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Abstract. This paper describes a design and an implementation of a
small-scale robotic transportation system, which operates in a smart
hospital environment. Within a proposed framework unmanned ground
vehicles (UGV) perform transportation tasks between multiple stations
that are located in different rooms. The UGVs navigate in the environ-
ment with moving objects in accordance with basic traffic rules, which
consider priorities of particular tasks of each UGV. UGVs’ behavior is
defined by a state machine and transitions between these states, which
allows to make the robots’ behavior more predictable and controllable.
Virtual experiments were carried out in a simulation of an entire floor of
a small-size hospital building using the Gazebo simulator. The experi-
ments confirmed that using various task priorities shorten a path length
of robots with high priorities and thus reduce their task execution time.
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1 Introduction

Along with industrial robots, service robots need to maintain accuracy and speed
while performing various operations. In contrast to industrial robots, service
robots operate in the same space with humans and other robots. This requires
robots to operate according to some predefined rules to ensure predictability of
the behavior and thus a more productive joint work with a human staff [11,23].

In the context of hospital environments, a transportation of objects is one
of daily routines that could be delegated to service robots [16]. Currently,
most transportation related tasks are performed manually and thus are human
resource consuming, e.g., a patients’ caring process involves delivering and col-
lecting various objects several times a day. In turn, an automated transportation
system (based on mobile service robots) allows to liberate hospital staff from
transportation tasks [26] and benefits from a larger transport capacity, a possi-
bility to optimize delivery routes, centrally assign priorities in task performance,
and thus schedule a delivery order [8,9].

The paper is organized as follows. Section 2 summarizes related research
including review of task based architecture, task manager and its GUI. In Sect. 3
a state machine structure and its implementation using the SMACH library is
described [5]. Section 4 outlines robot movement rules, the corresponding states
and transition conditions. Sections 5 and 6 describe a virtual environment setup
for the system testing and experimental results. We conclude in the last Section.

2 Related Work

The main task of service robots, which are increasingly used in hospitals, is an
automation of items delivery, which frees up staff time and increases an over-
all efficiency of such organizations [18]. One approach suggested using a mobile
robot designed to automate delivery of medical items from one ward to another
in a hospital [10]. The mobile platform Nomadic XR4000 used fluorescent lights
of ceilings in order to determine its position and orientation. In [13] authors
proposed a solution to improve the logistics of delivering items by robots by
reducing a path traveled by the robots and task scheduling schemes, named deep
Hungarian (d-Hungarian) and deep Voronoi (d-Voronoi). Paper [24] presented a
task management problem for a mobile robot operating in an environment with
humans and receiving new tasks from them. In our paper, we focus on an exces-
sive autonomy of service robots, which implies a typical lack of a mechanism to
interrupt (and control) ongoing tasks that are currently executed by the robots.

Bač́IK et al. [3] described an approach, which included development of both
hardware and software for a robot that performs delivery tasks in hospitals.
It included a development of a powerlink interface to transfer data between a
robot and a powerlink-compatible hardware, and improved a local path using
Pure Pursuit Path Tracking Algorithm, which made initial path smoother and
created a more continuous movement of the robot [4,7].
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Fig. 1. Main menu of the task manager GUI.

3 Tasks with Priorities Scheduler Implementation

We designed a system that assumes robots being engaged in transportation tasks
in accordance with a list of tasks assigned to a robot and priorities of these tasks.
Tasks are assigned via a graphical user interface (GUI). The GUI allows to assign
a station (position) identifier to a task and to select an identifier of a robot that
will perform the task. Each station corresponds to a particular position on a
hospital map. Optionally, it is possible to set a waiting time after arriving to
a station. When leaving “wait time” field blank, the robot’s state changes to
WAIT FOR GOAL immediately upon a successful arrival to the task station.
The task manager stores existing active tasks as queues (separately for each
robot) and transfers started and completed tasks into appropriate states. Robots
notify the manager when they start or finish a task.

The GUI main menu is shown in Fig. 1. A top panel is a list of tabs consists
of a main menu tab and tabs for each robot. To display a status of tasks for an
individual robot, tabs are provided for each launched robot. An example of a tab
for a particular robot is shown in Fig. 2. The left side of the main menu contains
functions for assigning tasks. The selection of all parameters (except the optional
“wait time” parameter) is implemented as a drop-down list. A drop-down list of
available robots is filled according to a list of names of robots to be launched.
A station list is a set of station identifiers with station coordinates associated
with each identifier. A priority list is a simple set of numbers from 0 to 9 that
determines a position of a task in a robot’s task queue. A priority of a task
executed by a robot also determines the priority of a robot in the movement
rules that the robots follow when navigating in a hospital.
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Fig. 2. Robot panel of the task manager GUI.

A task workflow works as follows. After a user assigns a task, the task is stored
in the task manager’s list of all tasks and is sent to a robot (to which the task is
assigned). Each robot has its own task queue, which is updated each time a new
task is assigned. When the robot receives a new task, the task is stored in the
robot’s queue and the queue tasks are reordered according to their priorities. The
robot always executes the highest priority task from its queue. The task manager
keeps track of all task states by receiving updates when the robot changes its
task state to another. All assigned tasks are displayed in the GUI having either
ongoing, pending (queued) or completed status. A task is considered completed
when the robot has successfully arrived to its designated station and, depending
on a presence of the wait time parameter, has waited there for a specified time.
After these conditions are met, the robot starts executing a next task from the
queue, having previously informed the manager of a completion of a current
task and a start of a new one. The tasks are stored as objects. A structure and
a description of task fields are shown in Table 1.

4 Movement Rules Model

4.1 State Machine Implementation with SMACH

An overall behavior of a robot is defined by a finite state machine with vari-
ous transitions from one state to another. The transitions depend on outcomes
of a current state. Each state has its own set of outcomes, so that each state
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Table 1. Task object fields description.

Field Description

id Unique identifier

isDone Boolean value, set to true when a task is completed

isCurrent Boolean value, set to true when a task execution starts

goalId Unique identifier of a station on a map

taskType Determines a robot task

robotName Determines to which robot the task is assigned

waitTime Optional value, a time that robot should wait after a task is
completed

termination is accompanied by a transition to another state in accordance with
an outcome of a previous state. The finite state machine structure was imple-
mented by using the SMACH package, which is freely available and compatible
with the Robot Operating System (ROS) framework [20]. The SMACH package
provides a task-level architecture for a complex robot behavior that allows to
create state machines (or state containers), define their hierarchy using nested
finite state machines, introspect states, state transitions and data flow between
them at runtime, etc. This approach facilitates a task of controlling a robot
behavior by decomposing its intended behavior into corresponding states, and
allows the robot’s states to be handled using data transitions between the states
and conditions under which the robot changes its behavior. Table 2 lists the
implemented robot states and their descriptions. The structure of the imple-
mented state machine is shown in Fig. 3 as a visualization provided by the pack-
age smach viewer [6]. WAIT FOR GOAL and NAVIGATE TO GOAL as active
states are shown on the left and right sides, respectively.

Fig. 3. SMACH active states smach viewer package visualization.
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Fig. 4. System block diagram.

Figure 4 shows a block diagram of the developed application. On launch, the
task manager module reads the lists of stations and robots. They can be selected
through the GUI. When the task options are selected and a task is sent, it is being
passed and saved by a robot that is responsible for completing the task. The
robot, initially in WAIT FOR GOAL state, transits to NAVIGATE TO GOAL
state as soon as the new task appears in the list of its tasks. While navigating,
conditions for transition to PASS and YIELD states are checked. In the case of
transition to one of these states, a navigation to the task station is suspended
until the robot returns to NAVIGATE TO GOAL state. As soon as robot reaches
the station, its state changes to EXECUTING GOAL state, which simulates a
process of completing the task. A transition from this state implies a completion
of the task, and the robot’s state changes to the initial WAIT FOR GOAL state.
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Table 2. Robot behaviour states description.

State Description

NAVIGATE TO GOAL Robot autonomously navigates to a point
specified in a task

EXECUTING GOAL Robot executes goal, i.e. waits for a time specified
by a user

WAIT FOR GOAL Robot waits until a goal is received

YIELD Robot gives a way to a higher priority robot
(HPR): drive off to a side from HPR’s direction

PASS Robot gives a way to a higher priority robot
(HPR): stop and wait until HPR passes

4.2 Describing Movement Rules with a Behavioral State Machine

While performing their tasks, robots should move from one station to another,
ensuring the freest possible movement both for robots performing high-priority
tasks and for humans (patients, guests, and staff), whose priority is always higher
than that of the robots. To satisfy these conditions, a model of movement rules for
robots was developed and implemented into the state machine. Currently, two
additional states are implemented, each describing the robot’s behavior when
giving a way to a robot performing a task with higher priority. The list of imple-
mented and tested rules for the movement is as follows:

1. When two robots approach each other, a robot with a lower priority task
(lower priority robot, LPR), after approaching within 4 m, must give way
to the second robot (higher priority robot, HPR), changing the direction of
motion by 90 degrees relative to an HPR motion direction and moving 70 cm
in that direction. The robots are considered to be moving toward each other
when a difference between a rotation angle (yaw) of one robot relative to
a map coordinate system and a rotation angle of the second robot relative
to the same system is less than or equal to 0.27 rad and a position of one
robot relative to the other along the X-axis (relative to the robot coordinate
system) is positive, i.e., the robots are directed toward each other. After the
HPR overtakes the yielding LPR (i.e., it is behind the point where the yielding
LPR left its original route), the LPR continues moving towards its task. This
rule corresponds to the state YIELD.

2. If two robots are moving in such a way that a LPR crosses the path of a HPR
(e.g., a LPR exits a room into a corridor where another robot is traveling
along, bypassing an exit from the room), the LPR must stop and wait for the
HPR to move away. It is assumed that the robot routes intersect when vectors
formed by two points (where the first point corresponds to coordinates of the
robot’s current position and the second is located at a distance of 2 m in
the direction of the robot’s movement) intersect and an absolute value of an
intersection angle is in the range of 1.47 to 2.87. The LPR continues to move
once the intersection condition is no longer satisfied. This rule corresponds
to the state PASS.
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The state YIELD is intended for the case when two robots move towards each
other and one of them (a LPR) should give a way to a HPR. The robot state
machine transitions to YIELD state when the conditions for the first movement
rule are satisfied. As the robots continue to approach each other, their local
planners begin to create a local path that considers another robot as an obstacle.
Without appropriate movement rules this may fore the robots to move in parallel
paths in the same direction (while trying to avoid each other) and deviate from
their global paths. Since the conditions for entering this state imply that a robot
is on the path of another robot, the behavior of the robot in the YIELD state
is implemented to move sideways far enough in a way that the local planner of
the HPR’s path does not (or only insignificantly) change its local path plan, and
thus does not significantly affect the execution time of the HPR’s task.

The state PASS also characterizes avoidance behavior, but involves a full
stop of a LPR under conditions where its continued motion will cross a local
path of a HPR. The state machine transitions to YIELD state when the second
movement rule conditions are satisfied. The LPR behavior in the PASS state
is a full stop and wait until the HPR passes in front of the LPR or until the
condition to transition to this state is no longer met.

In cases where multiple robots are in such situations at the same time, the
same rules are followed, and LPRs begin to perform the actions of the YIELD or
PASS states relative to the first HPR they encounter. When robots with equal
priorities fall under these conditions, a robot with a smallest remaining path
length to its station starts executing the YIELD/PASS behavior. If we assume
that a robot with a larger distance to its station should yield, a scenario could
be possible in which a robot located at a larger distance from its station would
eventually be forced to significantly increase its estimated path since it gives a
way to other robots with the same priority more frequently.

To work with the robot navigation, the navigation stack of the ROS frame-
work was used, along with move base, amcl [25], mapping [17], and other ROS
navigation core packages [14,15]. TEB local planner was used as a path planner
due to robustness and flexibility of it’s tuning provided by it’s parameters [21,22].

5 Virtual Environment Setup

Experiments were conducted in a Gazebo [1] simulated hospital provided by an
aws robomaker hospital world package [2]. The AWS hospital world depicts one
floor of a building, which consists of a lobby with reception and a waiting area,
staircases, various rooms including storage rooms, several patient wards and a
staff break room. A top view of the hospital environment is shown in Fig. 5.

Station signs were placed in the rooms to represent locations of some objects
that robots should interact with, or locations where they typically need to deliver
items. Experiments were conducted with two TIAGo Base and one Clearpath
Ridgeback robots. TIAGo Base is equipped with the Hokuyo URG-04LX-UG1
LIDAR sensor and Ridgeback is equipped with the Hokuyo UST-10LX LIDAR
sensor, which is essential for performing localization and navigation.
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Fig. 5. Top down view of the Hospital World.

6 Virtual Experiments

At the beginning of the test runs, two TIAGo Base and one Clearpath Ridgeback
robots were placed in different rooms of the virtual hospital; all state machines of
the robots were in the state WAIT FOR GOAL. Next, the robots were assigned
task sequences through the task manager GUI. The tasks had different prior-
ities in a such way that the robots encounter each other while navigating to
their stations and some robots would be forced to give way to others, i.e., at
least once a transition from state NAVIGATE TO GOAL to states YIELD or
PASS occurs. After the robots received the tasks, their state changed to NAVI-
GATE TO GOAL of the nested TASK state machine and they started navigat-
ing to the stations associated with tasks.

During the navigation, a LPR (with a lower priority task) encountered a
HPR. An example visualized with the rviz [12] package is shown in Fig. 6. The
paths built by the path planners are shown with curves: the yellow curve belongs
to the Ridgeback and the red ones correspond to the TIAGo Base paths. Depend-
ing on the encounter conditions, the LPR (the TIAGo Base on the right), either
transitioned to the YIELD state and made a way for the HPR (the Ridgeback
on the left), or it transitioned to the PASS state and stopped to wait for the
HRP to move further along its path.

Figure 7 shows two TIAGo Base robots freeing a way for the Ridgeback.
The TIAGo Base approaching the higher priority Ridgeback entered the YIELD
state, since the conditions for the first rule were met, and swerved aside to let it
pass so that the local plan of the Ridgeback (yellow line) does not change. The
local path of the TIAGo Base (red line above TIAGo Base on the right side of
Fig. 7) changed accordingly to the rule YIELD. After the HPR traveled a suf-
ficient distance, the yielding robot’s state returned to NAVIGATE TO GOAL,
and the robot continued towards its station. The experiment continued until



Prioritizing Tasks within a Robotic Transportation System 191

Fig. 6. The Clearpath Ridgeback (left) and TIAGo Base (right) robots are moving
towards each other.

Fig. 7. The TIAGo Base robot in the active state YIELD gives way to the Ridgeback
robot. (Color figure online)

all robots completed their tasks and returned to their initial state NAVI-
GATE TO GOAL.

7 Conclusion and Future Work

This paper presented the framework and the implementation of a small-scale
robotic transportation system, which operates in a smart hospital environment.
The unmanned ground vehicles (UGV) performed transportation tasks between
multiple stations that were located in different rooms. The UGVs navigated in
the environment with moving objects in accordance with basic traffic rules, which



192 R. Safin et al.

consider priorities of particular tasks of each UGV. UGVs’ behavior was defined
by a state machine and transitions between these states, which made the robots’
behavior more predictable and controllable. Virtual experiments were carried out
in the Gazebo simulation of an entire floor of a small-size hospital building. The
experiments confirmed that using various task priorities shorten a path length
of robots with high priorities and thus reduce their task execution time.

While the original system was designed for a dynamic hospital environment,
it could be extended for other environments where the problem of labor shortage
or performance arises. As a part of the future work we plan to expand UGV
movement rules model with a human detection [19] and avoidance.
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