ON AN ESTIMATE OF THE TORSIONAL RIGIDITY OF A CONVEX DOMAIN THAT IMPROVES THE POLIA-SZEGO INEQUALITY

R.G. Salakhudinov¹, L.I. Gafiyatullina²

1 rsalakhud@gmail.com; Kazan, Russia

2 gafiyat@gmail.com; Kazan, Russia

Let *G* be a simply connected domain in the plane. One of the important physical characteristics of a domain in mathematical physics is the functional

$$\mathbf{P}(G) := 2 \int_{G} u(x, G) \mathrm{d}A,$$

called torsional rigidity in elasticity theory. Here u(x, G) is the stress function that satisfies the equation $\Delta u = -2$ in *G* and the boundary condition u = 0, while the differential area element is denoted by d*A* (see [1], [2]).

Denote by $\rho(x, G)$ the distance function from a point x to the boundary of a domain G, and $\rho(G)$ is the radius of the maximal circle contained in G.

G. Polya and G. Szege [1] showed that for any convex domain

$$\mathbf{P}(G) \ge \frac{1}{2} \mathbf{A}(G) \rho(G)^2, \tag{1}$$

where A(G) is the area of G. The equality in (1) is achieved for a disk.

Denote by $G(\mu)$ the level set of the distance function $\rho(x, G)$, $0 \le \mu \le \rho(G)$, and $l(\mu)$ is the length of the boundary curve of $G(\mu)$. Let $l(\rho(G)) := \lim_{\mu \to \rho(G)} l(\mu)$.

Theorem 1. Let *G* be a convex domain in the plane of the bounded area and $l(\rho(G)) \neq 0$. Then

$$\mathbf{P}(G) > \frac{1}{2}\mathbf{A}(G)\rho(G)^2 + \frac{5}{12}l(\rho(G))\rho(G)^3.$$
(2)

References

1. Po'lya and G. Szego, *Isoperimetric Inequalities in Mathematical Physics* // Number 27 in Annals of Mathematical Studies. Princeton University Press, Princeton, N.J., 1951.

2. Arutyunyan N.Kh. Torsion of elastic bodias. Moscow, Fizmatgiz, 1963, 688 p. (in Russian).

BOUNDED COMPOSITION OPERATORS IN BV-SPACES ON CARNOT GROUPS

D.A. Sboev¹

1 d.sboev@g.nsu.ru; Novosibirsk, Russia

Let $\varphi: \Omega \to \Omega'$ be a homeomorphism between two domains in a Carnot group *G*. We consider a situation when φ induces bounded composition operator between the *BV* spaces:

$$BV(\Omega') \ni u \mapsto \varphi^*(u) = u \circ \varphi \in BV(\Omega),$$