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The applications and capabilities of ionic liquids (ILs) have expanded significantly over the past decades. The
introduction of fragments with the required properties into the structure of ILs has led to the appearance of task-
specific ILs. The synthesis of task-specific ILs capable of performing multiple tasks simultaneously is an inter-
esting synthetic challenge. In this paper, we present a series of redox-active task-specific IL and organic salts
based on catechol-containing hydrazones for the first time. The resulting IL and organic salts exhibited two
distinct functionalities, i.e., selective binding of Cu(Il) ions (logK, = 4.13-5.07, 1:1 stoichiometry) and good
redox-activity. Replacement of bromide-anion with bis(trifluoromethanesulfonyl)imide-anion in the synthesized

compounds was found to improve their thermal stability and to decrease the melting point. The findings offer a
foundation for the advancement of innovative electrochemically active devices and sensors, extractants, and

metal ion-sensitive materials.

1. Introduction

Thermal and electrochemical stability, high solvation capacity, and
electrical conductivity of ionic liquids (ILs) have attracted the attention
of researchers for decades. ILs usually consist of an organic cation with
low symmetry and an anion, which can be either organic or inorganic
[1-3]. Among the different types of ILs, the most exciting are task-
specific ionic liquids (TSILs) due to their unique properties, which can
be tuned by changing the combination of cations and anions [4-6].
TSILs have found many applications, e.g., in synthesis [6-8], chiral
chromatography [9-11], creation of solvents with switchable polarity
[12], and energetics [13,14].

Such type of TSILs as redox-active ILs (RAILs) capable of reversible
oxidation and reduction deserves special attention [15-18]. The design
and synthesis of RAILs is realized by introducing an electrochemically
active fragment, e.g., ferrocene [19-22], viologen [22-25],
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hydroquinone [26,27], anthraquinone [28,29], phenothiazine [30-33],
and catechol [34-37], into their structure. RAILs have found applica-
tions in various fields of science and engineering, including the creation
of redox shuttles for lithium-ion batteries, electrochromic devices, and
electrolytes for supercapacitors [15,38-42]. At the same time, the
catechol group is the least investigated redox-active fragment in ionic
liquid structure. Currently, there are only a few examples of low mo-
lecular weight [34] and polymeric [35-37] RAILs with a catechol moi-
ety. Prof. Cheng’s group synthesized an imidazolium ionic liquid
containing a caffeic acid residue as a redox-active fragment [34]. The
authors modified the surface of a screen-printed carbon electrode, which
led to the development of a NADH-sensitive sensor with promising
analytical parameters. Gallastegui et al. obtained the redox-active poly
(ionic liquid) by polymerization of dopamine methacrylate [35]. The
obtained polyionic hydrogel was used for water purification from
organic dyes (Eosin Y, Methylene Blue, and Safranin) and heavy metal
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ions (Cu(II), Co(II), Cr(VI), and As(V)). Patil et al. obtained a series of
poly(ionic liquids) containing catechol fragments by polymerization of
1-vinylimidazole derivatives [36,37]. These poly(ionic liquids) had
impressive energy capacity values and could be used for its storage.
Thus, catechol-containing ionic liquids are promising materials, while
there are no examples of such compounds with multiple properties.

In this work, we present a series of redox-active task-specific ILs
based on catechol-containing hydrazones for the first time. The influ-
ence of the anion on the thermal characteristics of the obtained com-
pounds was studied, and their redox-activity and complexation ability
towards divalent d-metal cations were investigated. The obtained results
can be used for the design and creation of novel extractants, functional
materials, electrochemically active devices and sensors.

2. Materials and methods
2.1. General information

Detailed information on the used reagents and equipment, methods,
synthesis and physical-chemical characterization of the compounds
studied, data processing can be found in the Supplementary Informa-
tion. References [43-63] are also mentioned in the Supplementary
Information.

3. Results and discussion

Quaternary ammonium and imidazolium ions are popular platforms
for the synthesis of ILs [3,64-67]. They have low symmetry and form
steric hindrances to crystallization, which can potentially lower the
melting point of target compounds. Acylhydrazone and catechol frag-
ments can participate in complexation with d-metals as chelate centers
[68-73]. Introduction of these fragments into the structure of target
compounds can lead to their complexation properties. In addition, the
catechol fragment possesses redox-activity that will potentially depend
on complexation. To further lower the melting point, the replacement of
bromide-anion with bis(trifluoromethanesulfonyl)imide-anion
([(CF3S05)>N]~, [NTfy]~, TFSI™) can be used, which also leads to an
increase in the hydrophobicity of the compounds. Fig. 1 presented the
graphical presentation of the synthetic idea for design of redox-active
task-specific ILs based on catechol-containing hydrazones.

3.1. Synthesis of quaternary ammonium and imidazolium
acylhydrazones

The first step in obtaining the target compounds (Scheme 1) was the
synthesis of salts 1a-Br and 1b-Br containing the ester group according
to the literature procedure [44]. Imidazolium salt 1c-Br was obtained by
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another procedure due to the higher yield [44,45]. The second step was
the synthesis of hydrazides 2 with bromide (2-Br) and bis(tri-
fluoromethanesulfonyl)imide (2-TFSI) anions by nucleophilic substitu-
tion reaction. The crucial point of obtaining compounds 2-TFSI is
preliminary anion metathesis. Replacement of Br-anion with TFSI-anion
is important at this stage because isolation of hydrazides or acylhy-
drazones with an individual anion is difficult or impossible after
metathesis. The isolation of esters with individual TFSI-anion is not a
problem. The main advantage of this synthetic procedure is the removal
of by-products and excess hydrazine occurs during solvent removal at
the rotary evaporator. The completeness of the reaction and purity of
obtained hydrazides 2 were verified by 'H NMR spectroscopy. There are
no signals of protons of the ester group and low field shift of the signal of
the acyl methylene group is observed in the 'H NMR spectra of 2-TFSL.
'H NMR spectra of compounds 2-Br and 2-TFSI are identical, which may
indicate the formation of an isolated or solvate-separated ion pair in
solution. Complete replacement of Br-anion with TFSI-anion was
confirmed by negative reaction on silver nitrate.

The final step was the synthesis of target hydrazones 3 by carbonyl
condensation reaction. Hydrazides 2 were refluxed in methanol with
4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and catalytic amounts of
trifluoroacetic acid (1 drop per 15 ml of methanol) for 8 h. Then, the
solvent was evaporated, and the solid residue was washed with diethyl
ether (3 x 10 mL). Finally, white or yellowish products 3 were recrys-
tallized in the mixture of water and methanol (v/v 10:1).

The structure and the composition of obtained compounds 3 was
confirmed by 'H, 13C{'H} NMR, FTIR spectroscopy, ESI high-resolution
mass spectrometry (ESI HRMS) (Figs. S1-S14), elemental analysis and X-
ray crystallography. Table 1 lists the values of the characteristic chem-
ical shifts in the 'H NMR spectra of compounds 3. The proton signals of
the tert-butyl substituents are presented at 1.35-1.48 ppm; signal of
NTCH,CO group is a singlet at 4.14-5.21 ppm. The signal of the proton
bound to the aromatic ring (Ca,H) is observed as a singlet at 6.78-6.88
ppm. The proton signal of the N=CH group is observed as a singlet with a
chemical shift of 9.08-9.58 ppm. Phenolic proton signals are observed at
6.10-8.39 and 12.38-13.67 ppm. The amide proton signal has the
appearance of a broadened singlet at 10.61-12.65 ppm.

Compound 3c-Br is insoluble in chloroform, so the NMR spectra
were registered in DMSO-dg. The 'H NMR spectra of compound 3¢-TFSI
were registered in both CDCl3 and DMSO-d; to allow comparison with
the NMR spectra of both compounds 3a-b and 3c-Br. In the NMR spectra
of compounds 3¢ in DMSO-dg, a doubling of signals is observed. Such
phenomenon is common for this kind of structures [75-77], which is due
to the presence of two conformation isomers E-anti and E-syn in solution
with the first prevailing (Fig. 2). Also, no significant differences between
the chemical shifts are observed when comparing the 'H NMR spectra of
compounds 3c-Br and 3¢-TFSI in DMSO-dg.
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Fig. 1. General synthetic idea for design of the targeted task-specific ILs.
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Scheme 1. Reaction conditions: (i) ethyl bromoacetate, AcOEt; 0-25 °C, 1 d [44]; (ii) ethyl bromoacetate, THF, 0-25 °C, 4 h [45]; (iii) hydrazine hydrate, MeOH,
25 °C, 1 day [74]; (iv) 1) Li[TFSI], H20, 25 °C, 1 h; 2) hydrazine hydrate, MeOH, 25 °C, 1 d [47]; (v) 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde, CF3COOH (1

drop), MeOH, reflux, 8 h.

Table 1

Characteristic chemical shifts (ppm) in the H NMR spectra of compounds 3 (298 K, 400 MHz).

Cationic fragment Solvent Anion N'CH,CO N=CH t-Bu CaH CONH CarOH
3a CDCl3 Br- 4.56 9.56 1.40 6.86 12.61 6.10
1.46 13.59
TFSI™ 4.14 9.08 1.41 6.88 10.66 6.11
12.43
3b Br- 4.51 9.58 1.41 6.86 12.65 6.10
1.48 13.67
TESI™ 4.16 9.09 1.41 6.88 10.71 6.11
12.47
3c* DMSO-dg Br— 5.21 9.20 1.35 6.78 12.45 8.39
1.40 12.57
TFSI™ 5.18 9.15 1.35 6.79 12.32 8.39
1.40 12.56
CDCl3 5.15 9.09 1.39 6.87 10.61 6.08
12.38
" Major (E-anti) conformer.
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Fig. 2. Structures of E-syn and E-anti conformational isomers of compounds 3.

There is no signal duplication in the NMR spectra of compounds 3 in
CDCls, which also confirms the purity and individuality of the obtained
compounds. A significant difference between the spectra of 3-Br and 3-
TFSI compounds in CDCl3 is observed. The signals of protons of
N*CH2CO, CONH, N=CH and phenolic groups undergo an upfield shift

when the Br-anion is replaced by the TFSI-anion. It is assumed that these
changes are caused by the formation of Br---H-N hydrogen bonding,
which can be observed in the case of similar structures [78]. An addi-
tional quartet of CFs-group of the TFSI-anion with chemical shift of
119.5-119.8 ppm and Jcr = 321-322 Hz is observed in the 3C{'H}
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NMR spectra of the 3-TFSI compounds.

The single-crystal XRD method was used to confirm the C=N double
bond configuration (Fig. 3, Table S1). In the case of compound 3b-Br,
triclinic crystals were obtained by crystallization from methanol-water
10:1 system (space symmetry group P-1, cell parameters: a = 8.5095
(4) A, b =11.5764(6) &, c = 16.7766(6) A, & = 88.124(4), p = 77.741
(3), y = 81.375(4), cell volume V = 1596.70(13) A?’). In the case of
compound 3a-Br, monoclinic crystals were obtained by crystallization
from chloroform (space symmetry group P2;/c, cell parameters: a =
16.4669(3) A, b = 17.7909(3) A, ¢ = 10.2139(2) &, a = 90°, p = 95.265
(2), y =90°, cell volume V = 2979.65(9) 10\3). The geometry of the 3a-Br
molecule is consistent with previously published data [75], but the
packing of the molecules in the crystal state is different due to different
conditions of single crystal preparation. According to XRD data, the E-
configuration of the double bond is stabilized by intramolecular
hydrogen bonding between the proton of the phenol group and the ni-
trogen atom of the hydrazone group. Also, the hydrogen bonding be-
tween Br-anion and hydrazide proton is observed, which supports the
hypothesis of formation of the corresponding hydrogen bonding in
solution.

3.2. Thermal properties, viscosity, and water content

The thermal properties of all the obtained compounds were investi-
gated by thermogravimetric (TG) analysis and differential scanning
calorimetry (DSC) (Figs. 3, S15-17). The melting points of compounds 3
determined by the DSC method are given in Table 2. The replacement of
Br-anion by TFSI-anion usually leads to a significant decrease in the
melting point, which can be partially explained by the larger size of
TFSI-anion compared to Br-anion. There is also a hydrogen bonding
effect between Br-anion and the amide proton. Compounds 3b-Br and
3c-Br decomposed at high temperature, but the replacement of Br-anion
with TFSI-anion led to a decrease in melting point to 64 °C (compound
3c-TFSI). Interestingly, the replacement of Br-anion with TFSI-anion in
compound 3a led to an increase in melting point from 153 °C to 184 °C.
The nature of this effect is difficult to explain and needs further inves-
tigation. Thus, compound 3¢-TFSI is an ionic liquid (melting point
below 100 °C).

The TG method was used to study the thermal stability of the ob-
tained compounds (Fig. 4). Compounds 3-Br lost mass unevenly due to
the loss of adsorbed and crystalizing solvent. In the case of compounds
3-TFSI, water adsorption was absent due to the high hydrophobicity of
TFSI-anion. Compounds 3-Br were also found to start decomposing at
much lower temperatures, unlike compounds 3-TFSI. Thus, the
replacement of Br-anion with TFSI-anion in the obtained compounds led

(@)
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Table 2
Melting points of target compounds (°C).

Cationic fragment Melting point, °C

Br- TFSI™
3a 153 184
3b 230* 203
3c 289* 64

" with decomposition

to an improve in their thermal stability.

The next stage of the work was to study the viscosity of IL 3c-TFSI.
Since the complete melting of 3¢-TFSI on the rheometer plate was not
observed up to 100 °C (probably due to the large mass of the sample), a
temperature range of 105-150 °C and a shear rate of 1-10 s~ ! were
chosen (Fig. 5 and Table S2). For all studied temperatures, an insignif-
icant decrease in viscosity with increasing shear rate is observed
(Fig. 5b), indicating the Newtonian character of the flow at these shear
rates. Viscosity significantly decreases with temperature increase, e.g.,
at shear rate 10 s~! viscosity decreases 48 times while heating from 105
up to 150 °C (Fig. 5a).

Water content is known to significantly affect the physical and
chemical properties of ILs [2,3]. The water content was further inves-
tigated by gas chromatography-mass spectrometry (Fig. S37) according
to the literature procedure [79]. IL 3¢-TFSI was found to contain 0.012
wt% (120 ppm or 0.44 mol%) of water.

3.3. Complexation properties

It has been shown previously that hydrazones and Schiff bases can
form stable complexes with d-metal cations, but they are rarely selective
[80-84]. The structure of synthesized compounds 3 contains acylhy-
drazone and catechol fragments capable of complexation with various
metal cations [68-73]. We hypothesized on the basis of our earlier data
on complexation of compounds containing such fragments [80] that
compounds 3 can selectively recognize copper(Il) ions. Thus, the next
stage of the work was to study the complexation properties of com-
pounds 3 with cations of divalent d-elements, i.e., Cu(Il), Zn(II), Ni(II),
and Co(II), by UV-Vis spectroscopy. The UV-Vis spectra of compounds 3
had the same shape with close absorption maxima. The absorption band
at 310 nm was due to the n-n* transition of the hydrazone bond, and the
band at 220 nm was due to the n-n* transition of electrons of the un-
shared electron pair of nitrogen. Initially, the addition of a tenfold excess
of metal chloride solutions to the solutions of compounds 3 was studied.
Significant spectral changes were observed only in the case of copper(Il)

(b)

Fig. 3. ORTEP representation of compound 3b-Br (a) and 3a-Br (b); grey — carbon, blue — nitrogen, red — oxygen, brown — bromine, green — chlorine, white —
hydrogen. Thermal ellipsoids are drawn at 50% probability level, dotted cyan lines show hydrogen bonds. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 4. TG data of compounds 3-Br (a) and 3-TFSI (b) (dynamic argon atmosphere 75 mL/min, heating rate 10 °C/min, temperature range 40-500 °C).
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Fig. 5. Viscosity data for compound 3¢-TFSI: (a) temperature dependence of viscosity (temperature range of 105-150 °C and shear rate of 10 s 1), (b) effect of shear

rate on viscosity.

cation. Fig. 6 and S18-S22 show the UV-Vis spectra of compounds 3
with/without tenfold excess of zinc(II), copper(II), nickel(II), and cobalt
(ID) chloride solutions. A bathochromic shift of the absorption band at
220 nm and 310 nm to the region of 235 nm and 325 nm, respectively,
was observed with addition of copper(II) ions. A new broad absorption
band at 400 nm also appeared. The absorption band at 270 nm was due

1.4

3c-Br + CoCl,
3c¢-Br + CuCl,
3c¢-Br + NiCl,
3c-Br + ZnCl,
3c-Br

1.2 4

1.0 41|

0.8 +
<
0.6 1
0.4
0.2 1
0.0 T T T T \I 1
200 250 300 350 400 450 500
Wavelength (nm)

Fig. 6. UV-Vis absorption spectra of compound 3c-Br without (black) and with
tenfold excess of zinc(II) (cyan), nickel(II) (green), copper(Il) (blue) and cobalt
(ID) (red) chlorides (MeOH, Czc.pr = 33.3 pM, Cy = 333 pM, 298 K). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

to the excess of copper chloride and corresponded to the absorption
maximum of copper(Il) chloride solution in methanol.

Next, the isomolar series method was used to establish the stoichi-
ometry of the complexes. Figs. 7a and S23-S25 showed the Job’s plot
upon addition of CuCl; solution in methanol. The maximum value of the
molar fraction was ~0.5, corresponding to the 1:1 stoichiometry of the
complex. The binding constants were determined by spectrophotometric
titration of the obtained compounds with Cu(Il) solution (Figs. 7b and
$268-528). Calculation of binding constants from the results of spec-
trophotometric titration and additional verification of stoichiometry
were carried out using the Bindfit program [52,53] (Figs. S29-31). The
copper(Il) binding constants of compounds 3 were summarized in
Table 3. Based on the results obtained, it can be concluded that imida-
zolium derivatives 3¢ had binding constants an order of magnitude
lower than 3a and 3b derivatives. This can be explained by the different
inductive effect of the imidazolium from trialkylammonium group, as
well as by the more rigid structure, which creates steric hindrance
during complexation.

3.4. Quantum chemical calculations

Based on literature data for similar compounds [68,85-87] and Job’s
plots, a mechanism of complexation was suggested (Scheme 2). Further,
to confirm the proposed mechanism of complexation, quantum chemical
calculations were performed using the DFT method at the B3LYP/def2-
TZVPP level. Optimized structures in solution of probable copper(II)
complexes with compounds 3 were shown in Figs. 8a, S32a, and S33a.
The coordinated atoms formed a distorted square pyramid structure
with tridentate coordination of ligands. The distances between Cu(II)
and chlorine ion were long enough and in solution a chlorine ion can be
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200 250 300 350
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Fig. 7. (a) Job’s plot of compound 3a-Br with Cu(Il) ions in MeOH (x;, — molar fraction of ligand, x); — molar fraction of Cu(Il) ions, A — experimental absorbance
value, A;, — absorbance of ligand with x;, = 1, Ay — absorbance of Cu(Il) ions with xy = 1), (b) spectrophotometric titration of compound 3a-Br (30 pM) with Cu(I)

(0-30 pM) (MeOH, 298 K).

Table 3
Copper(II) binding constants (K},) of compounds 3 and their logarithms (1ogKy,)
calculated using Bindfit.

Anion Kp, M~ (logKy)

3a 3b 3c
Br~ 1.09 x 10° (5.04) 1.93 x 10 (4.28) 1.36 x 10 (4.13)
TFSI™ 1.04 x 10° (5.02) 1.16 x 10° (5.07) 2.04 x 10* (4.31)

replaced by methanol molecule due to usually high ligand exchange rate
observed for Cu(Il) [88]. The largest bond length was observed for axial
methanol molecule (~2.5 1°\). To confirm formation of such complexes in
solution, the UV-Vis spectra were computed by TD-DFT method. The
calculated and experimental UV-Vis spectra were shown in Figs. 7b,
$32b, and S33b. The calculated UV-Vis spectra very well described the

R=Et;N' —a OH
BuN'_b Ar o HO (-Bu
H3C\N®N —¢ RJI\N,N\
H -Bu

An=Br or TFSI 3

position of the main absorption peak at 325 nm, and good correspon-
dence was also observed for line with smaller intensity at 383 nm. Thus,
we can conclude that the obtained agreement between the experimental
and theoretical spectra confirmed the formation of computed complexes
in methanol solution.

3.5. Redox-activity

Next step of this work was the evaluation of electrochemical activity
of compounds 3 by cyclic voltammetry. According to literature, catechol
derivatives can be oxidized in one-stage two-electron process in aqueous
[89,90], aqueous-organic [91,92], and organic media [93,94]. Never-
theless, the electrochemical behavior of these compounds is strongly
depended on many factors such as protonation state of molecule, the
presence of inter- and/or intramolecular hydrogen bonds, solvent and
substituents nature, etc. Two irreversible and quasi-reversible one-

Scheme 2. Suggested mechanism of [CuLCIMeOH] complex formation.

(a)

O/}j{;/ 0 -Bu
CuCl, MeOH Y
- AnH, -HCI R\)\N'N\
t-Bu
[CuLCIMeOH]
(b)
experiment
—— TD-DFT

Intensity

1
T T T T N
200 250 300 350 400 450 500

Wavelength (nm)

Fig. 8. (a) Structure of Cu(II) complex of 3b optimized on the B3LYP/def2-TZVPP level, accounting for solvent effects in the C-PCM model and dispersion correction
(D3BJ), (b) experimental (red line) and calculated (blue sticks and line) UV-Vis spectra (intensities and broadened lines) for Cu(Il) complex of 3b in MeOH. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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electron oxidation steps on voltammograms were previously obtained in
organic solvents for some catechols bearing the heterocyclic imidazole
and aldimine fragment [95,96]. Strong intramolecular hydrogen bond in
salicylaldimine fragment was described as the reason of this difference.

Cyclic voltammograms of compounds 3 demonstrated rich electro-
chemical behavior for compounds 3-Br. Three oxidation and one
reduction peaks were obtained on cyclic voltammograms of compound
3a-Br (Fig. 9). All the voltammetric peaks were electrochemically irre-
versible. Cyclic voltammograms were recorded in different potential
ranges to differentiate the nature of the peaks obtained. No peaks were
obtained between -200 mV and 600 mV (pink curve in Fig. 8), which
indicated the absence of the oxidized form of the compound. First
oxidation peak was registered at ~770 mV, and reduction peak was also
obtained on backward scan region at ~160 mV (vs. Ag/AgCl, 1 M NaCl).
Further widening of potential window has led to the appearance of two
additional irreversible anodic peaks at 1050 mV and 1750 mV, respec-
tively. It is well-known fact that the Br-anions are electroactive species
and undergo the electrooxidation in acetonitrile with the formation of
bromine and Brs-anions which are capable of electroreduction [97,98].
To evaluate the influence of bromide, the consecutive addition of tet-
rabutylammonium bromide (TBAB) followed by cyclic voltammograms
recording was used (curves from blue to olive in Fig. 8). Changes in
TBAB concentration from O to 1 mM have led to increasing the first
oxidation and reduction peaks on voltammograms. This indicated the
interfering influence of Br-anion on electrochemistry of compounds 3.
Similar behavior was registered for compounds 3b-Br and 3c-Br also
containing Br-anion (Figs. S34 and S35).

Bromide-anions demonstrated two anodic peaks on voltammogram
under chosen experimental conditions, and second one was overlapped
with anodic peak at 1050 mV mentioned above. Also, the addition of
compound 3a-TFSI that did not contain Br-anions to the TBAB solution
caused the cathodic current increasing (Fig. S36). This can be explained
by the merging of TBAB and 3a-TFSI cathodic signals. Electrochemical
study of compounds 3-TFSI made it possible to distinguish catechol
voltammetric signals from bromide ones (Fig. 10).

One can see the absence of anodic peak at 770 mV obtained previ-
ously for bromide containing derivatives and the presence of two anodic
and one cathodic peaks. The presence of last one confirmed the afore-
mentioned assumption that bromine and catechols cathodic electro-
activity proceeded in the same potential region under chosen
experimental conditions. Values of peak currents and potentials of
compounds investigated are presented in Table 4.

[ (nA)
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-200 0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Fig. 9. Cyclic voltammograms of 3a-Br (1 mM) recorded in different potential
ranges: [—200; 2000] mV - black curve, [—200; 1500] mV - red curve, [-200;
850] mV - blue curve, [-200; 600] mV - pink curve. Scan rate = 100 mV/s,
working solution: 0.1 M LiClOy4 in acetonitrile. Potential vs. Ag/AgCl, 1 M NaCl.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 10. Cyclic voltammograms of 3-TFSI (1 mM). Scan rate = 100 mV/s,

number of cycles = 3, working solution: 0.1 M LiClO,4 in acetonitrile. Potential
vs. Ag/AgCl, 1 M NaCl.
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All the compounds synthesized have demonstrated similar electro-
chemical behavior indicating the absence of strong influence of qua-
ternary nitrogen atom on oxidizing ability of catechols. The occurrence
of two-stage electrochemical process was due to revealed previously
intramolecular hydrogen bond for similar catechol derivatives [96].
However, electrochemical irreversibility of second oxidation peak is
distinctive feature of catechol under investigation. The reason of such
behavior can be the weakened intramolecular hydrogen bond O-H---N
after the addition of hydrazide fragment in the N-substituent. The
schematic representation of electrochemical process includes two
consecutive one-electron and one-proton steps from catechol (QHy) to o-
benzoquinone (Q) (Scheme 3). Notably, the reverse process also
occurred at 0.08-0.15 V. Since it appeared after first oxidation peak at
1070 mV (Fig. 8, red curve for 3a-TFSI), we assumed reverse one-
electron reduction.

4. Conclusion

In this work, we proposed and implemented an easy way to obtain a
series of redox-active task-specific IL and organic compounds based on

Table 4
Values of peak currents and potentials of 3-TFSI from CV data after background
subtraction.

Compound EgX, mv Ig"l, vA ES?, mV ngz, HA EFd mv Ilrfd, LA
3a-TFSI 1070 149 1770 15.3 140 2.7
3b-TFSI 1090 14.0 1800 14.6 80 3.3
3c-TFSI 1040 14.1 1730 16.6 145 2.9




A. Bikmukhametov et al.

R/\n/ NP _© o R/\n/ N
0 0
HO
OH
QH,

QHy’

R=Et;N*
BusN*

Cae N
H,C N@/N/\

Q

H
R/\H/N\N/
(6]

Journal of Molecular Liquids 425 (2025) 127234

N
z _Ht SFP
(0]
HO HO
2 QH' ©

-€

H
< H R/\"/N\N Z
(0] +
HO
o) QH' 0]

Scheme 3. Proposed electrochemical process for compounds 3. Single arrows with electron transfer represent electrochemical irreversibility.

catechol-containing quaternary ammonium and imidazolium salts with
acylhydrazone moiety. The obtained compounds were characterized by
single-crystal XRD, 'H, '3C{'H} NMR, FTIR spectroscopy, elemental
analysis, and ESI HRMS. The thermal, electrochemical and complexa-
tion properties of the synthesized IL and organic salts and their bromide
precursors were studied. Copper(Il) selective binding (logK, =
4.13-5.07, 1:1 stoichiometry) was shown by UV-Vis spectroscopy. The
melting point (64-203 °C) and high thermal stability (Topset =
195-300 °C) of the target IL and organic salts were determined via
differential scanning calorimetry and thermogravimetry. The viscosity
of the catechol-containing imidazolium IL decreased significantly when
the temperature was increased from 105 to 150 °C. Voltammetric
investigation of the synthesized compounds has shown interfering in-
fluence of Br-anion, while replacement of Br-anion with TFSI-anion
allowed good voltammetric signals. The addition of an electron-
accepting amide fragment affected the catechol oxidation, while the
structure of the cationic moiety did not affect the electrochemical
behavior of the synthesized compounds. We hope our study will open up
wide opportunities for the development of new electrochemically active
devices and sensors, extractants, and metal ion-sensitive functional
materials, as well as serve to further expand the applications of redox-
active ILs.
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