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Abstract—We obtain a representation of the set of quantum states in terms of barycenters
of nonnegative normalized finitely additive measures on the unit sphere S1(H) of a Hilbert
space H. For a measure on S1(H), we find conditions in terms of its properties under which the
barycenter of this measure belongs to the set of extreme points of the family of quantum states
and to the set of normal states. The unitary elements of a unital C∗-algebra are characterized
in terms of extreme points. We also study extreme points extr(E1) of the unit ball E1 of
a normed ideal operator space 〈E , ‖·‖E〉 on H. If U ∈ extr(E1) for some unitary operator
U ∈ B(H), then V ∈ extr(E1) for all unitary operators V ∈ B(H). In addition, we construct
quantum correlations corresponding to singular states on the algebra of all bounded operators
in a Hilbert space.
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INTRODUCTION

The study of the extreme points of normed spaces is an important direction in functional analysis.
In the present paper, we deal with three different problems in this direction. First, we investigate
the extreme points of the unit ball of the space of positive continuous linear functionals on the
algebra of all bounded operators B(H) in a Hilbert space H. Of course, we primarily focus on
singular extreme points, i.e., points that are not vector states. The second problem we address is
to describe the extreme points of the unit ball of a normed ideal space, which is a special subspace
of a C∗-algebra. Finally, the third problem is to study the quantum correlations corresponding to
singular states on the algebra B(H).

A quantum state is a nonnegative normed continuous linear functional on the Banach space B(H)
of all bounded linear operators (see [8, Sect. 2.3.2]). By the Alaoglu theorem, the set of quantum
states Σ(H) considered as the intersection of the unit sphere with the positive cone in the space
of continuous linear functionals on the Banach space B(H) is convex and compact in the *-weak
topology (see [9, Ch. V, Sect. 4]). Therefore, by the Krein–Milman theorem, the set of quantum
states coincides with the closure in the *-weak topology of the set of its extreme points.
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ON EXTREME POINTS OF SETS 5

To describe the set of extreme points of the set of quantum states, one can use barycentric
decompositions of states in the Pettis integral with respect to a nonnegative normalized (to unity)
measure on the set of pure vector states (see [8, Sect. 4.1] as well as [4, 5]). The approach we
implement in this paper expands the possibilities of the methods presented in [8], since we use not
only countably additive but also finitely additive measures. Every state on the algebra B(H) can
be represented (nonuniquely) as a Pettis integral with respect to a measure on the unit sphere of
the Hilbert space H, whose points define pure vector states.

On the set of measures on the unit sphere, we introduce an equivalence relation: every equiva-
lence class includes all measures with a common barycenter. We establish a bijection between the
set of states and the set of equivalence classes of finitely additive nonnegative normalized measures
on the unit sphere of the Hilbert space. The extreme points of the intersection of the unit sphere
with the positive cone in the space of finitely additive measures are given by two-valued measures
with only two values, 0 and 1 (see [18]). We establish that if a state is an extreme point of the set
of quantum states, then the class of measures with barycenter at this state contains a two-valued
measure. However, the barycenter of measures from an equivalence class containing a two-valued
measure may not be an extreme point of the set of quantum states. We conjecture that for the
barycenter of an equivalence class of measures to be an extreme point of the set of states, it suffices
that the set of extreme points of the intersection of the equivalence class with the cone of nonnegative
measures consists of two-valued measures.

We solve the problem of whether the barycenter of a finitely additive measure on the unit sphere
of H belongs to the set of normal states. A criterion for this is given by the following condition
on a finitely additive measure: up to an arbitrary number ε > 0, the measure is concentrated on a
compact subset Kε of H that belongs to the unit sphere. This condition of the normality criterion
is similar to the condition for a countably additive measure to be pseudoconcentrated on a compact
set (see [8, Sect. 4.1.2]).

Thus, we obtain a description of quantum states in terms of nonnegative normalized measures on
the unit sphere of the Hilbert space. Note that we thus solve the problem, discussed in [3], of describ-
ing the dynamics of normal quantum states by describing the evolution of probability distributions.

We establish a unitarity criterion for an arbitrary element of a unital C∗-algebra and analyze
the properties of the set of extreme points of the unit ball of a normed ideal space (NIS) on H. Let
〈E , ‖·‖E 〉 be a NIS on H. If U ∈ extr(E1) for some unitary operator U ∈ B(H), then V ∈ extr(E1)
for all unitary operators V ∈ B(H).

The study of the properties of the set of quantum correlations has recently allowed to solve a
number of problems in the theory of operator algebras that remained open since the second half of
the 1970s [13, 2]. An important role in this theory is played by the construction of von Neumann
factors M of type II1. To construct the set of correlations, one should consider a pair consisting of the
factor M itself and its commutant M′. By means of the Gelfand–Naimark–Segal representation,
using an extreme point in the set of singular quantum states, we construct both the factors M
and M′ themselves and the corresponding quantum correlations.

1. NOTATION AND DEFINITIONS

Let H be a complex Hilbert space and B(H) the Banach space of all bounded linear operators
on H equipped with the operator norm. Let (B(H))∗ be the dual Banach space of B(H).

For an arbitrary set M , denote by 2M the σ-algebra of all subsets of M , by B(M) the Banach
space of bounded complex-valued functions on M equipped with the sup-norm, and by ba(M) the
Banach space of complex-valued finitely additive measures of bounded variation on the measurable
space (M, 2M ), with the norm of every measure equal to the variation of the measure on the set M .
By ba+(M) we denote the cone of nonnegative measures in the space ba(M).
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For an arbitrary normed space X , we denote the unit sphere in it by S1(X ), and let X 1 be
the unit ball in X . Denote the set of extreme points of a set K in a linear space L by extr(K).
A C∗-algebra is a complex Banach *-algebra A such that ‖A∗A‖ = ‖A‖2 for all A ∈ A. Let A−1,
A+, and Au be the sets of all invertible, positive, and unitary elements of A, respectively. If X ∈ A,
then |X| =

√
X∗X ∈ A+. Any C∗-algebra can be realized as a C∗-subalgebra in B(H) for some

Hilbert space H (see [14, Theorem 3.4.1]).
A *-lineal E ⊂ B(H) equipped with a norm ‖·‖E is called a normed ideal space (NIS) on H if

(1) ‖A∗‖E = ‖A‖E for all A ∈ E ;
(2) for all A ∈ B(H) and B ∈ E such that |A| ≤ |B|, we have A ∈ E and ‖A‖E ≤ ‖B‖E .

The concept of NIS on H generalizes symmetrically normed ideals of operators on H, which
were studied, for example, in [11, 16]. If the Hilbert space H is separable, then any NIS on H
is symmetric with respect to its constituent elements (see [11, Ch III, § 2]). If E is a hereditary
C∗-subalgebra in B(H), then 〈E , ‖·‖〉 is a NIS on H. If A is a C∗-algebra or a NIS on H, then

X ∈ extr(S1(A)) ⇔ X∗ ∈ extr(S1(A)) and X ∈ extr(A1) ⇔ X∗ ∈ extr(A1).

Any positive linear functional ρ on a C∗-algebra A defines a sesquilinear form

(A,B)ρ = ρ(B∗A), A,B ∈ A.

Factorizing and completing the algebra A with respect to this form, we obtain a Hilbert space H and
a ∗-representation π of the algebra A in H, called the Gelfand–Naimark–Segal (GNS) representation
(see [7]). An important source for constructing von Neumann algebras M of different types is the
closure of the image of a GNS representation of the algebra A = B(H). On the other hand, the
algebra B(H) itself can be generated by a pair of factors M and M′ (a factor is an algebra M
such that M∩M′ = {CI}). In this case, the state ρ defines correlations between observables that
belong to M and M′, respectively.

2. EXTREME POINTS OF THE SET OF QUANTUM STATES

We consider the problem of describing the set of extreme points of the set Σ(H) of states of a
quantum system on a separable Hilbert space H. The set Σ(H) is the intersection of the unit sphere
S1((B(H))∗) with the cone (B(H))∗+ of nonnegative elements of the space dual to the Banach space
of bounded linear operators B(H) equipped with the operator norm. Hence, the set Σ(H) is convex
and (according to the Alaoglu theorem, see [9]) compact in the space (B(H))∗ equipped with the
*-weak topology. Denote by Σp(H) and Σn(H) the sets of pure vector states and normal states,
respectively.

A partial description of the set of extreme points of the family of quantum states was given
in [4], where the authors showed that for an arbitrary state ρ ∈ Σ(H) there exists a measure
μρ ∈ S1(ba(S1(H))) ∩ ba+(S1(H)) ≡ S+

1 (ba(S1(H))) such that

ρ(A) =

∫

S1(H)

ρu(A) dμρ(u) =

∫

Σp(H)

ρ(μ ◦ f−1) (dρ) ∀A ∈ B(H),

where f : S1(H) → (B(H))∗ is a function that maps u to ρu. When the above condition is satisfied,
we say that the state ρ is the barycenter of the measure μ ◦ f−1 (measure μρ). In this case the state ρ
is also said to be equal to the Pettis integral of the function f : S1(H) → (B(H))∗ with respect to
the measure μρ. As shown in [4], any ρ ∈ extr(Σ(H)) can be represented as the barycenter of some
two-valued measure μ : 2S1(H) → {0, 1}.

The following observations were also made in [4]: different measures may represent the same
state; countably additive measures represent only normal states; and if a measure is concentrated
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on the set of vectors of an orthonormal basis and is two-valued, then the corresponding state is an
extreme point of the set of states Σ(H).

Let us give a description of the set of extreme points of the set of quantum states. To this end,
on the space of measures ba(S1(H)) we introduce a barycentric equivalence relation ∼:

μ ∼ ν ⇔
∫

S1(H)

ρe(A) dμ(e) =

∫

S1(H)

ρe(A) dν(e) ∀A ∈ B(H). (2.1)

The integrals in (2.1) are the Pettis integrals of a vector-valued function with values in the
space (B(H))∗. The relation ∼ is obviously an equivalence relation on the space ba(S1(H)).

Here is an example of two equivalent measures. Consider two sequences {ek} and {fk} of vectors
in the unit sphere S1(H) such that the sequence {‖ek − fk‖H} is infinitesimal and strictly monotone.
If F is a nonprincipal ultrafilter on the set of positive integers N and νF is a two-valued measure
generated by F (see [4]), then the measures μe and μf defined by μe,f(A) = νF ({n∈N : en, fn ∈A}),
A ⊂ S1(H), are different as elements of ba(S1(H)) and are equivalent.

The set

V0 =

⎧⎨
⎩μ ∈ ba(S1(H)) :

∫

S1(H)

ρe(A) dμ(e) = 0 ∀A ∈ B(H)

⎫⎬
⎭

is a linear subspace in the space of measures ba(S1(H)).
The quotient space b̂a(S1(H)) = ba(S1(H))/∼ is a linear space. For every μ̂ ∈ b̂a(S1(H)),

we set

ρμ̂(A) =

∫

S1(H)

ρe(A) dμ̂(e) =

∫

S1(H)

ρe(A) dμ(e), A ∈ B(H), (2.2)

where μ ∈ μ̂. By the definition of the equivalence relation, the right-hand side of (2.2) does not
depend on the choice of a representative μ ∈ μ̂.

On the space b̂a(S1(H)) we introduce a partial order relation ≥:

μ̂ ≥ ν̂ ⇔
∫

S1(H)

ρe(A) dμ̂(e) ≥
∫

S1(H)

ρe(A) dν̂(e) ∀A ∈ (B(H))+.

Denote by M+
1 the set

{
μ̂ ∈ b̂a(S1(H)) : μ̂ ∩ S+

1 (b̂a(S1(H))) �= ∅

}
≡

⎧⎨
⎩μ̂ ∈ b̂a(S1(H)) : μ̂ ≥ 0,

∫

S1(H)

ρe(I) dμ̂(e) = 1

⎫⎬
⎭ .

Theorem 2.1. The map
∫
: μ̂ →

∫

S1(H)

ρe dμ̂(e) ≡ ρμ̂ (2.3)

is a bijection of the set M+
1 onto Σ(H) that preserves convex combinations.

Proof. Every element μ̂ of b̂a(S1(H)) defines a linear functional ρμ̂ on B(H) according to (2.2).
Moreover, if μ̂ ∈ M+

1 , then the functional ρμ̂ is nonnegative and |ρμ̂(A)| =
∣∣∫

S1(H) ρe(A) dμ1(e)
∣∣ with

μ1 ∈ S+
1 (ba(S1(H))); in particular, ρμ̂(I) = 1. Hence, |ρμ̂(A)| ≤ ‖A‖B(H), and the functional ρμ̂ is a

continuous nonnegative normed linear functional on B(H); i.e.,
∫
(M+

1 ) ⊂ Σ(H), and the map (2.3)
preserves convex combinations.
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If μ̂ �= ν̂, then by (2.1) there exists an element A ∈ B(H) such that ρμ̂(A) �= ρν̂(A); hence, the
map (2.3) is injective.

According to [4], for any ρ ∈ Σ(H) there exists a measure μρ ∈ S+
1 (ba(S1(H))) such that

ρ =
∫
S1(H) ρe dμρ(e). Hence, ρ =

∫
S1(H) ρe dμ̂(e) for a class μ̂ containing the measure μρ. Hence,

the map (2.3) is surjective. �
Corollary 2.1. The map (2.3) is a bijection of the set extr(M+

1 ) onto the set extr(Σ(H)).
If a state ρ is the image of a class of measures μ̂ under the bijective map (2.3), then we will

write ρ = ρμ and μ̂ = ρμ̂. Moreover, we will write ρμ̂ = ρμ for an arbitrary choice of the measure μ
in the class μ̂.

Let us now give a description of the extreme points of the set M+
1 of classes of nonnegative

normalized measures. It is well known (see [18]) that the set of extreme points of the simplex of
measures S+

1 (ba(S1(H))) consists of two-valued measures (i.e., measures generated by ultrafilters).
Theorem 2.2. If m ∈ M+

1 is an extreme point of M+
1 , then the equivalence class of m

contains a two-valued measure.
Lemma 2.1. Let μ̂ ∈ extr(M+

1 ). Let μ ∈ μ̂ and suppose that there exists a set A1 ⊂ S1(H)
such that μ(A1) = a1 ∈ (0, 1). If μ1(A) =

1
a1
μ(A ∩A1), A ∈ 2S1(H), then μ1 ∼ μ.

Proof. We put ν1(A) = μ(A ∩A1) and ν2(A) = μ(A \ A1), A ∈ 2S1(H). Then

μ = a1μ1 + (1− a1)μ2, where μ1 =
1

a1
ν1, μ2 =

1

1− a1
ν2.

Since μ is an extreme point of M+
1 , it follows that μ1 ∼ μ2 ∼ μ. �

Hence, the class μ̂ can be represented by any element μ1 concentrated on any set A1 ∈ 2S1(H)

such that μ(A1) > 0.
Let P(H) be the set of orthogonal projections acting in H.
Lemma 2.2. Let μ̂ be an extreme point of M+

1 . Then the class μ̂ contains a two-valued
measure generated by an ultrafilter of subsets of the set S1(H).

Proof. Let μ ∈ μ̂. Consider the set

A1 =
{
A1 ∈ 2S1(H) : μ(A1) > 0

}

of subsets of S1(H) partially ordered by inclusion. Then A1 has the following of the properties
characterizing an ultrafilter:

• ∅ /∈ A1;
• B ∈ S1(H), B /∈ A1 ⇒ S1(H) \B ∈ A1;
• A ∈ A1, B ⊃ A ⇒ B ∈ A1.

However, the following property fails:

• A ∈ A1, B ∈ A1 ⇒ A ∩B ∈ A1,

since it is unknown whether the measure μ can take positive values on two disjoint sets. To resolve
this question, we will show that the family of sets A1 contains maximal chains that are linearly
ordered by inclusion.

Consider the set E of chains of elements of the partially ordered (by inclusion) set A1. The set E
is partially ordered by the inclusion relation between the elements of E . By the Hausdorff theorem,
E has a maximal element C1.

If A1, A2 ∈ C1, then at least one of the conditions A1 ⊂ A2 or A2 ⊂ A1 is satisfied, since the
elements of the chain C1 are linearly ordered by inclusion.
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By the maximality of the chain C1, for an arbitrary element A ∈ C1 (such that μ(A) > 0) and
an arbitrary partition of the set A into two disjoint subsets A′ and A′′, one and only one of the
subsets A′ and A′′ belongs to the chain C1. Since μ(A′) + μ(A′′) = μ(A) > 0, at least one of the
sets A′ and A′′ belongs to the family A1. Since the chain C1 is linearly ordered by inclusion, it
cannot contain both sets A′ and A′′ simultaneously. At least one of the sets A′ and A′′ should be
an element of the chain C1, for otherwise the chain C1 would not be a maximal chain in A1.

A maximal chain C1 of subsets of A1 linearly ordered by inclusion forms an ultrafilter F of
subsets of S1(H) so that B ∈ F if and only if B contains a set from C1. Then

• ∅ /∈ C1;
• A ∈ C1, B ⊃ A ⇒ B ∈ C1;
• B ⊂ S1(H), B /∈ C1 ⇒ S1(H) \B ∈ C1 (because S1(H) ∈ C1, and so one and only one of the

sets B and S1(H) \B is contained in the chain C1);
• A ∈ C1, B ∈ C1 ⇒ A ∩B ∈ C1 (because if A,B ∈ C1, then either A ⊂ B or A ⊃ B).

Thus, any measure μ ∈ S+
1 (ba(S1(H))) defines an ultrafilter F of subsets on which μ takes

positive values.
For every A ∈ F , we define a measure μA = (μ(A))−1νA with νA(B) = μ(A ∩ B), B ∈ 2S1 . By

the hypothesis of Lemma 2.2, the class μ̂ is an extreme point of M+
1 , and μ ∈ μ̂ by the assumption.

Therefore, according to Lemma 2.1, we have μA ∼ μ for any A ∈ F .
Hence, for any P ∈ P(H), there exists a limit limF ρμA

(P) = ρμ(P). Then ρμF (P) = ρμ(P) for
any P ∈ P(H), where μF(A) = 1 for all A ∈ F . Hence, μF ∈ μ̂, and the two-valued measure μF is
equivalent to μ. Thus, any extreme point of M+

1 is an equivalence class of measures that contains
a two-valued measure. �

Remark 2.1. The converse statement does not hold: even if a class μ̂ contains a two-valued
measure μ ∈ S+

1 (ba(S1(H))), the class μ̂ may not be an extreme point of M+
1 .

Example. Let E = {ek} be an orthonormal basis in a Hilbert space E, and let F = {fk} be a
system of unit vectors in E defined as fk = 1√

2
(e1 + ek+1), k ∈ N. Let � be an ultrafilter on the

set of positive integers and ν� be the corresponding two-valued measure on N. Then the measures
μF = ν� ◦ f−1, μE = ν� ◦ e−1, and δe1 are two-valued and hence are extreme points of the set
S+
1 (ba(S1(H))). However, it can be easily verified that ρμF

= 1
2 (ρμE

+ ρe1); hence, the equivalence
class μ̂ contains both the two-valued measure μF and the measure 1

2 (μE + δe1); therefore, it is not
an extreme point of M+

1 .

Every equivalence class μ̂ ∈ M+
1 , as a set in the space ba(S1(H)), is convex and (pre)compact

in the *-weak topology (since it is a subset of S1(ba(S1(H)))). If ρ ∈ extr(Σ(H)), then the class
of the measure μρ contains a two-valued measure; however, not all measures in the class μ̂ρ are
two-valued. For example, if e ∈ S1(H) and � is an ultrafilter converging to e, then the class μ̂ρ

contains the line segment {aδe + (1 − a)μ� : a ∈ [0, 1]}.
For any μ̂ ∈ M+

1 , the set μ̂ is not compact in the space ba(S1(H)) equipped with the *-weak
topology induced by functionals from the Banach space B(S1(H)) of bounded functions with the
sup-norm. Indeed, μ̂ can be represented as μ+N , where

N =
{
ν ∈ ba(S1(H)) : ν(A) = 0 ∀A ∈ B(H)

}

is a linear subspace. However, the unit sphere of the Banach space ba(S1(H)) is a compact set in
the *-weak topology; therefore, μ̂ ∩ S+

1 (ba(S1(H))) is compact in the *-weak topology.

Lemma 2.3. If ν ∈ extr
(
μ̂ ∩ S+

1 (ba(S1(H)))
)

for an extreme point μ̂ of M+
1 , then the mea-

sure ν is two-valued.
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Proof. Since ν ∈ extr(μ̂), it follows from the relations ν = aν1 + (1 − a)ν2, ν1, ν2 ∈ μ̂,
a ∈ (0, 1), that ν1 = ν2.

Suppose that there exist measures λ1, λ2 ∈ S+
1 (ba(S1(H))) and a number b ∈ (0, 1) such that

ν = bλ1 + (1− b)λ2. Let us prove that then the condition λ1 = λ2 holds, that is, the measure ν is
an extreme point of S+

1 (ba(S1(H))) and hence is two-valued.
Suppose by contradiction that λ1 �= λ2. If λ1 is not equivalent to λ2, then μ̂ = bλ̂1 + (1− b)λ̂2,

λ̂1 �= λ̂2, but this contradicts the condition μ̂ ∈ extr(M+
1 ).

If the measures λ1 and λ2 are equivalent, then they are also equivalent to the measure ν, that is,
ν, λ1, λ2 ∈ μ̂ ∩ S+

1 (ba(S1(H))). Then it follows from the condition λ1 �= λ2 that μ is not an extreme
point of μ̂ ∩ S+

1 (ba(S1(H))), which contradicts the hypothesis of the lemma.
Thus, it follows from the condition ν = bλ1 + (1 − b)λ2, where λ1, λ2 ∈ S+

1 (ba(S1(H))) and
b ∈ (0, 1), that λ1 = λ2. Consequently, ν ∈ extr

(
S+
1 (ba(S1(H)))

)
; hence, the measure ν is two-

valued. �
Theorem 2.3. The condition μ̂ ∈ extr(M+

1 ) is equivalent to the following condition: the set
extr

(
μ̂ ∩ S+

1 (ba(S1(H)))
)

contains only two-valued measures.

Proof. The necessity is established in Lemma 2.3; let us prove the sufficiency. To this end,
we prove that if μ̂ /∈ extr(M+

1 ), then the set extr
(
μ̂ ∩ S+

1 (ba(S1(H)))
)

contains a non-two-valued
measure.

Let μ̂ /∈ extr(M+
1 ). Then μ̂ = αμ̂1 + (1 − α)μ̂2 with μ̂1,2 ∈ b̂a(S1(H)), μ̂1,2 �= μ̂. Therefore, if

μj ∈ extr
[
μ̂j ∩ S+

1 (ba(S1(H)))
]
, j = 1, 2, then μ� ∼ αμ1 + (1− α)μ2, μ1,2 � μ�. This last relation

implies that μ1 � μ2; hence, there exists a set D ⊂ S1(H) such that 0 < (αμ1 + (1− α)μ2)(D) < 1.
Now, if

ν1 =
1

a

(
αμ1 + (1− α)μ2

)∣∣
D

and ν2 =
1

1− a

(
αμ1 + (1− α)μ2

)∣∣
D⊥

with a = (αμ1 + (1 − α)μ2)(D) ∈ (0, 1) and D⊥ = S1(H) \ D, then ν1, ν2 ∈ S+
1 (ba(S1(H)));

moreover, ν1(S1(H) \D) = 0 = ν2(D) and

μ̂ � aν1 + (1− a)ν2.

Let

Ma
μ =

{
aμ1 + (1− a)μ2 ∈ μ̂ : μ1,2 ∈ S+

1 (ba(S1(H))), μ2(D) = 0 = μ1(D
⊥)

}
.

The set Ma
μ is convex and, by the Banach–Alaoglu theorem, is compact in the topology τB generated

by all bounded functions on S1(H). Hence, this set contains its extreme points.
Lemma A. If aν1 + (1 − a)ν2 ∈ extr(Ma

μ), then the measure ν1 cannot decomposed into a
convex combination of two measures from S1(ba(S1(H))).

Proof. If ν1 = βm1 + (1 − β)m2 for some m1,m2 ∈ S+
1 (ba(S1(H))), then we have m1(D

⊥) =
0 = m2(D

⊥); moreover,

aν1 + (1− a)ν2 = β(am1 + (1− a)ν2) + (1− β)(am2 + (1− a)ν2).

However, this contradicts the fact that aν1 + (1− a)ν2 ∈ extr(Ma
μ). �

Let ν∗ be an extreme point of the convex set Ma
μ, which is compact in the topology τB. Then

ν∗ has the form ν∗ = aν∗1 + (1− a)ν∗2 with ν∗2(D) = 0 = ν∗1(D
⊥), ν∗1 , ν∗2 ∈ S+

1 (ba(S1(H))).
Let us prove that ν∗ is an extreme point of the set μ̂ ∩ S+

1 (ba(S1(H))).
Suppose the contrary. Then the measure aν∗1 + (1− a)ν∗2 ∈ extr(Ma

μ) satisfies the condition

aν∗1 + (1− a)ν∗2 = bλ1 + (1− b)λ2, λ1, λ2 ∈ S+
1 (ba(S1(H))),
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with λ1, λ2 ∈ μ̂ and b ∈ (0, 1). Therefore,
1

a
bλ1

∣∣
D
+

1

a
(1− b)λ2

∣∣
D
= aν∗1 .

Since λ1 �= λ2, we can assume that λ1|D �= λ2|D (the case of λ1|D⊥ �= λ2|D⊥ is treated similarly).
Then if λ1(D)λ2(D) �= 0, the measure ν1 is decomposed into a complex combination of two measures
from S+

1 (ba(S1(H))), which leads to a contradiction by Lemma A. This contradiction shows that
in fact λ1(D)λ2(D) = 0. Hence, either a = b or a = 1 − b. Consequently, aν1 + (1 − a)ν2 ∈
extr(S+

1 (ba(S1(H))) ∩ μ̂) and the set S+
1 (ba(S1(H))) ∩ μ̂ contains an extreme point that is not a

two-valued measure. �
Remark 2.2. For every P ∈ P(H), the family of sets AP = {f−1

P (B), B ∈ B(R)}, where
fP(e) = (Pe, e), e ∈ S1(H), is a σ-algebra. Let AP be the σ-algebra generated by the family of
sets

⋃
P∈P AP. Then measures μ, ν ∈ ba(S1(H)) are equivalent if and only if their restrictions to

the algebra AP coincide. Hence, the sets M+
1 and S+

1 (ba(S1(H),AP )) are isomorphic, and the
map (2.3) defines a bijection of the set S+

1 (ba(S1(H),AP)) onto the set of quantum states Σ(H).
Let us characterize the classes of measures whose barycenters are normal states. Recall that a

measure μ ∈ S+
1 (ba(S1(H))) is inner regular if for any ε > 0 there exists a compact set K ⊂ S1(H)

such that μ(S1(H) \K) < ε.
Lemma 2.4. If a measure μ is inner regular, then the state ρμ is normal.
Proof. Take an ε > 0. Let K ⊂ S1(H) be a compact set in H such that μ(S1(H) \ K) < ε.

Let {f1, . . . , fm} ⊂ S1(H) be an ε-net in K. Then there exists a finite-dimensional orthogonal
projection Pm onto the subspace span(f1, . . . , fm) such that

ρμ(Pm) =

∫

S1(H)

(Pme, e) dμ(e) ≥
∫

K

(Pme, e) dμ(e) ≥ μ(K)
√

1− ε2 > (1− ε)3/2.

Since ε > 0 is arbitrary, it follows (see [15, Theorem 9.2]) that the state ρμ is normal. �
If ρ is a normal state (and even a pure vector state), not every measure μ ∈ μ̂ρ is necessarily

inner regular. For example, let ρ = ρu, u ∈ S1(H), and {ek} be a sequence of unit vectors that
form a dense subset of the sphere S1(H). Let F be the filter generated by the system of sets
Nε = {k ∈ N : ‖ek − u‖H < ε}, ε ∈ (0, 1). Let � be an ultrafilter containing the filter F . Then
u = lim� ek, μ� ∈ μ̂ρu , but the ultrafilter � need not be concentrated on compact sets.

Definition 2.1. A measure μ ∈ S+
1 (ba(S1(H))) is said to be normal if for every ε > 0 there

exists a compact set Kε ⊂ S1(H) such that μ(Oε(Kε)) > 1 − ε. (Here Oε(Kε) = {y ∈ S1(H) :
infx∈Kε‖x− y‖H < ε}.)

Remark 2.3. If dimH < ∞, then every measure μ ∈ S+
1 (ba(S1(H))) is normal.

Remark 2.4. The normality of a finitely additive measure μ ∈ S+
1 (ba(S1(H))) is an analog of

the pseudoconcentration of a countably additive measure on S1(H).
Lemma 2.5. If ρu is a vector state, then every measure μ ∈ μ̂ρu is normal.
Proof. Let us demonstrate that μ(Oε(u)) = 1 for every ε > 0. Suppose by contradiction that

μ(S1(H) \Oε(u)) = δ > 0. Then

1 = ρu(Pu) =

∫

S1(H)

|(u, e)|2 dμ(e) ≤ μ(Oε(u)) + μ(S1(H) \Oε(u))
√

1− ε2 < 1.

The contradiction obtained proves the assertion of Lemma 2.5. �
Lemma 2.6. If ρ is a normal state of finite rank, then every measure μ ∈ μ̂ρ is normal.
Proof. By Lemma 2.5, there exists a compact set K consisting of finitely many points of the

sphere S1(H) such that μ(Oε(K)) = 1 for any ε > 0 and any μ ∈ μ̂ρ. �
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Lemma 2.7. If ρ is a normal state, then every measure μ ∈ μ̂ρ is normal.
Proof. The normal state ρ can be represented by a nonnegative trace-class operator with unit

trace (see [15]). Therefore, for any ε > 0 there exist nonnegative numbers p1, . . . , pm, p0, a finite
orthonormal system of vectors {u1, . . . , um}, and a normal state r such that

ρ =

m∑
k=1

pkρuk
+ p0r = (1− p0)ρ

′ + p0r and p0 ∈
(
0,

ε

2

)
.

Then by Theorem 2.1 we have μ̂ρ = (1 − p0)μ̂ρ′ + p0μ̂r, with any measure from μ̂ρ′ being normal
by Lemma 2.6. Since ε > 0 is arbitrary, any measure from μ̂ρ is also normal. �

Lemma 2.8. If a measure μ ∈ S+
1 (ba(S1(H))) is normal, then the state ρμ is normal.

Proof. Take a number ε > 0. Then there exists a compact set K ⊂ S1(H) such that
μ(Oε(K)) > 1 − ε. Let {f1, . . . , fm} ⊂ S1(H) be an ε-net of K, and let P be the orthogonal
projection onto the linear subspace span(f1, . . . , fm). Then

ρμ(P) =

∫

S1(H)

(Pe, e) dμ(e) ≥
∫

Oε(K)∩S1(H)

(Pe, e) dμ(e)

≥ (1− ε) inf
Oε(K)∩S1(H)

(Pe, e) ≥ (1− ε)
√

1− ε2.

Consequently, for any ε > 0 there exists a finite-dimensional orthogonal projection P such that
ρμ(P) > 1− ε. Hence (see [15]), the state ρμ is normal. �

Corollary 2.2. If a measure μ ∈ S+
1 (ba(S1(H))) is normal, then any measure from the class μ̂

is normal.
Proof. Let μ ∈ μ̂ and μ be a normal measure. By Lemma 2.8 we have ρμ ∈ Σn(H). By

Theorem 2.1 we have μ̂ = μ̂ρμ . By Lemma 2.7 any measure μ ∈ μ̂ is normal. �
Corollary 2.3. If the space H is separable, then every countably additive measure μ ∈

S+
1 (ba(S1(H))) is normal and its barycenter ρμ is a normal state.

Proof. Let ε > 0. Since H is separable, there exists a countable ε-net {fk} in the unit
sphere S1(H). The measure μ is countably additive; therefore, there exists a number N such that
μ
(⋃N

j=1Oε(fj) ∩ S1(H)
)
> 1− ε. Hence, the measure μ is normal. �

Lemmas 2.7 and 2.8 and Corollary 2.2 imply the following.
Theorem 2.4. A state ρ is normal if and only if every measure μ ∈ μ̂ρ is normal.
Corollary 2.4. A state ρ is an extreme point of the set of normal states if and only if the

equivalence class μ̂ρ consists of normal measures and contains a two-valued measure. In this case,
any such normal two-valued measure is either concentrated at a single point or defines a nonprincipal
ultrafilter converging to a point in the norm of the space H.

Proof. The first part of the claim follows from Theorems 2.2 and 2.4. A two-valued measure
μ ∈ μ̂ρ can be either countably additive or purely finitely additive. If a measure μ ∈ S+

1 (ba(S1(H)))
is countably additive and two-valued, then it is a measure concentrated at some point of S1(H)
(see [18]). If a measure μ ∈ S+

1 (ba(S1(H))) is finitely additive and two-valued, then it defines
the ultrafilter �μ = μ−1({1}). Let ε > 0. Since the measure is normal, there exists a compact set
Kε ⊂ S1(H), covered by a finite ε-net {f1, . . . , fm}, such that μ(Kε) > 1− ε. Since the measure μ is
two-valued, it follows that μ(Kε) = 1; moreover, there exists an element fε ∈ {f1, . . . , fm} such that
μ(Oε(fε)) = 1. Consequently, there exists a sequence of nested closed balls on which the measure
μ takes the unit value. Hence, the nonprincipal ultrafilter �μ converges to a point on S1(H) in the
norm of the space H. �
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3. EXTREME POINTS OF THE UNIT BALL OF A NORMED IDEAL SPACE ON H
In this section, we establish a unitarity criterion for an arbitrary element of a unital C∗-algebra

and analyze the properties of the sets of extreme points of the unit balls of NISs on H.
Proposition 3.1. Let A be a unital C∗-algebra. For an arbitrary element A ∈ A, the following

conditions are equivalent :

(i) A ∈ A−1 and A,A−1 ∈ A1;

(ii) A ∈ extr(A1) and dist(A,A−1) < 1;

(iii) A ∈ Au.

Proof. Let I be the unit of the algebra A and A ∈ A.
(i) ⇒ (iii). It is clear that |A|2 ≤ |A| ≤ I. We have

I = |AA−1| =
√

(A−1)∗A∗AA−1 ≥ (A−1)∗
√
A∗AA−1 = (A−1)∗|A|A−1

by Hansen’s inequality [12] for the operator monotone function f(t) =
√
t, t ≥ 0. Multiplying both

sides of the inequality I ≥ (A−1)∗|A|A−1 on the left by A∗ and on the right by A and using the
equality (A∗)−1 = (A−1)∗, we obtain |A|2 ≥ |A|. Thus, |A|2 ≥ |A| ≥ |A|2 and |A|2 = |A|; i.e., the
element |A| is an orthogonal projection. Since |A| is an invertible projection, we have |A| = I. In
a similar way one can show that |A∗| = I.

(iii) ⇒ (i). For any element A ∈ Au, we have A−1 = A∗; therefore, ‖A−1‖ = ‖A∗‖ = ‖A‖.
(ii) ⇒ (iii). For A ∈ extr(A1), we have A ∈ Au if and only if dist(A,A−1) < 1 (see [6,

proposition]).
(iii) ⇒ (ii). We have the equality extr(A1) = {V ∈ A : (I − V ∗V )A(I − V V ∗) = {0}} (see [17,

Ch. I, Theorem 10.2(ii)]). �
Lemma 3.1. Let 〈E , ‖·‖E〉 be a NIS on H, and let A ∈ E and X,Y ∈ B(H) be operators.

Then XAY ∈ E and ‖XAY ‖E ≤ ‖X‖ · ‖Y ‖ · ‖A‖E .
Proof. We have X∗X ≤ ‖X‖2I. Hence,

|XA|2 = A∗ ·X∗X ·A ≤ A∗ · ‖X‖2I ·A = ‖X‖2A∗A

and |XA| ≤ ‖X‖ · |A| since the function f(t) =
√
t, t ≥ 0, is operator monotone. Next, notice that

‖AY ‖E = ‖Y ∗A∗‖E . �
Proposition 3.2. Let 〈E , ‖·‖E 〉 be a NIS on H, an operator A ∈ (B(H))1 be left (or right)

invertible, and A−1
l ∈ E1 (respectively, A−1

r ∈ E1). Then the operator A lies in E1. In this case, if
the operator A is invertible and I ∈ extr(E1), then A−1 ∈ extr(E1).

Proof. Since the operator A2 lies in (B(H))1, we have A = A2A−1
l ∈ E1 (or A = A−1

r A2 ∈ E1,
respectively) by Lemma 3.1.

If A−1 /∈ extr(E1), then A−1 = 1
2 (S + T ) with some operators S, T ∈ E1, S �= T . Then

I = A−1A = 1
2 (SA + TA), where SA, TA ∈ E1 (see Lemma 3.1). Let us show that SA �= TA.

Assuming that SA = TA, we obtain S = SA ·A−1 = TA ·A−1 = T , a contradiction. �
Proposition 3.3. Let 〈E , ‖·‖E 〉 be a NIS on H, and let an operator A ∈ extr(E1) and a positive

integer n ≥ 2 be such that the operator B := An−1 is invertible and B−1 ∈ (B(H))1. If An ∈ E1,
then An ∈ extr(E1).

Proof. If An /∈ extr(E1), then An = 1
2 (S + T ) with some operators S, T ∈ E1, S �= T . Then

A = AnB−1 = 1
2 (SB

−1 + TB−1), where SB−1, TB−1 ∈ E1 (see Lemma 3.1). Let us show that
SB−1 �= TB−1. Assuming that SB−1 = TB−1, we obtain S = SB−1 · B = TB−1 · B = T ,
a contradiction. �
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Theorem 3.1. Let 〈E , ‖·‖E 〉 be a NIS on H and an operator A ∈ (B(H))1 ∩ extr(E1) be
invertible. Then E = B(H) and

(i) if A−1 ∈ E1, then A−1 ∈ extr(E1);

(ii) if A = U |A| is the polar decomposition and U ∈ E1, then U ∈ extr(E1).

Proof. If the NIS 〈E , ‖·‖E〉 contains a left (or right) invertible operator, then I ∈ E by
Lemma 3.1; i.e., E coincides with B(H).

(i) If A−1 /∈ extr(E1), then A−1 = 1
2 (S + T ) with some operators S, T ∈ E1, S �= T . Then

A = AA−1A = 1
2 (ASA + ATA), where ASA,ATA ∈ E1 (see Lemma 3.1). Let us show that

ASA �=ATA. Assuming that ASA=ATA, we obtain S =A−1 ·ASA · A−1 =A−1 ·ATA ·A−1 = T ,
a contradiction.

(ii) Since E = B(H), we have U ∈ E . If U /∈ extr(E1), then U = 1
2 (S + T ) with some operators

S, T ∈ E1, S �= T . Then A = U |A| = 1
2 (S|A| + T |A|), where S|A|, T |A| ∈ E1 (see Lemma 3.1). The

operator |A| is also invertible. Suppose that S|A|= T |A|. Then S = S|A| · |A|−1 = T |A| · |A|−1 = T ,
a contradiction. �

Theorem 3.2. Let 〈E , ‖·‖E〉 be a NIS on H and A ∈ B(H). Then

(i) A ∈ extr(E1) ⇔ VAW ∈ extr(E1) for all unitary operators V,W ∈ B(H);

(ii) if the space H is finite-dimensional, then A ∈ extr(E1) ⇔ |A| ∈ extr(E1).

Proof. (i) Let A ∈ extr(E1) and VAW = 1
2 (S + T ) with some operators S, T ∈ E1, S �= T .

Then

A = V ∗ · VAW ·W ∗ =
V ∗SW ∗ + V ∗TW ∗

2
, where V ∗SW ∗, V ∗TW ∗ ∈ E1

(see Lemma 3.1). Let us show that V ∗SW ∗ �= V ∗TW ∗. Assuming that V ∗SW ∗ = V ∗TW ∗, we
obtain S = V · V ∗SW ∗ ·W = V · V ∗TW ∗ ·W = T , a contradiction.

(ii) Let A ∈ extr(E1) and U ∈ B(H) be a unitary operator such that A = U |A|. If |A| =
1
2 (S + T ), where S, T ∈ E1, then US,UT ∈ E1 by Lemma 3.1, and A = 1

2 (US + UT ). Therefore,
A = US = UT . Multiplying these equalities by U∗ on the left, we obtain |A| = S = T ; i.e.,
|A| ∈ extr(E1). The reverse implication can be verified similarly. �

Corollary 3.1. Let 〈E , ‖·‖E〉 be a NIS on H. If U ∈ extr(E1) for some unitary operator
U ∈ B(H), then V ∈ extr(E1) for all unitary operators V ∈ B(H).

Proof. In assertion (i) of Theorem 3.2, we set A = U , V = V , and W = U∗. Thus, we see
that if (B(H))u ∩ extr(E1) �= ∅, then (B(H))u ⊆ extr(E1). �

If a C∗-algebra A is unital and the set A−1 is dense in A, then extr(A1) = Au (see [6, p. 100]).
Suppose that the space H is infinite-dimensional. The hereditary C∗-subalgebra C(H) of compact
operators in B(H) is not unital; therefore, extr((C(H))1) = ∅ by [17, Ch. I, Theorem 10.2(i)];
〈C(H), ‖·‖〉 is a NIS on H. For the sets of extreme points of the unit balls of some specific NISs
on H, see [10] and references therein.

The proofs of the following two statements are similar to those of Theorem 3.2 and Corollary 3.1.

Theorem 3.3. Let 〈E , ‖·‖E〉 be a NIS on H and A ∈ B(H). Then

(i) A ∈ extr(S1(E)) ⇔ VAW ∈ extr(S1(E)) for all unitary operators V,W ∈ B(H);
(ii) if the space H is finite-dimensional, then A ∈ extr(S1(E)) ⇔ |A| ∈ extr(S1(E)).

Corollary 3.2. Let 〈E , ‖·‖E〉 be a NIS on H. If U ∈ extr(S1(E)) for some unitary operator
U ∈ B(H), then V ∈ extr(S1(E)) for all unitary operators V ∈ B(H).
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4. QUANTUM CORRELATIONS GENERATED BY THE EXTREME POINTS
OF THE SET OF SINGULAR STATES

Suppose that the algebra of all bounded operators B(H) is generated by some von Neumann
factor M and its commutant M′, so that B(H) = M∨M′. Suppose that there exist two sets of
resolutions of the identity, P (k) =

(
P

(k)
j

)
and Q(l) =

(
Q

(l)
m

)
, that belong to the factors M and M′,

respectively. Fix a state ρ ∈ (B(H))∗. Then we can define a matrix of quantum correlations by the
formula

α
(kl)
jm = ρ

(
P

(k)
j Q(l)

m

)
. (4.1)

Since the orthogonal projections from the sets P
(k)
j and Q

(l)
m pairwise commute, we can identify

the resolutions of the identity P (k) and Q(l) with quantum observables with discrete spectrum. In
this case, the matrix (4.1) defines quantum correlations between observables. Studying the set of
such quantum correlations is a complicated mathematical problem related to the solution of old
hypotheses in the theory of operator algebras [13, 2]. Our goal is to define quantum correlations in
the case when ρ is a singular quantum state defined by a nonprincipal ultrafilter.

Let F be a nonprincipal ultrafilter on the set of positive integers N defined by a two-valued
measure ν, let e = (en) be an orthonormal basis in the Hilbert space H, and let ρF ,e be an extreme
point of the set of singular states which is defined by

ρF ,e(A) =

∫

N

(Aen, en) dν(n). (4.2)

Definition 4.1. An ultrafilter F is said to have a base consisting of sets Xn if for any X ∈ F
there exists an Xn ⊂ X.

Example. Everywhere below we use the ultrafilter F with a base consisting of the sets Xn =
{2nk : k ∈ N}, n ∈ N.

Definition 4.2. Denote by Pn the set of all projections P for which there exists an X ∈ F
such that |(Pek, ek)| = 2−n, k ∈ X.

It is easy to see that ρF ,e(P ) = 2−n, P ∈ Pn.

Proposition 4.1. In Pn there exist 2n pairwise commuting projection-valued resolutions of
the identity P (k) and Q(l),

2n∑
j=1

P
(k)
j =

2n∑
m=1

Q(l)
m = I, 1 ≤ k, l ≤ 2n,

with the property
(
P

(k)
j Q(l)

m es, es
)
=

1

4n
, s ∈ X,

where X is the set from Definition 4.2.

Proof. One can easily construct a family of projections with the required properties in the
Hilbert space C

4n. Indeed, to construct the matrices, one should use 2n mutually unbiased or-
thonormal bases, so that their diagonal entries are equal to 1

2n . It is known that there exist N + 1
families of projections of the required type in a space of dimension N = 2n. The only basis for
which the corresponding projection matrices have ones or zeros on their diagonals is not used. Let

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 324 2024



16 G. G. AMOSOV et al.

us demonstrate this for n = 1. In this case, we have to construct 4× 4 matrices. Set

P
(1)
1,2 =

⎛
⎜⎜⎝

1
2 ± 1

2 0 0
± 1

2
1
2 0 0

0 0 1
2 ± 1

2
0 0 ± 1

2
1
2

⎞
⎟⎟⎠ , Q

(1)
1,2 =

⎛
⎜⎜⎝

1
2 0 ± 1

2 0
0 1

2 0 ± 1
2

± 1
2 0 1

2 0
0 ± 1

2 0 1
2

⎞
⎟⎟⎠ ,

P
(2)
1,2 =

⎛
⎜⎜⎝

1
2 ± i

2 0 0

± i
2

1
2 0 0

0 0 1
2 ± i

2
0 0 ± i

2
1
2

⎞
⎟⎟⎠ , Q

(2)
1,2 =

⎛
⎜⎜⎝

1
2 0 ± i

2 0

0 1
2 0 ± i

2
± i

2 0 1
2 0

0 ± i
2 0 1

2

⎞
⎟⎟⎠ .

For spaces of larger dimension, one should take all possible tensor products of the matrices
P

(l)
j and Q

(k)
m , 1 ≤ j,m, l, k ≤ 2. Now, in the infinite-dimensional space H, it suffices to take the

representation of the obtained resolutions of the identity that is an infinite direct sum of projections
in C

4n. �
Consider the Gelfand–Naimark–Segal representation π associated with the state ρF ,e in the

Hilbert space H, in which the state ρF ,e becomes a vector state, so that

ρF ,e(A) = (π(A)Ω,Ω)H, A ∈ B(H), Ω ∈ H, ‖Ω‖ = 1.

Denote by MF the von Neumann algebra generated by the resolutions of the identity π(P (k)), where
P (k) are as constructed in the proof of Proposition 4.1.

Theorem 4.1. The von Neumann algebra MF is a factor of type II1, and the state on it
defined by the vector Ω is a trace.

Proof. As already mentioned, the sets of projections P (k) can be identified with quantum
observables. Such observables can be obtained by taking a linear combination of projections with
some coefficients that define the spectrum of the observable. In particular, if the spectrum is given
by the numbers λ = ε1 . . . εk with εj chosen from among one of the two values of

√
−1, then as an

observable we obtain an operator unitarily equivalent to the tensor product of k Pauli matrices in the
space C

2. Thus, we can assume that the factor MF is generated not by resolutions of the identity
but by unitary operators that are tensor products of Pauli operators. The product (composition)
of such operators does not take us beyond this class. It remains to notice that the restriction of the
state ρF ,e to an operator unitarily equivalent to the tensor product of Pauli matrices in the above
sense gives zero if at least one cell contains a matrix unitarily equivalent to σx or σy, and gives ±1
otherwise. Such a state is a trace state. The factor property of the algebra MF is inherited from
the similar property in a finite-dimensional space. �

Remark 4.1. A similar statement can be proved for the factor M′
F generated by the resolu-

tions of the identity Q(l).
Remark 4.2. In [4, 5], the authors conjectured that all extreme points of the set of states have

the form (4.2). A disproof of this conjecture assuming the continuum hypothesis was given in [1].
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