{\text {id }}$. Various properties (invertibility, Fredholm property, trace class property, positivity etc.) of the difference $X=P-Q$ have been actively studied in recent decades, see $[1,7,9,12,15-17,22-28]$ and references therein. If $X$ is a trace class operator, the traces of all odd degrees of $X$ coincide

$$
\begin{equation*}
\operatorname{tr}(P-Q)=\operatorname{tr}\left((P-Q)^{2 n+1}\right)=\operatorname{dim} \operatorname{ker}(X-I)-\operatorname{dim} \operatorname{ker}(X+I) \in \mathbb{Z}, \tag{1}
\end{equation*}
$$

here $I$ is the identity operator on $\mathcal{H}$. If $X$ is a compact operator, the right-hand side of (1) gives a natural "regularization" for the trace, showing that it is always an integer [2, 22]. Pairs of idempotents play an important part in the Quantum Hall Effect [3]. For idempotents $P, Q, R$ with trace class differences $P-Q$ and $Q-R$, the equality $\operatorname{tr}(P-Q)=\operatorname{tr}(P-R)+\operatorname{tr}(R-Q)$ together with (1) imply that

$$
\begin{equation*}
\operatorname{tr}\left((P-Q)^{3}\right)=\operatorname{tr}\left((P-R)^{3}\right)+\operatorname{tr}\left((R-Q)^{3}\right) . \tag{2}
\end{equation*}
$$

Physical sense of additivity in (2) comes from interpretation of $\operatorname{tr}\left((P-Q)^{3}\right)$ as the Hall conductance. Additivity of (cubic) equation in (2) can be seen as a variant of the Ohm's law on additivity of conductance [20]. In [11, Theorem 1], a $C^{*}$-analogue of the Quantum Hall Effect is obtained and it is proved there that the trace of the differences of a wide class of symmetries from a $C^{*}$-algebra is real [11, Corollaries 2 and 3]. Any tripotent $A$ in an algebra $\mathcal{A}$ is a difference $P-Q$ of some idempotents $P, Q \in \mathcal{A}$ with $P Q=Q P=0$ [5, Proposition 1]. Hence tripotents inherit some of the properties of idempotents [6, 13].

In this article, we establish some new properties of $n$-potent elements in unital algebras (Theorems 1 , 2,3). Particular attention is paid to ideals in such algebras (Theorems 4,5). As a consequence, we obtain a compactness conditions for the product $A B$ of a Hilbert space tripotents $A$ and $B$ (Corollary 1). In [5, Proposition 2] we studied the following question: under what conditions do tripotents $A$ and $B$

[^0]commute? In Theorem 6 we try to find out when do tripotents $A$ and $B$ anticommute. We also determine under what conditions $A+B$ is an idempotent (Theorem 7; cf. [5, p. 2157]). Let $\mathcal{A}$ be a unital algebra, let $A, B \in \mathcal{A}$ be such that $A B A=\lambda A$ for some $\lambda \in \mathbb{C} \backslash\{0\}$. If $A$ is an $n$-potent for some $n \geq 3$ then the idempotents $A^{n-1}, \lambda^{-1} A B$ and $\lambda^{-1} B A$ are pairwise similar (Theorem 8).

## 2. DEFINITIONS AND NOTATION

Let $\mathcal{A}$ be an algebra, $\mathcal{A}^{\text {id }}=\left\{A \in \mathcal{A}: A^{2}=A\right\}$ and $\mathcal{A}^{\text {tri }}=\left\{A \in \mathcal{A}: A^{3}=A\right\}$ be the set of all idempotents and all tripotents in $\mathcal{A}$, resp. For $A, B \in \mathcal{A}$ we write $A \sim B$ if there are $X, Y \in \mathcal{A}$ with $X Y=A, Y X=B$. An element $X \in \mathcal{A}$ is a commutator, if $X=[A, B]=A B-B A$ for some $A, B \in \mathcal{A}$. Elements $X, Y \in \mathcal{A}$ anticommute, if $X Y=-Y X$. If $I$ is the unit of the algebra $\mathcal{A}$ and $P \in \mathcal{A}^{\text {id }}$ then $P^{\perp}=I-P \in \mathcal{A}^{\text {id }}$ and $S_{P}=2 P-I$ is a symmetry, i.e., $S_{P}^{2}=I$. If $A, B \in \mathcal{A}$ are similar then $A \sim B$.

Let $\mathcal{H}$ be a Hilbert space over the field $\mathbb{C}, \mathcal{B}(\mathcal{H})$ be the $*$-algebra of all linear bounded operators on $\mathcal{H}$. Let $\mathcal{B}(\mathcal{H})^{+}$be the positive cone in $\mathcal{B}(\mathcal{H})$, let $\mathfrak{S}_{1}(\mathcal{H})$ be the set of all trace class operators on $\mathcal{H}$. If $A \in \mathcal{B}(\mathcal{H})$ then $|A|=\sqrt{A^{*} A} \in \mathcal{B}(\mathcal{H})^{+}$. An operator $A \in \mathcal{B}(\mathcal{H})$ is hyponormal, if $A^{*} A \geq A A^{*}$; normal, if $A^{*} A=A A^{*}$; is a partial isometry, if $A$ is isometric on $\operatorname{Ker}(A)^{\perp}$, that is $\|A \xi\|=\|\xi\|$ for all $\xi \in \operatorname{Ker}(A)^{\perp}$. For $\operatorname{dim} \mathcal{H}=n<\infty$ the algebra $\mathcal{B}(\mathcal{H})$ can be identified with the full matrix algebra $\mathbb{M}_{n}(\mathbb{C})$.

## 3. MAIN RESULTS

Lemma 1 ([5, Proposition 1]). Let $\mathcal{A}$ be an algebra. Then for every $A \in \mathcal{A}^{\text {tri }}$ there exist $P, Q \in \mathcal{A}^{\text {id }}$ such that $A=P-Q$ and $P Q=Q P=0$. This representation is unique.

Lemma 2. Let $\mathcal{A}$ be an algebra and an $n$-potent $A \in \mathcal{A}, n \geq 2$. Then
(i) $A^{k}$ is an $n$-potent for every $k \in \mathbb{N}$;
(ii) $A^{n-1}$ is an idempotent for every $n \geq 3$;
(iii) $\frac{1}{n-1} \sum_{k=1}^{n-1} A^{k}$ is an idempotent for every $n \geq 3$.

Proof. (i) We have $\left(A^{k}\right)^{n}=A^{k n}=\left(A^{n}\right)^{k}=A^{k}$.
(ii) We have $\left(A^{n-1}\right)^{2}=A^{2 n-2}=A^{n} \cdot A^{n-2}=A A^{n-2}=A^{n-1}$.
(iii) If $B=\frac{1}{n-1} \sum_{k=1}^{n-1} A^{k}$ then $A^{m} B=B A^{m}=B$ for every $m \in \mathbb{N}$.

Theorem 1. Consider a unital algebra $\mathcal{A}$ and an n-potent $A \in \mathcal{A}, n \geq 3$. If there exists a right inverse element $A_{r}^{-1} \in \mathcal{A}$ (resp., a left inverse element $A_{l}^{-1} \in \mathcal{A}$ ) then $A$ is invertible with $A^{-1}=A^{n-2}$.

Proof. For a right inverse element $A_{r}^{-1}$ we have

$$
I=A A_{r}^{-1}=A^{n} A_{r}^{-1}=A^{n-1} \cdot A A_{r}^{-1}=A^{n-1}=A^{n-2} A=A A^{n-2}
$$

i.e., $A^{-1}=A^{n-2}$. Moreover, $A^{-1}$ is also an $n$-potent: $\left(A^{-1}\right)^{n}=A^{-n}=\left(A^{n}\right)^{-1}=A^{-1}$ (it also follows by item (i) of Lemma 2 with $k=n-2$ ). In particular, for $n=3$ we have $A^{-1}=A$, i.e., $A$ is a symmetry.

Note that if an element $A \in \mathcal{A}$ is right invertible and $A_{r}^{-1}=A^{n-2}$ then $I=A A_{r}^{-1}=A^{n-1}$; therefore, $A^{n}=A$.

Theorem 2. Let $J$ be an ideal in a unital algebra $\mathcal{A}, A, B \in \mathcal{A}^{\text {tri }}$ and $A+B=\lambda I+K$ for some $\lambda \in \mathbb{C} \backslash\{-2,0,2\}$ and $K \in J$. Then $A B \in J$ and $\lambda \in\{-1,1\}$.

Proof. Let $A=P-Q$ and $B=R-S$ be the representations of the tripotents $A, B$ by Lemma 1, i.e., $P, Q, R, S \in \mathcal{A}^{\text {id }}$ and $P Q=Q P=R S=S R=0$. Multiply both sides of the equality $A+B=\lambda I+K$ by the idempotent $P$ from the left and obtain

$$
\begin{equation*}
P+P R-P S=\lambda P+P K \tag{3}
\end{equation*}
$$

Multiply both sides of equality (3) by the idempotent $S$ from the right and obtain $-\lambda P S=P K S$. Since $\lambda \neq 0$, we have $P S \in J$.

Next we multiply both sides of the equality $A+B=\lambda I+K$ by the idempotent $Q$ from the left and obtain

$$
\begin{equation*}
-Q+Q R-Q S=\lambda Q+Q K \tag{4}
\end{equation*}
$$

Multiply both sides of equality (4) by the idempotent $R$ from the right and obtain $-\lambda Q R=Q K R$. Since $\lambda \neq 0$, we have $Q R \in J$.

Multiply both sides of equality (4) by the idempotent $S$ from the right and obtain $-(\lambda+2) Q S=$ $Q K S$. Since $\lambda \neq-2$, we have $Q S \in J$. Thus $A B=P R-P S-Q R+Q S \in J$.

If $P \notin J$ then by (3) we have $\lambda=1$; if $Q \notin J$ then by (4) $\lambda=-1$. Theorem is proved.
The condition $\lambda \in \mathbb{C} \backslash\{-2,0,2\}$ cannot be omitted in Theorem 2. For the following pairs of tripotents:

$$
\text { 1) } A=B= \pm I \quad \text { (i.e., } \lambda= \pm 2), \quad \text { 2) } A=-B= \pm I \quad \text { (i.e., } \lambda=0)
$$

their products $A B \notin J$.
Corollary 1. Let $\mathcal{A}=\mathcal{B}(\mathcal{H})$, for a separable Hilbert space $\mathcal{H}$ and assume that $\operatorname{dim} \mathcal{H}=+\infty$. Consider $A, B \in \mathcal{A}^{\text {tri }}$ such that $A+B$ is a non-commutator and the operators $A+B \pm 2 I$ are non-compact. Then the operator $A B$ is compact.

Proof. Let $\mathcal{H}$ be a separable Hilbert space, $\operatorname{dim} \mathcal{H}=\infty$. An operator $A \in \mathcal{B}(\mathcal{H})$ is a non-commutator if and only if $A=a I+K$ for some $a \in \mathbb{C} \backslash\{0\}$ and a compact operator $K \in \mathcal{B}(\mathcal{H})$ [18, Theorem 3], [21, Chapter 19, Problem 182]. Thus the operator $A B$ is compact and the operator $\lambda I+A B$ is a noncommutator for every $\lambda \in \mathbb{C} \backslash\{0\}$.

On other conditions of compactness of products $A B$ for $A, B \in \mathcal{B}(\mathcal{H})$ see $[8,10,14]$ and references therein.

Theorem 3. Let $A \in \mathcal{B}(\mathcal{H})$ be a Hermitian $n$-potent operator, $n \geq 2$. Then
(i) if $n$ is even or $A \in \mathcal{B}(\mathcal{H})^{+}$then $A$ is a projection;
(ii) if $n$ is odd then $A$ is a tripotent.

Proof. (i) We have for $n=2 k, k \in \mathbb{N}$

$$
A=A^{2 k}=A^{k}\left(A^{*}\right)^{k}=A^{k}\left(A^{k}\right)^{*} \in \mathcal{B}(\mathcal{H})^{+} .
$$

Therefore, by the Spectral Theorem, $A$ is a projection. If $A \in \mathcal{B}(\mathcal{H})^{+}$then $A$ is a projection by the Spectral Theorem.
(ii) Let $n \in \mathbb{N}$ be odd and let $A=A_{+}-A_{-}$be the Jordan decomposition of the Hermitian $n$-potent operator $A \in \mathcal{B}(\mathcal{H})$ with $A_{+} A_{-}=0$, where $A_{+}, A_{-} \in \mathcal{B}(\mathcal{H})^{+}$. Multiply both sides of the equality $A_{+}-A_{-}=A_{+}^{n}-A_{-}^{n}$ by the operator $A_{+}$from the right and obtain $A_{+}^{2}=A_{+}^{n+1}$. Therefore, by the Spectral Theorem, $A_{+}$is a projection. Analogously, we can prove that $A_{-}$is also a projection. Thus $A^{3}=A$. Theorem is proved.

If a tripotent $A \in \mathcal{B}(\mathcal{H})$ is hyponormal then $A^{*}=A$, see [ 6 , Theorem 2]. Consider projections $P_{k} \in \mathcal{B}(\mathcal{H})$ with $P_{k} P_{j}=0$ for $k \neq j, k, j=1,2,3$, and let $\omega_{1}, \omega_{2}, \omega_{3}$ be the primitive cubic roots of 1 . For the normal 4-potent operator $A=\omega_{1} P_{1}+\omega_{2} P_{2}+\omega_{3} P_{3}$ we have $A^{*} \neq A$.

Corollary 2. For an operator $A \in \mathcal{B}(\mathcal{H})$ the following conditions are equivalent: (i) $|A|$ is an $n$-potent operator for some $n \geq 2$; (ii) $\left|A^{*}\right|$ is an n-potent operator for some $n \geq 2$; (iii) $A$ is a partial isometry.

Proof. (i) $\Rightarrow$ (iii). By item (i) of Theorem 3 the operator $|A|$ is a projection. Therefore, by the Spectral Theorem $|A|^{2}=A^{*} A$ is a projection and $A$ is a partial isometry by [21, Chapter 13, Problem 98].
(iii) $\Rightarrow$ (i). If $A$ is a partial isometry, then $A^{*} A=|A|^{2}$ is a projection by [21, Chapter 13, Problem 98]. Hence the operator $|A|=\sqrt{|A|^{2}}$ is a projection by the Spectral Theorem.
(ii) $\Leftrightarrow$ (iii). An operator $A \in \mathcal{B}(\mathcal{H})$ is a partial isometry if and only if $A^{*}$ is a partial isometry [26, Theorem 2.3.3].

Theorem 4. Let $J$ be an ideal in an algebra $\mathcal{A}$. Let $A, B, X \in \mathcal{A}$, and let $A$ be a k-potent, $B$ be an n-potent for some $k, n \in \mathbb{N}$. Then the following conditions are equivalent:
(i) $A X B \in J$;
(ii) $A^{j} X B^{m} \in J$ for some $1 \leq j \leq k$ and $1 \leq m \leq n$.

Proof. (i) $\Rightarrow$ (ii). If $j=1$ and $m>1$ then $A X B^{m}=A X B \cdot B^{m-1} \in J$. If $j>1$ and $m=1$ then $A^{j} X B=A^{j-1} \cdot A X B \in J$. If $j, m>1$ then $A^{j} X B^{m}=A^{j-1} \cdot A X B \cdot B^{m-1} \in J$.
(ii) $\Rightarrow$ (i). If $j=k$ and $m<n$ then $A X B=A X B^{m} \cdot B^{n-m} \in J$. If $j<k$ and $m=n$ then $A X B=$ $A^{k-j} \cdot A^{j} X B \in J$. If $j<k$ and $m<n$ then $A X B=A^{k-j} \cdot A^{j} X B^{m} \cdot B^{n-m} \in J$.

In particular, $A \in J \Leftrightarrow A^{j} \in J$ for some $1 \leq j \leq k$.
Theorem 5. Let $J$ be an ideal in an algebra $\mathcal{A}, A, B \in \mathcal{A}^{\text {tri }}$ and $A=P_{1}-Q_{1}, B=P_{2}-Q_{2}$ be the representations of Lemma 1. Then the following conditions are equivalent:
(i) $A-B \in J$;
(ii) $P_{1}-P_{2}, Q_{1}-Q_{2} \in J$.

Proof. We have $P_{k}, Q_{k} \in \mathcal{A}^{\text {id }}$ and $P_{k} Q_{k}=Q_{k} P_{k}=0$ for $k=1,2$.
(i) $\Rightarrow$ (ii). We apply the scheme of the proof of [9, Corollary 5]. The elements $A^{2}=P_{1}+Q_{1}$, $B^{2}=P_{2}+Q_{2}$ lie in $\mathcal{A}^{\text {id }}$ by item (ii) of Lemma 2. Since $A-B=P_{1}-Q_{1}-P_{2}+Q_{2} \in J$, the element

$$
A^{2}-B^{2}=\frac{1}{2}((A+B)(A-B)+(A-B)(A+B))=P_{1}+Q_{1}-P_{2}-Q_{2}
$$

also belongs to $J$. Therefore, the elements

$$
P_{1}-P_{2}=\frac{1}{2}\left(A-B+A^{2}-B^{2}\right), \quad Q_{1}-Q_{2}=-\frac{1}{2}\left(A-B-\left(A^{2}-B^{2}\right)\right)
$$

lie in $J$.
(ii) $\Rightarrow$ (i). We have $A-B=P_{1}-P_{2}-\left(Q_{1}-Q_{2}\right) \in J$.

Lemma 3. Let $\mathcal{A}$ be an algebra and $A, B \in \mathcal{A}$ be such that $A B=-B A$, i.e., $A$ and $B$ anticommute. Then $A^{k} B^{2 n}=B^{2 n} A^{k}$ and $A^{2 k+1} B^{2 n+1}=-B^{2 n+1} A^{2 k+1}$ for all $k, n \in \mathbb{N}$.

Proof. We have $A B^{2}=A B \cdot B=-B A \cdot B=-B \cdot A B=-B \cdot(-B A)=B^{2} A$. Therefore,

$$
A^{k} B^{2}=A^{k-1} \cdot A B^{2}=A^{k-1} \cdot B^{2} A=A^{k-2} \cdot A B^{2} \cdot A=\cdots=B^{2} A^{k}
$$

for all $k \in \mathbb{N}$. Thus $A^{k} B^{2 n}=B^{2 n} A^{k}$ for all $k, n \in \mathbb{N}$. We have

$$
\begin{aligned}
& A^{2 k+1} B^{2 n+1}=A^{2 k+1} B^{2 n} \cdot B=B^{2 n} A^{2 k+1} \cdot B=B^{2 n} A^{2 k} \cdot A B=-1 \cdot B^{2 n} A^{2 k} \cdot B A \\
& =-1 \cdot B^{2 n} A^{2 k-1} \cdot A B \cdot A=(-1)^{2} B^{2 n} A^{2 k-1} \cdot B A^{2}=\cdots=(-1)^{2 k+1} B^{2 n+1} A^{2 k+1}
\end{aligned}
$$

for all $k, n \in \mathbb{N}$.
Theorem 6. Let $\mathcal{A}$ be an algebra, $A \in \mathcal{A}$ and $B \in \mathcal{A}^{\text {tri }}$, and let $B=P-Q$ be the representation of Lemma 1. Then the following conditions are equivalent:
(i) $A B=-B A$, i.e., $A$ and $B$ anticommute;
(ii) $A P=Q A$ and $A Q=P A$.

Proof. (i) $\Rightarrow$ (ii). We have $B^{2}=P+Q$,

$$
\begin{equation*}
A(P-Q)=-(P-Q) A \tag{5}
\end{equation*}
$$

and by Lemma 3 obtain

$$
\begin{equation*}
A(P+Q)=(P+Q) A \tag{6}
\end{equation*}
$$

Add term by term equalities (5) and (6) and conclude that $A P=Q A$. Subtract term by term relation (6) from (5) and obtain $A Q=P A$.
(ii) $\Rightarrow$ (i). We have $A B=A(P-Q)=Q A-P A=-B A$.

Let $\mathcal{A}$ be a unital algebra, $A \in \mathcal{A}^{\text {tri }}$, and let $A=P-Q$ be the representation of Lemma 1. Then $B=P^{\perp}-Q \in \mathcal{A}^{\text {id }}$ and $A B=B A=0$.

Corollary 3. Let $\mathcal{A}$ be an algebra, $A \in \mathcal{A}$ and $P \in \mathcal{A}^{\text {id }}$. Then the following conditions are equivalent: (i) $A P=-P A ;$ (ii) $A P=P A=0$.

Proof. Put $Q=0$ in Theorem 6.

In $\mathbb{M}_{2}(\mathbb{C})$ for the tripotents

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

we have $A B=-B A$. Moreover, $A$ and $B$ are Hermitian symmetries. Let $n \in \mathbb{N}$ and let $X, Y \in \mathbb{M}_{n}(\mathbb{C})$ anticommute. Then $\operatorname{tr}(X Y)=\operatorname{tr}(Y X)=0$ and the matrices $X Y, Y X$ are commutators by [21, Chapter 19, Problem 182]. If $n$ is odd then $\operatorname{det}(X Y)=0$.

Theorem 7. Let $\mathcal{A}$ be a unital algebra, $A \in \mathcal{A}^{\text {tri }}$ and $B \in \mathcal{A}$ with $B^{2}=I$. Then the following conditions are equivalent:
(i) $A+B \in \mathcal{A}^{\text {id }}$;
(ii) $Q=0$ and $(P-R)^{2}=I$, where $A=P-Q$ is the representation of Lemma $1, R=\frac{B+I}{2} \in \mathcal{A}^{\text {id }}$.

Proof. (i) $\Rightarrow$ (ii). We have $A^{2}=P+Q$. If $A+B \in \mathcal{A}^{\text {id }}$ then $A^{2}+A B+B A+I=A+B$, i.e.,

$$
\begin{equation*}
2 Q-P-R+P R+R P-Q R-R Q+I=0 \tag{7}
\end{equation*}
$$

Multiply both sides of equality (7) by the idempotent $P$ from the left and obtain

$$
\begin{equation*}
P R P-P R Q=0 \tag{8}
\end{equation*}
$$

Multiply both sides of equality (8) by the idempotent $P$ from the right and find that $P R P=0$. Therefore, we have $P R Q=0$, see (8). Multiply both sides of equality (7) by the idempotent $Q$ from the left and by the idempotent $P$ from the right and obtain $Q R P=0$. Multiply both sides of equality (7) by the idempotent $Q$ from the left and the right and obtain $Q R Q=Q$.

Multiply both sides of equality (7) by the tripotent $P-Q$ from the left, take into account the relations

$$
P R P=P R Q=Q R P=0, \quad Q R Q=Q
$$

and conclude that $Q=0$. Thus, $A=P \in \mathcal{A}^{\text {id }}$ and (7) turns into $(P-R)^{2}=I$.
(ii) $\Rightarrow$ (i). We have equality (7).

Corollary 4. Let $\mathcal{A}$ be a unital algebra, $A, B \in \mathcal{A}$ with $A^{2}=B^{2}=I$. Then the following conditions are equivalent: (i) $A+B \in \mathcal{A}^{\text {id; }}$; (ii) $A=-B=I$.

Proof. (i) $\Rightarrow$ (ii). Since $A=P \in \mathcal{A}^{\text {id }}$ and $A^{2}=I$, we have $A=P=I$. Since $(P-R)^{2}=I$, we have $I-R=I$ and $R=0$. Thus, $B=2 R-I=-I$.

Theorem 8. Let $\mathcal{A}$ be a unital algebra, let $A, B \in \mathcal{A}$ be such that $A B A=\lambda A$ for some $\lambda \in$ $\mathbb{C} \backslash\{0\}$.
(i) If $A$ is an n-potent for some $n \geq 3$ then the idempotents $A^{n-1}, \lambda^{-1} A B$ and $\lambda^{-1} B A$ are pairwise similar. If $\mathcal{A}$ acts on a vector space $\mathcal{E}$, then we have $\operatorname{Im}\left(A^{n-1}\right)=\operatorname{Im}\left(\lambda^{-1} A B\right)$ and $\operatorname{Ker}\left(A^{n-1}\right)=\operatorname{Ker}\left(\lambda^{-1} B A\right)$.
(ii) If $B$ is a $2 n$-potent then $P=\lambda^{-1} B^{n} A B^{n}$ lies in $\mathcal{A}^{i d}$ and $B^{2 n-1} P=P B^{2 n-1}=P$.

Proof. By [17, Lemma 3.8] the elements $P=\lambda^{-1} A B$ and $Q=\lambda^{-1} B A$ lie in $\mathcal{A}^{\text {id }}$.
(i). We have $A^{n-1} \in \mathcal{A}^{\text {id }}$ by item (ii) of Lemma 2 and

$$
A^{n-1} \cdot \lambda^{-1} A B=\lambda^{-1} A B, \quad \lambda^{-1} A B \cdot A^{n-1}=\lambda^{-1} A B A \cdot A^{n-2}=A^{n-1}
$$

(resp., $A^{n-1} \cdot \lambda^{-1} B A=\lambda^{-1} A^{n-2} \cdot A B A=A^{n-2} A=A^{n-1}, \quad \lambda^{-1} B A \cdot A^{n-1}=\lambda^{-1} B A$ ). Then, we apply [15, Lemma 2] and conclude that $A^{n-1}$ and $\lambda^{-1} A B$ (resp., $A^{n-1}$ and $\lambda^{-1} B A$ ) are similar.

If $\mathcal{A}$ acts on a vector space $\mathcal{E}$ then by [19, Lemma 2] we have $\operatorname{Im}\left(A^{n-1}\right)=\operatorname{Im}\left(\lambda^{-1} A B\right)$ and $\operatorname{Ker}\left(A^{n-1}\right)=\operatorname{Ker}\left(\lambda^{-1} B A\right)$. Since every similarity relation is an equivalence, the idempotents $\lambda^{-1} A B$ and $\lambda^{-1} B A$ are also similar.
(ii) We have

$$
P=\lambda^{-1} B^{n} A B^{n}=B^{n} \cdot \lambda^{-1} A \cdot B^{n}=B^{n} \cdot \lambda^{-2} A B A \cdot B^{n}=\lambda^{-2} B^{n} A B^{n} \cdot B^{n} A B^{n}=P^{2} .
$$

Thus, $P \in \mathcal{A}^{\text {id }}$. Since $B^{2 n-1} \cdot B^{n}=B^{n} \cdot B^{2 n-1}=B^{3 n-1}=B^{2 n} B^{n-1}=B^{n}$, we have $B^{2 n-1} P=$ $P B^{2 n-1}=P$. Recall that $B^{2 n-1} \in \mathcal{A}^{\text {id }}$ by item (ii) of Lemma 2.

Consider the following complex $2 \times 2$ matrices

$$
A=\left(\begin{array}{ll}
1 & z \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
\lambda & \mu \\
0 & \nu
\end{array}\right)
$$

Then $A \in \mathbb{M}_{2}(\mathbb{C})^{\text {id }}$ and $A B A=\lambda A$. Recall that for an arbitrary $A \in \mathbb{M}_{n}(\mathbb{C})$ there exists a pseudoinverse $B \in \mathbb{M}_{n}(\mathbb{C})$ such that $A B A=A$ (see [26, Theorem 1.4.15]).

If $A, B \in \mathbb{M}_{n}(\mathbb{C})$ and $A \sim B$ then $\operatorname{det}(A)=\operatorname{det}(B)$ and $\operatorname{tr}(A)=\operatorname{tr}(B)$. Let $\mathcal{A}=\mathcal{B}(\mathcal{H})$, where $\mathcal{H}$ is a separable Hilbert space, $\operatorname{dim} \mathcal{H}=\infty$. Then there exist operators $A \in \mathcal{A}^{+}$and $B \in \mathcal{A}$ such that $A \sim B$, $A \in \mathfrak{S}_{1}(\mathcal{H})$, but $B \notin \mathfrak{S}_{1}(\mathcal{H})$. Hint: for some projections $P, Q \in \mathcal{B}(\mathcal{H})$ we have $P Q P \in \mathfrak{S}_{1}(\mathcal{H})$, but $Q P \notin \mathfrak{S}_{1}(\mathcal{H})$, see [4, Remark 1].

Theorem 9. Let $\mathcal{A}$ be an algebra and let $A=P-Q$ and $B=S-T$ be the representations of a tripotents $A, B \in \mathcal{A}^{\text {tri }}$ by Lemma 1, i.e., $P, Q, S, T \in \mathcal{A}^{\text {id }}$ and $P Q=Q P=S T=T S=0$. If $A \sim B$ then $A^{2} \sim B^{2}, P \sim S$ and $Q \sim T$. Conversely, if $P \sim S$ and $Q \sim T$, then $A \sim B$ and $A^{2} \sim B^{2}$.

Proof. Let $X, Y \in \mathcal{A}$ be such that $A=X Y$ and $B=Y X$. Then the elements $A^{2}=P+Q$, $B^{2}=S+T$ lie in $\mathcal{A}^{\text {id }}$ and $A^{2}=X Y X \cdot Y$ and $B^{2}=Y \cdot X Y X$. Thus, $A^{2} \sim B^{2}$ and we have

$$
\begin{aligned}
& P=\frac{A+A^{2}}{2}=X \cdot \frac{Y+Y X Y}{2} \quad \text { and } \quad S=\frac{B+B^{2}}{2}=\frac{Y+Y X Y}{2} \cdot X \\
& Q=\frac{A^{2}-A}{2}=X \cdot \frac{Y X Y-Y}{2} \quad \text { and } \quad T=\frac{B^{2}-B}{2}=\frac{Y X Y-Y}{2} \cdot X
\end{aligned}
$$

i.e., $P \sim S$ and $Q \sim T$.

Assume now that $P \sim S$ and $Q \sim T$, i.e., $P=E F, S=F E$ and $Q=U V, T=V U$ for some $E, F, U, V \in \mathcal{A}$. Then

$$
E F U V=U V E F=F E V U=V U F E=0
$$

and we have

$$
\begin{aligned}
& A=E F-U V=(E F E-U V U)(F E F+V U V), \\
& B=F E-V U=(F E F+V U V)(E F E-U V U) ; \\
& A^{2}=E F+U V=(E F E+U V U)(F E F+V U V), \\
& B^{2}=F E+V U=(F E F+V U V)(E F E+U V U) .
\end{aligned}
$$

Thus, $A \sim B$ and $A^{2} \sim B^{2}$. Theorem is proved.

## FUNDING

The work performed under the development program of Volga Region Mathematical Center (agreement no. 075-02-2022-882).

## REFERENCES

1. E. Andruchow, "Operators which are the difference of two projections," J. Math. Anal. Appl. 420, 1634-1653 (2014).
2. J. Avron, R. Seiler, and B. Simon, "The index of a pair of projections," J. Funct. Anal. 120, 220-237 (1994).
3. J. Bellissard, A. van Elst, and H. Schulz-Baldes, "The noncommutative geometry of the quantum Hall effect," J. Math. Phys. 35, 5373-5451 (1994).
4. A. Bikchentaev, "Majorization for products of measurable operators," Int. J. Theor. Phys. 37, 571-576 (1998).
5. A. M. Bikchentaev and R. S. Yakushev, "Representation of tripotents and representations via tripotents," Linear Algebra Appl. 435, 2156-2165 (2011).
6. A. M. Bikchentaev, "Tripotents in algebras: Invertibility and hyponormality," Lobachevskii J. Math. 35, 281285 (2014).
7. A. M. Bikchentaev, "On idempotent $\tau$-measurable operators affiliated to a von Neumann algebra," Math. Notes 100, 515-525 (2016).
8. A. Bikchentaev, "Integrable products of measurable operators," Lobachevskii J. Math. 37, 397-403 (2016).
9. A. M. Bikchentaev, "Differences of idempotents in $C^{*}$-algebras," Sib. Math. J. 58, 183-189 (2017).
10. A. M. Bikchentaev, "On $\tau$-compactness of products of $\tau$-measurable operators," Int. J. Theor. Phys. 56, 3819-3830 (2017).
11. A. M. Bikchentaev, "Differences of idempotents in $C^{*}$-algebras and the quantum Hall effect," Theor. Math. Phys. 195, 557-562 (2018).
12. A. M. Bikchentaev, "Trace and differences of idempotents in $C^{*}$-algebras," Math. Notes 105, 641-648 (2019).
13. A. M. Bikchentaev, "Rearrangements of tripotents and differences of isometries in semifinite von Neumann algebras," Lobachevskii J. Math. 40, 1450-1454 (2019).
14. A. M. Bikchentaev, "On the $\tau$-compactness of the product of $\tau$-measurable operators adjoint to a semifinite von Neumann algebra," J. Math. Sci. 241, 458-468 (2019).
15. A. M. Bikchentaev and Kh. Fawwaz, "Differences and commutators of idempotents in $C^{*}$-algebras," Russ. Math. 65 (8), 13-22 (2021).
16. A. M. Bikchentaev and A. N. Sherstnev, "Studies on noncommutative measure theory in Kazan University (1968-2018)," Int. J. Theor. Phys. 60, 585-596 (2021).
17. A. Bikchentaev, "Differences and commutators of projections on a Hilbert space," Int. J. Theor. Phys. 61, 2 (2022).
18. A. Brown and C. Pearcy, "Structure of commutators of operators," Ann. Math. 282, 112-127 (1965).
19. G. Chevalier, "Automorphisms of an orthomodular poset of projections," Int. J. Theor. Phys. 44, 985-998 (2005).
20. F. Gesztesy, "From mathematical physics to analysis: A walk in Barry Simon's mathematical garden, II," Not. Am. Math. Soc. 63, 878-889 (2016).
21. P. R. Halmos, A Hilbert Space Problem Book, 2nd ed., Vol. 17 of Encyclopedia of Mathematics and its Applications, Vol. 19 of Graduate Texts in Mathematics (Springer, New York, 1982).
22. N. J. Kalton, "A note on pairs of projections," Bol. Soc. Mat. Mex. 3 3, 309-311 (1997).
23. J. J. Koliha and V. Rakočević, "Invertibility of the difference of idempotents," Lin. Multilin. Algebra 51, 97110 (2003).
24. J. J. Koliha, V. Rakočević, and I. Straškraba, "The difference and sum of projectors," Linear Algebra Appl. 388, 279-288 (2004).
25. J. J. Koliha and V. Rakočević, "Fredholm properties of the difference of orthogonal projections in a Hilbert space," Integral Equat. Oper. Theory 52, 125-134 (2005).
26. G. J. Murphy, $C^{*}$-algebras and Operator Theory (Academic, Boston, MA, 1990).
27. W. Shi, G. Ji, and H. Du, "Pairs of orthogonal projections with a fixed difference," Linear Algebra Appl. 489, 288-297 (2016).
28. K. Zuo, "Nonsingularity of the difference and the sum of two idempotent matrices," Linear Algebra Appl. 433, 476-482 (2010).

[^0]:    *E-mail: khattab1058@hotmail.com
    **E-mail: sultanich@rambler.ru

