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Abstract 

This paper addresses a problem of partially unknown environment exploration and mapping. The proposed path 
planning algorithm provides global and local goals search taking into account limited sensing range and visibility 
constraints that arise from obstacles. Looking for local goals near a global path maximizes robot utility and helps 
avoiding returns to regions with low potential gain. All stages were tested in ROS/Gazebo simulations and results 
were compared with a naive algorithm that was proposed earlier.  

Keywords: robotics, algorithm, modelling, mapping, ROS/Gazebo, indoor exploration, path planning

1. Introduction 

Unknown environment automatic mapping is a 
fundamental task for all kinds of mobile robots. It is 
essential for every autonomous robotic system to perform 
mapping as precise as possible to make feasible further 
effective usage of a generated map in navigation 
procedures. A result of such mapping that is performed 
by one robot could be applied then for localization and 
path planning by other robots. However, previously these 
maps are often incomplete since every robot has its own 
operational limits (e.g., sensory limitations, time and 
power limitations) and robots that reuse such imperfect 
map are forced to operate in partially unknown 
environment, which constrains robot capabilities and 
may significantly decrease its effectiveness. Thus, it is 
important to have a good strategy to make possible 
efficient map update when its part is still undiscovered. 

The problem of partially unknown or uncertain 
environment exploration1 is discussed in research 
dedicated to single-robot exploration based on best 
exploring position search2; in terms of multi-robot 
exploration3 using greedy tactics4 or sophisticated 

algorithms designed specially for indoor environment 
exploration5. However, these approaches are tested in 
simulations with synthetic input maps or used high-
quality maps without artifacts that are impossible to 
avoid during a mapping process (e.g., impulse noises, 
incorrect sensory processing results, sensory limitations 
of real robotic system, etc.). In this paper, we propose a 
path planning method for an indoor partially known 
environment exploration and mapping. It was tested in 
simulations that were created using real sensory data. The 
algorithm performance was compared with previously 
proposed methods.   

2. Partially unknown environments exploration 
challenges 

A popular and effective way of mapping is using laser 
range finder (LRF) devices, which provide quite precise 
data about local landscape around a robot. The obtained 
data is represented in a form of height map images. Each 
pixel of the height map stores data about corresponding 
region of the environment. Pixels can have three possible 
values: black (usually interpreted as occupied region), 
white (obstacle-free) or gray (no occupancy data)6.  
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However, mapping algorithms during mapping 
procedures heavily rely on odometry data, which 
decrease map precision and cause various artifacts in the 
map (Fig. 1). Scanning device imperfection leads to 
eventual noises in sensory data (Fig. 2) or/and incomplete 
data (Fig. 3). Another problem is that a scanning LRF is 
constrained by obstacles (e.g. walls, doors, etc.) and this 
should be taken into account during path planning to 
unknown regions of the map. In addition, it is very 
important to use predictable forms and assumptions on 
indoor environments, e.g., they are structured and walls 
should surround every location (room, corridor, etc.).  

3. Proposed approach 

This section describes our algorithm, which is partially 
based on our previous research work. First, noise 
reduction within a map is performed using our modified 
median filter built-in map preparation tool7. 
 

Then, the robot takes the filtered map as an input and, 
assuming its initial position within the map, one of many 
localization techniques could be applied to determine 
robot location. For localization we had selected Adaptive 
Monte Carlo Localization8 (AMCL) method. Next, the 
robot preforms as follows: 

1. Reachable information gain regions are marked. 
2. A global goal is selected with a greedy approach 

based on information gain property of regions. 
3. Local goals are selected taking into account 

LRF limitations and a path toward the global 
goal. 

4. The robot sequentially travels through the local 
goals toward the global goal.  

5. Return to step No.1 until reachable information 
gain regions are available within the map. 

3.1. Reachable information gain regions marking 

Reachable information gain regions are unknown map 
regions, which (possibly) could be explored by the robot 
(shown on Fig. 4). The definition of such regions is 
recursive: 

 Every unknown cell of the map, which is 
adjacent to an obstacle-free cell, is included in 
reachable information gain region. 

 Every unknown cell, which is adjacent to 
another reachable information gain cell is also 
included in reachable information gain region. 

 Recursion depth is set in advance or controlled 
manually, and depends on map resolution. 
Using approximate wall thickness as a base 
depth value produces good results in practice.  

 

Fig. 1. A region of the original map with odometry caused 
artifact (obstacle-free space behind the wall). 

 

Fig. 3.  A region of the original map with highlighted space 
between distinct laser rays. 

 

Fig. 2. A region of the original map with noisy regions (several 
examples of noise are encapsulated within red rectangles).  
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This method takes into account the structured pattern 
of an indoor environment to properly estimate the utility 
of each position on the map: the farther the robot moves 
from frontier cells, the more chances it has to find a 
particular obstacle, which limits information gain. 

3.2.  Global goal selection 

A global goal is computed with the following strategy: 
the global goal is an obstacle-free cell with maximum 
count of reachable information gain cells in the LRF-
sensing radius. This is a greedy approach that was used 
in previous works4. Previous methods considered only 
frontier points as candidates for the global goal. Our 
approach uses a different strategy: the global goal could 
be any obstacle-free point within the map. This makes the 
global goal selection more optimal in cases when several 
information gain regions could be observed from a single 
point. Figure 6 illustrates advantages of this approach. 

3.3. Local goals selection 

Local goals are reachable information gain regions that 
are located within a predefined radius from a global path. 
Local goals allows the robot to explore small reachable 
regions while following the global path toward the global 
goal. Such algorithm prevents the robot from returning to 
the previously explored locations, thus providing a more 
efficient time and energy consumption. Figure 6 
demonstrates an example of different behavior of the 
greedy approach (top image) and our algorithm (bottom 
image). The robot starts at red X-mark, but while with the 
greedy approach it begins from exploring a large 
unknown area (region 1) and then returns back to the 
small region (region 2), the exploring sequence of our 
algorithm is the opposite is, which saves time for passing 
the same region (region 1) twice. 

 

Fig. 4.  A region of the original map with highlighted (in purple 
color) reachable information gain regions. 

 

Fig. 5.  A region of the original map. A preferred observing 
position by naive approach (left) and by the proposed approach 
(right). Circles and arrows show sensory radius of the robot. 

 

Fig. 7.  Red spline represents the global path. The line starting on 
the global path is the LRF ray towards the local goal. 

 

Fig. 6.  The robot starts at red X-mark. Greedy approach 
exploring sequence (top) and our approach sequence (bottom). 
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It is important to emphasize that local goals must be 
within the LRF line of sight, i.e., there should be no 
obstacles on the way of the LRF ray. This condition is 
verified by simulating LRF rays from a robot pose on the 
global path toward a region of interest: when the ray does 
not intersect any obstacle, it is possible to observe the 
region of interest from the pose. Bresenham's line 
algorithm9 is used to simulate such rays on occupancy 
grid (illustrated in Fig. 7). This algorithm allows to raster 
straight LRF rays and visualize them on occupancy grid. 

4. Comparison with the greedy approach  

To prove the efficiency of our approach, a comparison 
with the greedy method3 was performed. Both algorithms 
were simulated in ROS Gazebo environment and for the 
simulations we used a system with i7-4700HQ CPU, 
NVIDIA GeForce 770M GPU, and 24GB RAM. 

The results are summarized in Table 1. Two 
approaches were tested for a simulated exploration task 
that was run for 3, 5, 15 and 20 minutes within the same 
map. The results demonstrated that the naive algorithm 
performs better and collects more data if the exploration 
time is limited; in such case it is more efficient to skip 
exploration of low information gains and to proceed 
directly toward high information gain regions exploration. 
However, when only low information gain regions 
remain, the naive method produces long distance paths 
with multiple returns. This way, as exploration time 
grows, our approach becomes more and more efficient.  

Table 1. Map exploration percentage depending on the 
method and exploration time. 

Approach Simulation time in min. 
3 5 15 20 

Naive 
method 

73% 77% 85% 88% 

Proposed 
method 

72% 73% 83% 95% 

5. Conclusions and future work 

Path planning for partially known environments is an 
important task in robotics. The results of previous 
explorations could be reused, and an efficient exploration 
algorithm saves time and energy consumption of a robot. 
In this paper we proposed an exploration algorithm that 

shows better performance than a naive greedy approach 
for long-time exploration of indoor environments. As a 
part of future work, we plan to test the proposed 
algorithm within various environment in ROS Gazebo 
simulation10. The algorithm will be integrated into the 
control system of a real robot “Servosila Engineer” and 
tested in real-world exploration scenarios. 
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