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Abstract
It was previously shown that both associative learning and the formation of long-term sensitization led to the increase in
excitability of premotor interneurons of the defensive behavior of terrestrial snail Helix lucorum. In the present study, we
analyzed the role of intracellular calcium ions in the maintenance of increased excitability in premotor interneurons of terrestrial
snail after the formation of a conditioned defensive reflex. It was shown that the increase of the intracellular Ca2+ concentration
after adding caffeine to the solution washing the nervous system of the mollusk led to a decrease of the threshold of action
potential and to an increase of the critical level of depolarization without a change of the membrane potential of premotor
interneurons in both intact and trained snails. The decrease of the intracellular Ca2+ concentration in premotor interneurons by
the intracellular injection of (ethylene glycol-bis (2-aminoethylether)-N, N, N, N-tetraacetic acid) (EGTA) resulted in a signif-
icant increase of the threshold of generation of the action potential in intact snails. But the values of threshold of generation of the
action potential in trained snails after injection of EGTA did not significantly differ from the values of studied parameters before
injection. After application of the membrane-penetrating chelator, BAPTA-AM, the changes in the membrane and threshold
potentials of premotor interneurons of intact and trained snails were not observed. Our results demonstrated that both the increase
and decrease of intracellular Ca2+ concentration were not involved in maintaining the changes of membrane characteristics of
premotor interneurons observed after associative learning.
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1 Introduction

It is known that calcium ions play an important role in the
formation of conditioned reflexes and various forms of facil-
itation and potentiation [1–4]. They participate in the regula-
tion of various neuronal processes, due to their specific

physicochemical characteristics; thereby, they are the most
universal intracellular mediators [5, 6]. Calcium ions entering
into the cell during its excitation, on the one hand, leads to
changes of the properties of the ion channels of the membrane,
and on the other hand, serves as signals to activate various
biochemical processes [7, 8], such as initiating of transmitter
release or activation of the intracellular signaling systems. The
initial increase of intracellular calcium concentration when
entering through the ion channels of the nerve cell membrane
leads to a further increase in its concentration from the endo-
plasmic reticulum and mitochondria, which plays an impor-
tant role not only in regulating short-term forms of plasticity
but also in initiating its long-term forms [9–14]. Thus, calcium
ions, carrying out the connection between electrical phenom-
ena occurring in the cell membrane and reactions occurring
inside the neuron, are directly involved in the integrative ac-
tivity of the nerve cell [5, 6, 15, 16].

In previous works, it was shown that in the premotor inter-
neurons of the defensive reflex, the membrane potential and the
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threshold of generation of action potential decreased after the
development of the conditioned defensive reflex, as well as
after the formation of long-term sensitization, which indicated
an increase in their excitability [17–20]. Since it is known that
the excitability of nerve cells depends on the Ca2 + ions [21], it
seems necessary and desirable to continue the analysis of the
role of Ca2 + ions in the maintenance of the long-term effects of
associative learning [22]. Previously, we studied the role of
extracellular calcium in the mechanisms of learning in a snail
at the level of the parameters of the neuronal membrane. It was
found that the increase in extracellular concentration of Ca2 +

ions led to the increase in threshold potential and shifted the
critical depolarization level towards positive values in intact
snails, but this effect of membrane stabilization by the high
level of extracellular Ca2+ was abolished in trained snails
[23]. In the present study, we analyzed the role of intracellular
calcium ions in the maintenance of changes of the membrane
characteristics of premotor interneurons after the formation of a
conditioned defensive reflex in terrestrial snail Helix lucorum.

2 Methods

Terrestrial snails Helix lucorum were used in this study.
Before the experiments, the snails were kept for at least
2 weeks in the glass terrariums in a humid atmosphere at room
temperature, with excess of food. In preparation for the main
work, the defensive conditioned reflex for tapping on the shell
was developed in 26 snails. The tapping on the shell was a
conditioned stimulus that normally did not cause a defensive
reaction of the animal. The air blow into the pulmonary cavity
was used as an unconditioned stimulus, which caused an un-
condit ioned defensive reaction of closure of the
pneumostome. The combinations of stimuli presented with
an interval of 2–4min. The reflexwas developedwithin 3 days
as a result of the presentation of approximately 180–200 com-
binations of conditioned and unconditioned stimuli. The result
of this training was the complete closure of the pneumostome
in response to a conditioned stimulus, which was noted as a
positive reaction [18, 23].

Analysis of the electrical characteristics was carried out on
premotor interneurons of the defensive reflex LPa3 and RPa3
[24]. The registration of electrical activity was made using
intracellular glass microelectrodes filled with 2.5М КCl with
input resistance of 5–10 MΩ. The resting membrane potential
(Vm) and the threshold of generation of action potential (Vt)
were recorded. The saline solution for the terrestrial snail
contained NaCl 80 mM/l, КСl 4 mM/l, СаСl2 10 mM/l,
МgСl2 5 mM/l, NаНСО 35 mM/l, and рН was 7.6–7.8. The
increase in intracellular calcium concentration was achieved
by adding 2 mM/l of caffeine (1,3,7-Trimethylxanthine)
(Sigma) in the saline solution washing isolated nervous sys-
tem of snail. It is known that caffeine causes calcium release

from intracellular depots, mainly from the endoplasmic retic-
ulum [5, 7, 22]. The injection of calcium chelator—EGTA
(ethylene glycol-bis (2-aminoethylether)-N, N, N, N-
tetraacetic acid) (Sigma) was used to reduce the calcium con-
tent inside the cell [25, 26]. The injection was made during
5 min with a negative current of 1 nA through a recording
microelectrode, which was filled with solution containing
0.5 M EGTA. In this case, the input resistance of microelec-
trode was 10–20 MΩ. Then, the electrical characteristics of
premotor interneurons were recorded every 5 min for 30 min.
In addition, the experiments with the use of selective
membrane-penetrated chelator of Ca2+ BAPTA-AMwere car-
ried out in intact and trained snails. BAPTA-AM was used at
the concentration of 10−4 M.

The results were shown as mean ± SEM. The one-way
repeated measurements ANOVA test was used to compare
the values of potentials in control (saline solution) and after
changing the concentration of Ca 2+ within one group of ani-
mals. It used the statistical software SigmaPlot11. The statis-
tical significance criterion was p < 0.05.

3 Results and Discussion

In the first series of experiments, we studied the effects of
increasing the calcium concentration on the electrical charac-
teristics of premotor interneurons of intact and trained snails,
caused by release calcium from intracellular depots under the
action of caffeine [5, 7]. It was found that the membrane
potential Vm did not change after adding the caffeine at a
concentration of 2 mM in bathing saline solution either in
intact or in trained snails (Fig. 1A). The value of threshold
potential Vt significantly decreased after adding caffeine from
19.8 ± 0.7 to 15.5 ± 0.9 mV (p < 0.001; n = 10) in intact snails
and significantly decreased from 16.8 ± 0.5 to 12.8 ± 0.7 mV
(p < 0,001; n = 6) in trained snails (Fig. 1B). This increase in
the excitability of premotor interneurons followed by the in-
crease of the calcium ion concentration without any changes
of the membrane potentials depended on intrinsic mechanisms
and did not connect with changes of the membrane excitabil-
ity after training.

In the second series of experiments, we investigated the
effects of the reducing of the calcium content in the neuron
on the electrical characteristics of premotor interneurons of
intact and trained snails by adding calcium chelators EGTA
and BAPTA-AM [25, 26]. It was found that the membrane
potential Vm did not change for 30 min after the decrease of
intracellular calcium concentration by injection of EGTA in
neuron either in intact snails or trained snails. In the group of
intact snails, the threshold potential Vt significantly increased
up to 22.5 ± 0.4 mV 30 min after the injection of EGTA com-
pared with values before injection 19.2 ± 0.6 mV (p < 0,001;
n = 10). In the group of trained snails, Vt tended to increase
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from 14.9 ± 1.2 mV before injection to 16.8 ± 0.8 mV (n = 8)
30 min after injection, but this difference was not significant
(Fig. 2). Apparently, the contribution of intracellular calcium
chelated by EGTA injection to the development of excitation
of the premotor interneuron decreases after the training of the
animals.

In continuation of this study, we carried out the experi-
ments in which the decrease of intracellular Ca2+ concentra-
tion was achieved by adding the membrane-penetrating calci-
um ion chelator (BAPTA-AM) to the saline solution washing
nervous system of mollusk. The buffer BAPTA-AM has the
similar affinity to Ca2+ as EGTA but possesses the faster
calcium-binding kinetics that allows it rapidly bind Ca2+ ions
entering through the channels [27]. The registration of electri-
cal characteristics of the premotor neurons showed that the
membrane potential Vm and the threshold potential Vt did

not significantly change after adding BAPTA-AM for all
groups of animals (Fig. 3).

It is known that calcium ions play an important role in long-
term forms of neuroplasticity. First of all, it is true for the
induction of presynaptic facilitation [8, 28]. However, it was
shown later that during the formation of a conditioned reflex,
the changes at the level of postsynaptic neurons were observed
[29]. It was also found that the intracellular injection of the
calcium chelator EGTA blocked the induction of long-term
depression [30], and the injection of CaCl2 into the postsyn-
aptic neuron produced the changes similar to synaptic facili-
tation [31]. In addition, it was found that the release of Ca2 +

ions from intracellular storage played a decisive role in this
process, while the entry of Ca2 + through potential dependent
channels was needed only for initiating the release of Ca2 +

ions from intracellular depots [7, 10, 32]. The main reservoirs
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Fig. 2 The values of the electrical
parameters of the premotor
interneurons of the defensive
reflex in intact and trained snails
in saline solution and after
injection of EGTA in premotor
interneurons. (Intact)—intact
snails, (Trained)—trained snails,
(SS)—saline solution, (EGTA)—
intracellular EGTA injection. The
vertical axis shows value of
potential, in mV, (A)—the
membrane potential (Vm); (B)—
the threshold potential (Vt);
Asterisks (*) indicate significant
difference (p < 0.05)
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Fig. 1 The values of the electrical
parameters of the premotor
interneurons of the defensive
reflex in intact and trained snails
in saline solution and after adding
caffeine. (Intact)—intact snails,
(Trained)—trained snails, (SS)—
saline solution, (Caffeine)—
saline solution with caffeine. The
vertical axis shows value of
potential, in mV, (A)—the
membrane potential (Vm); (B)—
the threshold potential (Vt);
Asterisks (*) indicate significant
difference (p < 0.05, paired t test)
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of intracellular Ca2+ storage are the endoplasmatic reticu-
lum and mitochondria [7, 33]. Recently, it becomes evident
that not only maintaining a high concentration of cytosolic
calcium is a key condition for the memory consolidation. In
experiments on the formation of olfactory memory in
Drosophila, it is shown that this process requires the trans-
port of cytosolic calcium to mitochondria in the mushroom
body neurons [34].

Earlier, it was found that the repetitive combination of con-
ditioned and unconditioned stimuli elicited cumulative mem-
brane depolarization of type B photoreceptors inHermissenda
crassicornis [35]. Similar depolarization after learning was
observed on premotor interneurons of defensive behavior of
terrestrial snail [17, 36]. Long-term depolarization of the
membrane and the increase of the excitability were also ac-
companied by an increase of intracellular Ca2+ concentration,
which can be recorded by visualizing intracellular Ca2+ using
the fura-2 [37]. In further experiments, intracellular injection
of the Ca2+ chelator EGTA and the antagonist of the release of
intracellular Ca2+ heparin effectively prevented increase of the
excitability caused by the light in photoreceptors of
Hermissenda [29]. The investigation of the high-amplitude
EPSP in the premotor interneurons in terrestrial snails showed
that high-amplitude EPSP, like action potentials, was accom-
panied by the increases of intracellular calcium ion concentra-
tions, which entered through the voltage-dependent Ca2+

channels [11]. Thus, the increase of intracellular Ca2+ concen-
tration on the initial stage of the conditioning plays an impor-
tant role in the formation of associative learning.

Our results showed that the increase of the calcium con-
centration by release of Ca2+ from the intracellular store led to
the increase in the excitability of premotor interneurons in
both intact and trained snails and did not affect the changes

of the membrane characteristics after conditioning. The de-
crease of intracellular Ca2+ concentration in premotor inter-
neurons by injection of EGTA significantly influenced the
threshold potential only in the group of intact snails but not
in the group of trained snails. The decrease of intracellular
Ca2+ concentration in premotor interneurons by adding
BAPTA-AM did not lead to specific changes in the electrical
characteristics of these neurons in both intact and trained
snails. That difference in effects of chelators depended on
the speed of their ability to bind Ca2+ ions. Thus, we suggested
that increasing or decreasing of intracellular calcium after
training was not involved in the maintaining of the changes
of the membrane characteristics of premotor interneurons
observed after conditioning. The increase of intracellular
calcium was largely needed at the stage of initiation of formation
of learning.
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