
03025

Designing a system call analyser for system calls
used inside Linux containers

Marat Nuriev1,2*, Rimma Zaripova1, Ramilya Tazieva3, Shamil Gazetdinov4, and Marat
Valiev5

1Kazan State Power Engineering University, Kazan, Russia
2Kazan National Research Technical University named after A. N. Tupolev – KAI, Kazan, Russia
3Kazan National Research Technological University, Kazan, Russia
4Kazan State Agrarian University, Kazan, Russia
5Kazan (Volga region) Federal University, Kazan, Russia

Abstract. This paper examines the development of a system call analyzer
used within Linux containers, aiming to ensure security and enhance the
performance of containerized applications. Containerization has become a
vital aspect of modern software development and operations, enabling
efficient isolation of applications and their dependencies. However,
selecting a reliable image and analyzing vulnerabilities remain crucial tasks.
The focus is on utilizing the ptrace system call and Berkeley Packet Filter
technology to monitor and analyze system calls within containers. The
developed system call detector interacts with the operating system kernel
and the Podman container management tool, ensuring interception and
filtration of system calls with minimal impact on container performance. The
system's architecture comprises a detector, server, and client components,
ensuring modularity, testability, extensibility, and flexible development.
The server component processes requests from clients and detectors,
manages data, and provides appropriate responses. The client component is
a web interface for system interaction. The paper also discusses the
functional and non-functional requirements of the system, the
implementation tools in Go and JavaScript languages using ReactJS and
TypeScript libraries, and the advantages of a multi-layered architecture. The
developed system call analyzer contributes to the improved security and
performance of containerized applications, as evidenced by testing and
system operation results.

1 Introduction

In the modern world, virtualization has become an integral part of software development and
operations. One of the most popular approaches to virtualization is containerization,
particularly using Linux containers [1,2]. These containers effectively isolate applications
and their dependencies, providing maximum flexibility and scalability.

* Corresponding author: marat_nu1@mail.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

Containers are created from templates called images. Selecting a reliable image is a
crucial step in project deployment. The quality and reliability of the image directly impact
the application's functionality and security [3,4]. An incorrect image choice can lead to
various issues and vulnerabilities that may negatively affect system performance and
security.

Analyzing a container is a vital step in the development and operation of applications
within a containerized environment. This process provides information about the container's
configuration, status, and resources, as well as security checks and optimizations. To ensure
container security, a vulnerability analysis is necessary. This includes scanning the container
image for known vulnerabilities, checking the container's security settings, and applying
necessary patches and updates [5].

However, access to source code for analysis is not always available. In such cases,
analyzing a running container by monitoring its system calls is an alternative. This method
provides information about the processes [6,7], network interactions, and file system
activities within the containers.

The aim of this work is to develop a system call analyzer for use within Linux containers.
By utilizing programming languages and operating system tools, it is essential to monitor and
analyze system calls within containers to gather information about their interaction with the
operating system kernel [8].

Key functional requirements of the system include authorization, adding new system
users, restricting user access rights, managing projects, detectors, and scans, detecting system
calls within containers, and filtering system calls based on various criteria.

Additionally, there are non-functional requirements [9,10]. The system should minimally
impact the performance of Linux containers, support various Linux distributions used for
containerization, handle a large volume of system calls in real-time, and possess a user-
friendly interface that is easy to configure and use.

2 Ptrace system call and Berkeley Packet Filter technology

Ptrace is a system call available in some Unix-like systems such as Linux, FreeBSD, and
Mac OS X, which allows for tracing or debugging a selected process. It provides extensive
capabilities for monitoring operations [11,12], including stopping the process, altering its
state, reading and writing its memory, registers, and other attributes. By using ptrace, it is
possible to intercept system calls, modify their parameters, and return values, but this requires
meticulous setup and handling of each kernel call. The prototype of the ptrace function is as
follows: `long ptrace(enum __ptrace_request request, pid_t pid, void *addr, void *data);`,
where `pid` is the identifier of the process being traced, and `addr` and `data` depend on the
`request` [13,14]. Tracing can be initiated in two ways: attaching to an already running
process using `PTRACE_ATTACH` or starting it with `PTRACE_TRACEME`. The use of
ptrace can be relatively slow due to the significant amount of context switching between user
space and kernel space introduced by this method [15].

BPF (Berkeley Packet Filter) is a mechanism built into the Linux kernel designed for
packet filtering and analysis at the kernel level. BPF allows embedding user code into the
kernel, enabling secure low-level operations in the network stack without root privileges.
Developed at the University of Berkeley in 1992, BPF has become a popular tool in Unix-
like operating systems [16,17]. While primarily used for processing network packets,
implementing network services, and analyzing network activity, BPF can also be utilized for
monitoring and analyzing system calls, processes, and other low-level events [18,19].

The key characteristics and principles of BPF include flexibility, high performance,
versatility, and extensibility. BPF's flexibility allows user code to be embedded into the
operating system kernel [20], enabling real-time operations on packets, analyzing and

2

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

Containers are created from templates called images. Selecting a reliable image is a
crucial step in project deployment. The quality and reliability of the image directly impact
the application's functionality and security [3,4]. An incorrect image choice can lead to
various issues and vulnerabilities that may negatively affect system performance and
security.

Analyzing a container is a vital step in the development and operation of applications
within a containerized environment. This process provides information about the container's
configuration, status, and resources, as well as security checks and optimizations. To ensure
container security, a vulnerability analysis is necessary. This includes scanning the container
image for known vulnerabilities, checking the container's security settings, and applying
necessary patches and updates [5].

However, access to source code for analysis is not always available. In such cases,
analyzing a running container by monitoring its system calls is an alternative. This method
provides information about the processes [6,7], network interactions, and file system
activities within the containers.

The aim of this work is to develop a system call analyzer for use within Linux containers.
By utilizing programming languages and operating system tools, it is essential to monitor and
analyze system calls within containers to gather information about their interaction with the
operating system kernel [8].

Key functional requirements of the system include authorization, adding new system
users, restricting user access rights, managing projects, detectors, and scans, detecting system
calls within containers, and filtering system calls based on various criteria.

Additionally, there are non-functional requirements [9,10]. The system should minimally
impact the performance of Linux containers, support various Linux distributions used for
containerization, handle a large volume of system calls in real-time, and possess a user-
friendly interface that is easy to configure and use.

2 Ptrace system call and Berkeley Packet Filter technology

Ptrace is a system call available in some Unix-like systems such as Linux, FreeBSD, and
Mac OS X, which allows for tracing or debugging a selected process. It provides extensive
capabilities for monitoring operations [11,12], including stopping the process, altering its
state, reading and writing its memory, registers, and other attributes. By using ptrace, it is
possible to intercept system calls, modify their parameters, and return values, but this requires
meticulous setup and handling of each kernel call. The prototype of the ptrace function is as
follows: `long ptrace(enum __ptrace_request request, pid_t pid, void *addr, void *data);`,
where `pid` is the identifier of the process being traced, and `addr` and `data` depend on the
`request` [13,14]. Tracing can be initiated in two ways: attaching to an already running
process using `PTRACE_ATTACH` or starting it with `PTRACE_TRACEME`. The use of
ptrace can be relatively slow due to the significant amount of context switching between user
space and kernel space introduced by this method [15].

BPF (Berkeley Packet Filter) is a mechanism built into the Linux kernel designed for
packet filtering and analysis at the kernel level. BPF allows embedding user code into the
kernel, enabling secure low-level operations in the network stack without root privileges.
Developed at the University of Berkeley in 1992, BPF has become a popular tool in Unix-
like operating systems [16,17]. While primarily used for processing network packets,
implementing network services, and analyzing network activity, BPF can also be utilized for
monitoring and analyzing system calls, processes, and other low-level events [18,19].

The key characteristics and principles of BPF include flexibility, high performance,
versatility, and extensibility. BPF's flexibility allows user code to be embedded into the
operating system kernel [20], enabling real-time operations on packets, analyzing and

filtering them based on various criteria such as destination and source addresses, protocols,
ports, and other parameters. BPF's high performance stems from its operation at a very low
level in the kernel, allowing for efficient and fast packet processing, monitoring, analyzing,
and altering network traffic flow with minimal delay and system load. BPF has numerous
applications, including gathering network traffic statistics, packet filtering based on specific
rules, debugging network issues, detecting and preventing network attacks, implementing
network services, and more [21,22]. BPF can also be used for monitoring system calls and
other kernel-level events. BPF's extensibility is supported through mechanisms for loading
and executing programs in the kernel, enabling the creation and integration of custom
filtering and analysis scripts. Libraries and frameworks, such as eBPF (extended BPF),
provide additional capabilities for working with BPF and developing more complex tools and
applications. BPF typically performs operations much faster than ptrace due to its ability to
safely execute code in the kernel and work directly with network packets and other system
data structures [23].

3 System architecture

The detector is a standalone application responsible for launching a container, detecting
system calls within it, and transmitting the information to a server. It interacts with the
operating system kernel and the Podman container management tool, utilizing eBPF
technology to intercept system calls [24,25].

The detector comprises a core and a WebSocket client. The core includes three modules:
`container manager`, `pty reader`, and `eBPF` module. The `container manager` handles the
lifecycle of containers, including their creation, start, stop, and removal. The `pty reader`
processes the output from the containers, while the `eBPF` module intercepts and filters
system calls within the containers [26,27].

The architecture of the detector allows it to operate in three modes:
1) Intercepting all system calls.
2) Launching a container and intercepting system calls within the container.
3) Connecting to a server for managing the detector.

This design enables the detector to effectively interact with containers, collecting and
analyzing data on system calls, thereby enhancing the security and performance of
containerized applications (Figure 1).

Fig. 1. Diagram of interaction between the detector and the OS.

3

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

Figure 2 shows the detector architecture.

Fig. 2. Detector architecture.

The server component of the application is responsible for processing requests from
clients and detectors, managing data, and providing appropriate responses. It interacts with a
database for storing and retrieving information. The server architecture is divided into four
layers. The model layer represents the entities and domain logic of the application, defining
and managing the application's data, including business rules and validations. The repository
layer provides an interface for accessing data and interacting with the model layer,
encapsulating the implementation details of data storage, such as working with databases or
other data sources [28,29]. The service layer offers business logic and operations for the
application, utilizing the repository layer for data access and the model layer for data
operations. The handler layer handles incoming requests and sends responses, including
authentication, authorization, and error handling logic [30].

The interaction between layers works as follows: the handler calls the service, which
interacts with the repository for data access. The repository works with the model to perform
data operations. The model returns data to the repository, which then returns it to the service.
The service sends the data back to the handler, which then sends a response to the client.

This multi-layered architecture has several advantages, including modularity, testability,
extensibility, flexibility, scalability, reusability, and reduced complexity. Modularity makes
the application more manageable, allowing new features to be added or existing ones
modified without rewriting the entire codebase. Testability is enhanced as layers can be tested
independently [31,32]. Extensibility allows for the easy addition of new layers or
functionalities as the application grows without affecting existing code. Flexibility is ensured
by separating business logic from data layers, allowing easy switching of databases or storage
solutions without rewriting the application code. Scalability enables independent scaling of
different layers, allowing the application to scale according to requirements. Reusability of
business logic and data access functions saves development time and effort. Reduced
complexity makes the code more understandable and manageable by dividing the application
into layers [33,34].

Figure 3 illustrates the server architecture.

4

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

Figure 2 shows the detector architecture.

Fig. 2. Detector architecture.

The server component of the application is responsible for processing requests from
clients and detectors, managing data, and providing appropriate responses. It interacts with a
database for storing and retrieving information. The server architecture is divided into four
layers. The model layer represents the entities and domain logic of the application, defining
and managing the application's data, including business rules and validations. The repository
layer provides an interface for accessing data and interacting with the model layer,
encapsulating the implementation details of data storage, such as working with databases or
other data sources [28,29]. The service layer offers business logic and operations for the
application, utilizing the repository layer for data access and the model layer for data
operations. The handler layer handles incoming requests and sends responses, including
authentication, authorization, and error handling logic [30].

The interaction between layers works as follows: the handler calls the service, which
interacts with the repository for data access. The repository works with the model to perform
data operations. The model returns data to the repository, which then returns it to the service.
The service sends the data back to the handler, which then sends a response to the client.

This multi-layered architecture has several advantages, including modularity, testability,
extensibility, flexibility, scalability, reusability, and reduced complexity. Modularity makes
the application more manageable, allowing new features to be added or existing ones
modified without rewriting the entire codebase. Testability is enhanced as layers can be tested
independently [31,32]. Extensibility allows for the easy addition of new layers or
functionalities as the application grows without affecting existing code. Flexibility is ensured
by separating business logic from data layers, allowing easy switching of databases or storage
solutions without rewriting the application code. Scalability enables independent scaling of
different layers, allowing the application to scale according to requirements. Reusability of
business logic and data access functions saves development time and effort. Reduced
complexity makes the code more understandable and manageable by dividing the application
into layers [33,34].

Figure 3 illustrates the server architecture.

Fig. 3. Server architecture.

The client side of the application will be presented as a web interface consisting of several
web pages. These pages provide a user interface for interacting with the service and its
functionality. The client-side architecture will be divided into three layers: the router layer,
the component layer, and the service layer [35,36].

The router layer manages navigation and routing within the application, responsible for
displaying the appropriate component or page based on the URL. The component layer
represents a logically isolated part of the user interface, which has its own state, logic, and
visual representation. Components can be reused in various parts of the application. The
service layer encapsulates business logic and operations that are not tied to a specific
component, and is used for data access, performing network requests, or providing other
auxiliary functions for the components [37,38].

The interaction between layers works as follows: the router determines which
components to display based on the URL. Components interact with services to perform
operations and access data. Services provide the necessary data and functionality for the
components to display and interact with the user.

This multi-layered architecture allows for the separation of different aspects of the
application, making it more modular, testable, and extensible. Such a structure ensures
flexibility and convenience in developing and maintaining the client side of the application,
allowing for easy addition of new features and components, as well as the maintenance and
updating of existing ones [39,40].

Figure 4 illustrates the client architecture.

5

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

Fig. 4. Client architecture.

4 Implementation toolkit

The Go programming language was chosen for developing the detector and server
components. Go is a compiled, statically-typed programming language developed by Google,
known for its high performance, scalability, and security [41,42]. Key features of Go include
concurrency, built-in support for parallelism and synchronization, flexible typing, a rich
standard library, portability, and simplicity. Concurrency supports parallel programming
with lightweight threads, making it ideal for multicore systems. Safety is ensured by
automatic garbage collection and built-in support for parallelism, reducing the risks
associated with multithreaded programming [43,44]. Flexible typing allows for abstracting
functionality and increasing code reuse. The standard library provides functionality for
networking, data processing, parallel programming, and more. Go's portability lies in its
cross-platform nature and the ability to compile into a single executable file, simplifying
application deployment. Go's simplicity is achieved through concise and easy-to-learn syntax
[45,46]. Code embedded in the Linux kernel is written in the same programming language as
the system – Clang.

For developing the client side of the web system, the ReactJS and TypeScript libraries of
the JavaScript programming language were selected. ReactJS is an open-source JavaScript
library for building user interfaces, created by Facebook. Introduced in 2013, ReactJS quickly
gained popularity due to its performance [47,48], flexibility, and efficient use. Key features
of ReactJS include its component-based architecture and virtual DOM. The component-based
architecture allows the creation of complex user interfaces from reusable and isolated
components. The virtual DOM speeds up updates and rendering of the user interface by
updating only the parts that have changed [49,50].

TypeScript is an open-source programming language developed and maintained by
Microsoft. It extends standard JavaScript by adding static typing and other features.
TypeScript's static typing allows defining data types for variables during code writing, which
helps identify and fix errors at an early stage [51,52]. TypeScript is used for creating large,
complex, and reliable applications, such as full-featured websites, mobile applications, and
server-side systems.

Thus, the chosen tools and programming languages ensure high performance, scalability,
and reliability of the developed application [53,54], as well as convenience and flexibility in
the development and maintenance of the system [55].

6

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

Fig. 4. Client architecture.

4 Implementation toolkit

The Go programming language was chosen for developing the detector and server
components. Go is a compiled, statically-typed programming language developed by Google,
known for its high performance, scalability, and security [41,42]. Key features of Go include
concurrency, built-in support for parallelism and synchronization, flexible typing, a rich
standard library, portability, and simplicity. Concurrency supports parallel programming
with lightweight threads, making it ideal for multicore systems. Safety is ensured by
automatic garbage collection and built-in support for parallelism, reducing the risks
associated with multithreaded programming [43,44]. Flexible typing allows for abstracting
functionality and increasing code reuse. The standard library provides functionality for
networking, data processing, parallel programming, and more. Go's portability lies in its
cross-platform nature and the ability to compile into a single executable file, simplifying
application deployment. Go's simplicity is achieved through concise and easy-to-learn syntax
[45,46]. Code embedded in the Linux kernel is written in the same programming language as
the system – Clang.

For developing the client side of the web system, the ReactJS and TypeScript libraries of
the JavaScript programming language were selected. ReactJS is an open-source JavaScript
library for building user interfaces, created by Facebook. Introduced in 2013, ReactJS quickly
gained popularity due to its performance [47,48], flexibility, and efficient use. Key features
of ReactJS include its component-based architecture and virtual DOM. The component-based
architecture allows the creation of complex user interfaces from reusable and isolated
components. The virtual DOM speeds up updates and rendering of the user interface by
updating only the parts that have changed [49,50].

TypeScript is an open-source programming language developed and maintained by
Microsoft. It extends standard JavaScript by adding static typing and other features.
TypeScript's static typing allows defining data types for variables during code writing, which
helps identify and fix errors at an early stage [51,52]. TypeScript is used for creating large,
complex, and reliable applications, such as full-featured websites, mobile applications, and
server-side systems.

Thus, the chosen tools and programming languages ensure high performance, scalability,
and reliability of the developed application [53,54], as well as convenience and flexibility in
the development and maintenance of the system [55].

5 Conclusion

This work presents the development of a system call analyzer project used within Linux
containers. The primary goal of the project is to ensure the security and enhance the
performance of containerized applications by analyzing system calls within containers. The
implementation of the analyzer utilizes ptrace and Berkeley Packet Filter technologies,
enabling efficient monitoring and filtering of system calls at the operating system kernel
level.

As a result of the project, a system was developed that includes a system call detector and
a server component for data processing and storage. The detector interacts with the operating
system kernel and the Podman container management tool, using eBPF technology to
intercept system calls. The server component manages data and interacts with clients through
a web interface.

The advantages of the system's multi-layered architecture include modularity, testability,
extensibility, flexibility, and scalability. This design allows for easy addition of new features
and components, as well as maintenance and updates of existing ones.

Thus, the developed system call analyzer provides efficient data collection and analysis,
contributing to the improved security and performance of containerized applications.

References

1. L. Quan, Z. Wang, X. Liu, 2016 International Conference on Identification,
Information and Knowledge in the Internet of Things (IIKI), Beijing, China, 1-3 (2016)

2. K. Kumar, et al., 15th International Conference on Materials Processing and
Characterization (ICMPC 2023), E3S Web of Conferences 430, 01200 (2023)

3. M. Nuriev, M. Lapteva, E3S Web of Conferences 541, 02003 (2024)
4. G. R. Mingaleeva, M. F. Nabiullina, D. N. Pham, 2023 International Conference on

Industrial Engineering, Applications and Manufacturing (ICIEAM), 233-238 (2023)
5. Y. Smirnov, A. Kalyashina, R. Zaripova, International Russian Automation

Conference (RusAutoCon), 913-917 (2022)
6. K. M. Vafaeva, N. Duklan, C. Mohan, Y. Kumar, S. Ledalla, International Conference

on Recent Trends in Biomedical Sciences (RTBS-2023), BIO Web of Conferences 86,
01112 (2024)

7. K. M. Vafaeva, R. Zegait, Research on Engineering Structures and Materials 10(2),
559-621 (2024)

8. S. Lyasheva, R. Safina, M. Shleymovich, 2023 International Conference on Industrial
Engineering, Applications and Manufacturing, 797-802 (2023)

9. K. M. Vafaeva, M. Dhyani, P. Acharya, K. Parik, S. Ledalla, International Conference
on Recent Trends in Biomedical Sciences (RTBS-2023), BIO Web of Conferences 86,
01111 (2024)

10. R. M. Shakirzyanov, A. A. Shakirzyanova, 2021 International Russian Automation
Conference (RusAutoCon), 714-718 (2021)

11. Y. I. Soluyanov, A. I. Fedotov, D. Y. Soluyanov, A. R. Akhmetshin, IOP Conference
Series: Materials Science and Engineering 860(1), 012026 (2020)

12. A. Kalyashina, Y. Smirnov, R. Zaripova, Finance, Economics, and Industry for
Sustainable Development. ECOOP 1987. Springer Proceedings in Business and
Economics. Springer, 609-618 (2024)

7

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

13. L. V. Plotnikova, R. R. Giniyatov, S. Y. Sitnikov, M. A. Fedorov, R. S. Zaripova, IOP
Conference Series: Earth and Environmental Science 288, 012069 (2019)

14. M. Tyurina, A. Porunov, A. Nikitin, R. Zaripova, G. Khamatgaleeva, Lecture Notes in
Mechanical Engineering, 391-402 (2022)

15. M. V. Pavlov, et al., International Conference on “Advanced Materials for Green
Chemistry and Sustainable Environment” (AMGSE-2024), E3S Web of Conferences
511, 01036 (2024)

16. Z. Gizatullin, R. Gizatullin, M. Nuriev, 2024 International Russian Smart Industry
Conference (SmartIndustryCon), Sochi, Russian Federation, 356-360 (2024)

17. M. Nuriev, A. Kalyashina, Y. Smirnov, G. Gumerova, G. Gadzhieva, E3S Web of
Conferences 515, 04008 (2024)

18. R. F. Gibadullin, N. S. Marushkai, 2021 International Conference on Industrial
Engineering, Applications and Manufacturing (ICIEAM), 404-409 (2021)

19. K. M. Vafaeva, et al., 15th International Conference on Materials Processing and
Characterization (ICMPC 2023), E3S Web of Conferences 430, 01191 (2023)

20. R. F. Gibadullin, I. S. Vershinin, R. Sh. Minyazev, 2017 International Conference on
Industrial Engineering, Applications and Manufacturing (ICIEAM), 1-6 (2017)

21. B. R. Reddivari, et al., Cogent Engineering 11 (1), 2343586 (2024)
22. K. M. Vafaeva, et al., International Conference on “Advanced Materials for Green

Chemistry and Sustainable Environment” (AMGSE-2024), E3S Web of Conferences
511, 01008 (2024)

23. R. F. Gibadullin, G. A. Baimukhametova, M. Yu. Perukhin, 2019 International
Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 1-7
(2019)

24. G. R. Rakhmatullina, E. A. Pankova, O. V. Fukina, M. Khayytov, L. V. Chapaeva,
Journal of Physics: Conference Series 2270(1), 012056 (2022)

25. V. A. Gerasimov, M. G. Nuriev, D. A. Gashigullin, 2022 International Russian
Automation Conference (RusAutoCon), 75-79 (2022)

26. Z. M. Gizatullin, R. M. Gizatullin, M. G. Nuriev, 2020 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), 120-123
(2020)

27. D. F. Karpov, et al., International Conference on “Advanced Materials for Green
Chemistry and Sustainable Environment” (AMGSE-2024), E3S Web of Conferences
511, 01010 (2024)

28. E. Gracheva, M. Toshkhodzhaeva, O. Rahimov, S. Dadabaev, D. Mirkhalikova, S.
Ilyashenko, V. Frolov, International Journal of Technology 11, 8 (2020)

29. M. Shakirzyanov, R. Gibadullin, M. Nuriyev, E3S Web of Conferences 419, 02029
(2023)

30. T. Petrov, A. Safin, E3S Web of Conferences 178, 01016 (2020)
31. J. Yoqubjonov, R. Gibadullin, M. Nuriev, E3S Web of Conferences 431, 07011 (2023)
32. I. Viktorov, R. Gibadullin, E3S Web of Conferences 431, 05012 (2023)
33. R. F. Gibadullin, I. S. Vershinin, M. M. Volkova, 2020 International Multi-Conference

on Industrial Engineering and Modern Technologies (FarEastCon), 1-7 (2020)
34. R. F. Gibadullin, M. Yu. Perukhin, B. I. Mullayanov, 2020 International Multi-

Conference on Industrial Engineering and Modern Technologies (FarEastCon), 1-6
(2020)

8

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

13. L. V. Plotnikova, R. R. Giniyatov, S. Y. Sitnikov, M. A. Fedorov, R. S. Zaripova, IOP
Conference Series: Earth and Environmental Science 288, 012069 (2019)

14. M. Tyurina, A. Porunov, A. Nikitin, R. Zaripova, G. Khamatgaleeva, Lecture Notes in
Mechanical Engineering, 391-402 (2022)

15. M. V. Pavlov, et al., International Conference on “Advanced Materials for Green
Chemistry and Sustainable Environment” (AMGSE-2024), E3S Web of Conferences
511, 01036 (2024)

16. Z. Gizatullin, R. Gizatullin, M. Nuriev, 2024 International Russian Smart Industry
Conference (SmartIndustryCon), Sochi, Russian Federation, 356-360 (2024)

17. M. Nuriev, A. Kalyashina, Y. Smirnov, G. Gumerova, G. Gadzhieva, E3S Web of
Conferences 515, 04008 (2024)

18. R. F. Gibadullin, N. S. Marushkai, 2021 International Conference on Industrial
Engineering, Applications and Manufacturing (ICIEAM), 404-409 (2021)

19. K. M. Vafaeva, et al., 15th International Conference on Materials Processing and
Characterization (ICMPC 2023), E3S Web of Conferences 430, 01191 (2023)

20. R. F. Gibadullin, I. S. Vershinin, R. Sh. Minyazev, 2017 International Conference on
Industrial Engineering, Applications and Manufacturing (ICIEAM), 1-6 (2017)

21. B. R. Reddivari, et al., Cogent Engineering 11 (1), 2343586 (2024)
22. K. M. Vafaeva, et al., International Conference on “Advanced Materials for Green

Chemistry and Sustainable Environment” (AMGSE-2024), E3S Web of Conferences
511, 01008 (2024)

23. R. F. Gibadullin, G. A. Baimukhametova, M. Yu. Perukhin, 2019 International
Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), 1-7
(2019)

24. G. R. Rakhmatullina, E. A. Pankova, O. V. Fukina, M. Khayytov, L. V. Chapaeva,
Journal of Physics: Conference Series 2270(1), 012056 (2022)

25. V. A. Gerasimov, M. G. Nuriev, D. A. Gashigullin, 2022 International Russian
Automation Conference (RusAutoCon), 75-79 (2022)

26. Z. M. Gizatullin, R. M. Gizatullin, M. G. Nuriev, 2020 IEEE Conference of Russian
Young Researchers in Electrical and Electronic Engineering (EIConRus), 120-123
(2020)

27. D. F. Karpov, et al., International Conference on “Advanced Materials for Green
Chemistry and Sustainable Environment” (AMGSE-2024), E3S Web of Conferences
511, 01010 (2024)

28. E. Gracheva, M. Toshkhodzhaeva, O. Rahimov, S. Dadabaev, D. Mirkhalikova, S.
Ilyashenko, V. Frolov, International Journal of Technology 11, 8 (2020)

29. M. Shakirzyanov, R. Gibadullin, M. Nuriyev, E3S Web of Conferences 419, 02029
(2023)

30. T. Petrov, A. Safin, E3S Web of Conferences 178, 01016 (2020)
31. J. Yoqubjonov, R. Gibadullin, M. Nuriev, E3S Web of Conferences 431, 07011 (2023)
32. I. Viktorov, R. Gibadullin, E3S Web of Conferences 431, 05012 (2023)
33. R. F. Gibadullin, I. S. Vershinin, M. M. Volkova, 2020 International Multi-Conference

on Industrial Engineering and Modern Technologies (FarEastCon), 1-7 (2020)
34. R. F. Gibadullin, M. Yu. Perukhin, B. I. Mullayanov, 2020 International Multi-

Conference on Industrial Engineering and Modern Technologies (FarEastCon), 1-6
(2020)

35. S. N. Cherny, R. F. Gibadullin, 2022 International Conference on Industrial
Engineering, Applications and Manufacturing (ICIEAM), 965-970 (2022)

36. V. A. Raikhlin, I. S. Vershinin, R. F. Gibadullin, Journal of Physics: Conference Series
2096, 012160 (2021)

37. R. F. Gibadullin, I. S. Vershinin, R. Sh. Minyazev, 2018 International Conference on
Industrial Engineering, Applications and Manufacturing (ICIEAM), 1-6 (2018)

38. K. M. Vafaeva, et al., International Conference on “Advanced Materials for Green
Chemistry and Sustainable Environment” (AMGSE-2024), E3S Web of Conferences
511, 01037 (2024)

39. V. A. Raikhlin, R. F. Gibadullin, I. S. Vershinin, Lobachevskii Journal of Mathematics
43(2), 455-462 (2022)

40. G. A. Ovseenko, R. S. Kashaev, O. V. Kozelkov, T. K. Filimonova, T. S. Evdokimova,
A. M. Mardanova, 5th International Youth Conference on Radio Electronics, Electrical
and Power Engineering (REEPE) 5, 1-5 (2023)

41. R. Zaripova, A. Nikitin, Y. Hadiullina, E. Pokaninova, M. Kuznetsov, E3S Web of
Conferences 288, 01072 (2021)

42. V. Brigida, S. Mishulina, G. Stas, Sustainable Development of Mountain Territories
12(1), 18–25 (2020)

43. Z. M. Gizatullin, M. S. Shkinderov, R. R. Mubarakov, Proceedings of the 2022
Conference of Russian Young Researchers in Electrical and Electronic Engineering,
1350-1353 (2022)

44. M. Nuriev, R. Zaripova, O. Yanova, I. Koshkina, A. Chupaev, E3S Web of
Conferences 531, 03022 (2024)

45. A. G. Ilyin, A. S. Mahdi Khafaga, V. Yunusova, 2021 Systems of Signals Generating
and Processing in the Field of on Board Communications, 1-4 (2021)

46. R. Zaripova, M. Kuznetsov, V. Kosulin, M. Perukhin, M. Nuriev, E3S Web of
Conferences 531, 03014 (2024)

47. E. Kozlov, R. Gibadullin, E3S Web of Conferences 474, 02031 (2024)
48. R. M. Petrova, E. Gracheva, 2023 5th International Conference on Control Systems,

Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk,
Russian Federation, 1049-1055 (2023)

49. G. Uteyev, R. F. Gibadullin, 2024 International Russian Smart Industry Conference
(SmartIndustryCon), Sochi, Russian Federation, 350-355 (2024)

50. N. A. Sabirov, R. F. Gibadullin, 2024 International Russian Smart Industry Conference
(SmartIndustryCon), Sochi, Russian Federation, 344-349 (2024)

51. V.S. Brigida, et al., Metallurgist 67, 398–408 (2023)
52. L. Ma, et al., Resources, Conservation & Recycling Advances 23, 200224 (2024)
53. V. Romanovski, et al., Physical and Chemical Aspects of the Study of Clusters

Nanostructures and Nanomaterials 12, 293-309 (2020)
54. C.F. Glover, et al., CORROSION 80 (7), 755–769 (2024)
55. Ho Lun Chan, et al., Journal of The Electrochemical Society 171, 081501 (2024)

9

BIO Web of Conferences 138, 03025 (2024)	 https://doi.org/10.1051/bioconf/202413803025
AQUACULTURE 2024

