Test 2
1.

The ideal gas $(v=1 \mathrm{~mol})$ is in a volume of $V=1001$ at a temperature of $T=+27^{\circ} \mathrm{C}$.
Find the pressure $P(\mathrm{~Pa})$.
$R=8.31 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}$.

$V=100(\mathrm{l})=100 \cdot 10^{-3}\left(\mathrm{~m}^{3}\right)=0.1\left(\mathrm{~m}^{3}\right)$
$T=+27^{\circ} \mathrm{C}=273+27(\mathrm{~K})=300(\mathrm{~K})$
$P \cdot V=V \cdot R \cdot T$
$P=\frac{v \cdot R \cdot T}{V}=\frac{1 \cdot 8.31 \cdot 300}{0.1}=24930(\mathrm{~Pa})$
2.

The force $F=10 \mathrm{~N}$ acts on the area $A=2 \cdot 10^{4} \mathrm{~cm}^{2}$.
Find the pressure $P(\mathrm{~Pa})$.

$A=2 \cdot 10^{4}\left(\mathrm{~cm}^{2}\right)=2 \cdot 10^{4} \cdot 10^{-4}\left(\mathrm{~m}^{2}\right)=2\left(\mathrm{~m}^{2}\right)$
$P=\frac{F}{A}=\frac{10}{2}=5(\mathrm{~Pa})$
3.

Find oceanic pressure $P(\mathrm{~Pa})$ at depth $L=0.01 \mathrm{~km}$.
The atmospheric pressure $P_{0}=10^{5} \mathrm{~Pa}$.
The density of water $\rho=1000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
The standard acceleration of free fall $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.

$L=0.01(\mathrm{~km})=0.01 \cdot 10^{3}(\mathrm{~m})=10(\mathrm{~m})$
$P=P_{0}+\rho \cdot g \cdot L=10^{5}+10^{3} \cdot 10 \cdot 10=2 \cdot 10^{5}(\mathrm{~Pa})$
4.

A hydraulic lift has pistons with cross sectional areas $A_{1}=0.1 \mathrm{~m}^{2}$ and $A_{2}=2 \mathrm{~m}^{2}$, and supports masses $m_{1}=1 \mathrm{~kg}$ and m_{2}, respectively.
Find $m_{2}(\mathrm{~kg})$.

$P_{1}=P_{2}$
$\frac{m_{1} \cdot g}{A_{1}}=\frac{m_{2} \cdot g}{A_{2}}$
$m_{2}=m_{1} \cdot \frac{A_{2}}{A_{1}}=1 \cdot \frac{2}{0.1}=20(\mathrm{~kg})$

5.

The syringe diameter is $D_{1}=1.0 \mathrm{~cm}$.
The needle diameter is $D_{2}=1.0 \mathrm{~mm}$.
Nurse moves plunger with speed v_{1}.
Find the speed of squirt from needle v_{2}.

$1 \mathrm{~cm}=10 \mathrm{~mm}$
$v_{1} \cdot A_{1}=v_{2} \cdot A_{2}$
$A=\frac{\pi \cdot D^{2}}{4}$
$v_{1} \cdot \frac{\pi \cdot D_{1}^{2}}{4}=v_{2} \cdot \frac{\pi \cdot D_{2}^{2}}{4}$
$v_{1} \cdot D_{1}^{2}=v_{2} \cdot D_{2}^{2}$
$v_{2}=v_{1} \cdot\left(\frac{D_{1}}{D_{2}}\right)^{2}=v_{1} \cdot\left(\frac{10}{1}\right)^{2}=100 \cdot v_{1}$
6.

Laminar fluid flow through the pipe under pressure $\Delta P=10^{6} \mathrm{~Pa}$.
The fluid viscosity $\eta=0.314 \mathrm{~Pa} \cdot \mathrm{~s}$.
The pipe length $L=12.5 \mathrm{~m}$, the pipe radius $R=10 \mathrm{~cm}$.
Find the volumetric flow rate $Q\left(\mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}\right)$.

$R=10(\mathrm{~cm})=10 \cdot 10^{-2}=0.1(\mathrm{~m})$
$Q=\frac{\pi \cdot R^{4}}{8 \cdot \eta \cdot L} \cdot \Delta P=\frac{\pi \cdot 0.1^{4}}{8 \cdot 0.314 \cdot 12 \cdot 5} \cdot 10^{6}=\frac{10 \cdot 10^{-4} \cdot 10^{6}}{100}=10\left(\mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}\right)$
7.

The speed of flow in a circular pipe is $v=1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.
The pipe diameter $D=0.1 \mathrm{~m}$.
The liquid density is $\rho=1000 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
The liquid viscosity $\eta=0.1 \mathrm{~Pa} \cdot \mathrm{~s}$.
Find Reynolds number $R e$.

$R e=\frac{\rho \cdot v \cdot D}{\eta}=\frac{10^{3} \cdot 1 \cdot 0.1}{0.1}=1000$
8.

The temperature $T=+50^{\circ} \mathrm{C}$.
Find absolute temperature.

$T(\mathrm{~K})=273+T\left({ }^{\circ} \mathrm{C}\right)=273+50=323(\mathrm{~K})$
9.

The energy is $W=5$ calories.
Find energy $W(\mathbf{J})$.

$1 \mathrm{cal}=4.186 \mathrm{~J}$
$W=5 \cdot 4.186=20.93(\mathrm{~J})$
10.

A gas is compressed from $V_{i}=1 \mathrm{~m}^{3}$ to $V_{f}=0.5 \mathrm{~m}^{3}$ by pressure $P=1 \mathrm{~atm}$.
Find work on gas $W_{g}(\mathrm{~J})$.

$1 \mathrm{~atm}=10^{5} \mathrm{~Pa}$
The work done by gas $W=P \cdot\left(V_{f}-V_{i}\right)=10^{5} \cdot(0.5-1)=-5 \cdot 10^{4}(\mathrm{~J})$
The work on gas is $W_{g}=-W=5 \cdot 10^{4}(\mathrm{~J})$
11.

An system received heat $Q=10 \mathrm{~J}$ and did work $W=5 \mathrm{~J}$.
Find the change in energy of system ΔU.

$\Delta U=Q-W=10-5=5(\mathrm{~J})$
12.

The initial pressure of ideal gas is P_{i}.
The volume of gas decreased by 2 times as a result of the isothermal process.
Find final pressure P_{f}.

$P_{i} \cdot V_{i}=P_{f} V_{f}$
$P_{f}=\frac{P_{i} \cdot V_{i}}{V_{f}}=2 \cdot P_{i}$
13.

A cyclic device takes heat $Q_{h}=10 \mathrm{~J}$ from hot reservoir, convert some of it to work and reject the rest of it $Q_{c}=2 \mathrm{~J}$ to cold reservoir.
Find the efficiency \in of heat engine (\%).

$\epsilon=1-\frac{Q_{c}}{Q_{h}}=1-\frac{2}{10}=0.8=80 \%$
14.

A capillary liquid height is $h=0.1 \mathrm{~m}$, capillary radius is $R=1 \mathrm{~mm}$.
Density of liquid is $\rho=800 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.
The standard acceleration of free fall $g=10 \mathrm{~m} \cdot \mathrm{~s}^{-2}$.
Find surface tension of liquid $\sigma\left(\mathrm{N} \cdot \mathrm{m}^{-1}\right)$.

$R=1(\mathrm{~mm})=1 \cdot 10^{-3}(\mathrm{~m})$
$2 \cdot \pi \cdot R \cdot \sigma=m \cdot g$
$m=\rho \cdot V=\rho \cdot h \cdot \pi \cdot R^{2}$
$\sigma=\frac{m \cdot g}{2 \cdot \pi \cdot R}=\frac{\rho \cdot h \cdot \pi \cdot R^{2} \cdot g}{2 \cdot \pi \cdot R}=\frac{\rho \cdot h \cdot R \cdot g}{2}=\frac{800 \cdot 0 \cdot 1 \cdot 10^{-3} \cdot 10}{2}=0.4\left(\mathrm{~N} \cdot \mathrm{~m}^{-1}\right)$
15.

What volume $V\left(\mathrm{~m}^{3}\right)$ of helium is need if a balloon is to lift a load of $m=180 \mathrm{~kg}$ (including the weight of empty balloon)?
Density of helium is $\rho_{\mathrm{He}}=0.179 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$, density of air is $\rho_{\text {air }}=1.29 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$.

Archimedes' principle
$m_{\mathrm{He}} \cdot g+m \cdot g-\rho_{\mathrm{air}} \cdot g \cdot V=0$
$m_{\mathrm{He}}=\rho_{\mathrm{He}} \cdot V$
$\rho_{\mathrm{He}} \cdot V+m-\rho_{\mathrm{air}} \cdot V=0$
$V=\frac{m}{\rho_{\text {air }}-\rho_{\text {He }}}=\frac{180}{1.29-0.179}=162\left(\mathrm{~m}^{3}\right)$

