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The article describes the solution to the control problem 

using machine learning. The article presents a model to 

simulate muscle tone. Based on spiking neural network control 

system was designed. The task of the neural network was to 

find a control function to maintain the muscle length. A LIF 

model of a spiking neural network was used. Excitatory signal 

was produced by muscle activity. Inhibitor signal was 

produced by motor neuron activity. Numerical simulations 

were performed and analyzed. A critical value of synapse 

weight was found. This value can be understood as a 

bifurcation parameter of the dynamic system. 

Keywords—spiking neural network, control system, 

mathematical model, artificial neural network. 

I. INTRODUCTION  

Neural networks are widespread worldwide for data 
processing. Historically the perceptron model is one of the 
first mathematical models of a biological neuron. The 
development of such models goes on. And, spiking neural 
networks are currently the closest type of network to describe 
the neuron with regard to biological origin. Approaches 
based on such networks type are becoming increasingly 
common in stabilization and control tasks [1, 2, 3]. 

A number of authors apply such models to the agent 
control, but with the application of such models occurring at 
the agent macro-level. Like in [4], two control actions are 
defined for the agent - right and left locomotors and sensor 
system defined by viewing angle. In this case, the spiking 
network triggers each locomotor. And agent orientation is 
defined by velocity difference in the left and right 
locomotors. Similarly, in [5], a unicycle agent with a similar 
sensor system, and the agent control are based on the 
feedback, velocity, and orientation of the unicycle. 

In both cases the is only one type of feedback - reaction 
on the environment. In fact, in real biological systems, there 
is a number of feedbacks in control systems. Moreover, these 
feedback mechanisms exist as multilevel systems in real 
biological organisms. It means that some feedback is carried 
out as a pair of sensor-motoneuron and others thru the central 
nervous system. This mechanism is called reflex arcs. For 
this reason, the study was devoted to modeling a neuro-
mechanical model with feedback not only via the sensor but 
also via other reflex arcs. 

The research of an algorithm for modeling muscle tone 
using a spiking neural network is presented. The simulating 
imply the biology-based architecture of the neural network. 
Muscle tone can be understood as a prolonged tension or 
contraction of a muscle. Muscle tone provides maintenance 
of a posture or a certain position of the body. 

The purpose of the research is to simulate the muscle 
tone. The control system is based on a spiking neural 
network, the net topology is based on biological neuron net 
architecture. To simulate muscle tone external force will be 
applied. Hills model will be used to simulate muscle 
mechanics. Sensor-motoneuron feedback was used. 

II. METHODS 

A. Lif model of neuron 

Topologically the design of a spiking neural network is 
similar to a multilayered perceptron. The fundamental 
difference is a mathematical model of the perceptron. From a 
biological point of view, neurons are complex structures with 
an electrochemical mechanism of information transmission. 
Due to this fact, there are a number of studies describing 
such a mechanism. Nowadays, there are several 
corresponding mathematical models. In the research Leaky 
Integrate-and-Fire (LIF) model of a neuron was used. The 
LIF model can be described by an equation: 

 τmem ·V′ = Eleak  –V + ɡe·(Ee – V) + ɡi ·(Ei – V), 

where τmem is the membrane time constant, V is the 
membrane voltage, Eleak is the reversal potential for the leak, 
Ee is the reversal potential for excitatory inputs, Ei is the 
reversal potential for inhibitory inputs, ɡe is the excitatory 
conductance, ɡi is the inhibitory conductance. 

Excitatory conduction can be described by the equation: 

 τe· ɡe′ =  – ɡe + we· h(ΔL), 

where τe is the time constant of postsynaptic potential, we is 
the strength of the excitatory synapse, ts is the time of an 
excitatory input spike, h(ΔL) is a function of tone reflex 
activation. 

 The function of tone reflex activation was used as 
follows equation: 
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 h(ΔL) = θ(ΔL – ΔLTHR), 

 

where θ(x) is the Heaviside step function, ΔLTHR is muscle 
length limit. 

Inhibitory conduction can be described by the equation: 

 τi· ɡi′ =  – ɡi + wi· f(V), 

where τi  is the time constant of postsynaptic potential, wi is 
the strength of the inhibitory synapse,  f(V) is a neuron 
activation function. 

 The neuron activation function was used as follows 
equation: 

 f(V) = θ(V), 

In this approach, the potential of each neuron is 
characterizing its value. The potential should be compared to 
the neuron threshold value. And if the potential exceeds the 
threshold value, the neuron sends an impulse to the next 
layer, then the potential drops to a relaxing level. Such a 
process calls spike. Otherwise, potential accumulation 
occurs. The LIF model assumes the tone reflex of the 
muscle. Moreover, this reflex is excitatory input. On the 
other side, neuron spiking triggers the inhibitory inputs on 
the neuron. 

B. Hill’s based muscle model 

A three-element model based on the Hill model was 
chosen as a mathematical model of the muscle to simulate 
the mechanical response of the muscle. As described in [6, 7, 
8], the model includes passive sequential and parallel 
nonlinear spring elements and an active contractile element. 
The scheme is given in Fig. 1. 

 

Fig. 1. Modified Hill muscle model. E1 - stiffness 

coefficient of the series element, E2 - stiffness coefficient 

of the parallel element, η3 - contractile coefficient. 

 

The forces of the series (F1), parallel (F2), and contractile 

(F3) elements satisfy the equation: 

 F =F2 + F3, F = F1,  

where F is a total force in a muscle. 

The total muscle displacement (ΔL) and the displacement of 

corresponding elements (ΔL1, ΔL2, and ΔL3) satisfy the 

equation: 

 ΔL = ΔL1ΔL2ΔL2ΔL3, 

In the research linear model was used. The muscle elastic 
element is under a tension of an external force. Since the 
length of the muscle must be constant the stretching of the 
series element can only take place with equal contraction of 
the contractile element. Thus, the contraction of the muscle 
triggers the contractile element, so the control (neuron spike) 
will be applied to it. 

C. Network architecturel 

The task of a neural network is to determine the control 
function to realize the muscle tone. In this case, the muscle 
maintains a given lengthening. To design the topology of the 
neural network the biological ones were used. The topology 
of the proposed network was based on architecture from [9, 
10, 11] and presented in Fig. 2. The network consists of one 
motor neuron with inhibitory feedback, and one excitatory 
sensor neuron. 

 

Fig. 2. The topology of the proposed network: the semigreen 
circle is sensor, the green motor neuron, the blue rhombus is 
muscle; excitatory feedbacks marked by arrows, inhibitory 
marked by circles. 

The sensory neuron receives information about the 
muscle stretch. When it reaches a threshold value, the sensor 
neuron generates excitatory signals that come to the motor 
neuron, which is described by the LIF model. The motor 
neuron generates an activation signal to the contractile 
element and an inhibitory signal on himself. Via activation of 
the contractile element the muscle contract and the muscle 
length change. The scheme of the control system is shown in 
Fig .3. 
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Fig. 3. The scheme of the control system: Fextr - external 

tensile force, ΔL – muscle displacement, LIF – motor neuron 
(LIF-model), U -  muscle contract activation signal. 

III. RESULTS 

The following values of macro parameters were used in 
simulation: 

Fextr = 0.2 N, U = {0; 0.08} N, ΔLTHR = -0.05 m. 

In Hill's based model the following parameters were 
used: 

E1 = 10 N/m, E2 = 5 N/m, η3 = 3 N s/m. 

The following synaptic weights for excitatory signal were 
used: 

w 1 = 6.3, w2 = 7.5. 

Fig. 4 shows the muscle elongation under the only 
external force without the control system. It is casual 
oscillation with damping. The results of applying the control 
system are shown in Fig. 5. The muscle elongation maintains 
a given value ΔLTHR. 

As elongation flatten the curve the spikes triggers with a 
constant frequency. It can be concluded that a tone neuro 
pattern appears. However, by changing the value of the 
synaptic weight the behavior of muscle elongation 
fundamentally changes. An oscillation occurs (see Fig. 6). 
Such behavior can be explained by hyperactive reflex. In this 
case, the control system reacts rapidly to little changes in the 
dynamic system. 

 

Fig. 4. The elongation of the muscle without a control 
system. 

 

Fig. 5. The elongation of the muscle with the control system: 
muscle activation spikes are shown in red boxes. Case of 
muscle tone. 

 

Fig. 6. The elongation of the muscle with the control system: 
muscle activation spikes are shown in red boxes. Case of 
hyperactive reflex. 

 

IV. DISCUSSION 

Simulation shows that the control system is sensitive to 
parameters changes. So critical value of wcrit was found (wcrit 
= w1). In the case of we is equal to wcrit the muscle tone 
appears and the muscle length became constant after some 
time. Also, neuron pattern appears with constant frequency. 
In the case of we is less than wcrit the muscle tone appears, but 
the given ΔLTHR elongation does not reach. The neuron 
pattern behavior is the same. In the case of we is more than 
wcrit the muscle's tone has an oscillation behavior. 
Meanwhile, neuron pattern appears as a signal with 
superposition of frequencies. 

The critical value can be understood as a bifurcation 
parameter of the dynamic system. This value can be found 
by analyzing the dynamic system. In this approach, Hill's 
based muscle model can be understood as a dynamic system 
with some frequent signal outupt and inputs. LIF model can 
be treated as a nonlinear frequency changer.  

Сontrariwise from a biological point of view the dynamic 
system should adapt to the environment and respond to it. It 
means that superstructure should be added to the proposed 
control system. And the purpose of the superstructure is to 
analyze the quality of the dynamic response and change the 
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given list of the system macroparameters. This superstructure 
can be understood as part of the central neuron system, 
which manages the motion patterns. Since the same muscle 
can produce different types of functions: contraction, 
excitation-contraction coupling, muscle movement, 
proprioception; it can be concluded that different patterns 
exist. Potentially, they can be described by one topology with 
a list of system macroparameters or by a topologically 
complex system with a number of inputs activating different 
muscle functions. 

V. CONCLUSION 

The article presents a model to simulate muscle tone. The 
task of maintaining the muscle at a given length under the 
influence of an external tensile force was considered. The 
control system was designed. A LIF model of a spiking 
neural network was used. Excitatory signal was produced by 
muscle activity. Inhibitor signal was produced by motor 
neuron activity. Numerical simulations were performed and 
analyzed. A critical value of synapse weight was found. This 
value can be understood as a bifurcation parameter of the 
dynamic system. 
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