
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Nonperturbative renormalization of the interaction of quantum dots with
the phonon reservoir
To cite this article: R Kh Gainutdinov et al 2020 J. Phys.: Conf. Ser. 1628 012005

 

View the article online for updates and enhancements.

This content was downloaded from IP address 85.140.3.113 on 27/10/2020 at 10:41

https://doi.org/10.1088/1742-6596/1628/1/012005
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvBwKEF0HAL3ueZbhwhhnS8VJRoHxab-ppsrVUKGzk4wxi0kl9P4VVqpxMjAmgs0yZ3SwQmBP3sg5TL1Bg2_Q3M1hT_lQxn1ypX0qrIasWyTiiuC12ygnNV9g8xfHNhhfAsIxqguwEBcmY_JCUxgQyH_xt9YMF-N31lhBxdlpxzAXqGdsDXkmVJsR034EQNX1Z67GFhpO_Dgn9-ILFnkbCFkST7D6VZjRKUwozWballdZJvQg7R&sig=Cg0ArKJSzJZrRxKPx7zV&adurl=http://iopscience.org/books


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

COOS 2019

Journal of Physics: Conference Series 1628 (2020) 012005

IOP Publishing

doi:10.1088/1742-6596/1628/1/012005

1

Nonperturbative renormalization of the interaction 
of quantum dots with the phonon reservoir

R Kh Gainutdinov1,2, L J Nabieva1, A I Garifullin1 and A A
Mutygullina1

1 Kazan Federal University, Institute of Physics, 420008, Kremlevskaya St, 18, Kazan, Russian
Federation
2 Tatarstan Academy of Sciences, Institute of Applied Research, 420111, Bauman St, 20,
Kazan, Russian Federation

E-mail: Renat.Gainutdinov@kpfu.ru

Abstract. The quantum dynamics of a single quantum dot with phonon reservoir is
investigated by making use generalized quantum dynamics equation [Gainutdinov R.Kh. 1999 J.
Phys. A 32 5675]. The self-energy function is calculated nonperturbatively taking into account
the renormalization of the vertex function. In this paper, we show that the nonperturbative
renormalization of the vertex function significantly affects the nature of the interaction of the
quantum dot with the phonon reservoir.

1. Introduction
A practical implementation of a quantum computer should protect the qubit from destructive
interaction with the environment, as well as the ability to perform logical operations on the
qubit using various gates. Dephasing processes caused by the nondissipative exchange of
information between quantum systems and environments are one of the obstacles to the creation
of devices for quantum information [1–3]. However, a significant contribution to the qubit-
environment interaction comes also from quantum fluctuations in which the environment degrees
of freedom manifest themselves in a virtual state. Solving these problems requires not only the
development of experimental methods, but also theoretical ones. Some, at first glance, formal
problems may require a different approach. Successful development of methods of quantum
electrodynamics (QED), such as waveguide QED [4], cavity QED [5] and circuit QED [6, 7]
allows one to describe the quantum dynamics of these systems. However, some problems require
a more careful approach. Because of nonlocality of the interaction problems associated with
ultraviolet divergences arising in quantum field theory are solved in quantum electrodynamics
by renormalization. However, as Richard Feniman said: ”Renormalization theory is simply a
way to sweep the difficulties of the divergences of electrodynamics under the rug” [8]. So, it
is important to understand that the renormalization procedure is not formal, but has a deep
physical meaning. As we show, renormalization theory are important not only for eliminating
divergences, but also for the nature of self-energy processes. There are two kind of physical
processes that give contribution to the self-energy function. That are the off-shell quantum
fluctuation processes keeping the system in the initial state, and decaying processes in the case
when the state is unstable. In this paper, we show that the nonperturbative renormalization of
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the vertex function significantly affects the nature of the interaction of the quantum dot with
the phonon reservoir. Under this point we consider processes of quantum fluctuations with
stationary qubit and phonon reservoir.

2. Method
To describe the processes associated with quantum fluctuations as a nonlocal-in-time interaction
we use generalized quantum dynamics (GQD) approach [9] that allows one to solve the problem
nonperturbatively. This method is based on the generalized dynamical equation (GDE) that has
been derived in [9] as the most general dynamical equation consistent with the current concepts
of quantum physics.

In a general case the time evolution of a quantum system is described by the evolution
equation

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 , (1)

where U(t, t0) is the unitary evolution operator,

U †(t, t0)U(t, t0) = U(t, t0)U
†(t, t0) = 1, (2)

with the group property

U(t, t′)U(t′, t0) = U(t, t0), U(t0, t0) = 1. (3)

The amplitude 〈ψ2|U(t, t0) |ψ1〉 can be represented as a sum of contributions from all alternative
ways of realization of the corresponding evolution process. Dividing these alternatives into
different classes, we can then analyse such a probability amplitude in different ways. For example,
subprocesses with definite instants of the beginning and end of the interaction in the system can
be considered as such alternatives. In this way the amplitude 〈ψ2|U(t, t0) |ψ1〉 can be written
in the form

〈ψ2|U(t, t0) |ψ1〉 = 〈ψ2 | ψ1〉+

t∫
t0

dt2

t2∫
t0

dt1〈ψ2|S̃(t2, t1) |ψ1〉, (4)

where 〈ψ2|S̃(t2, t1) |ψ1〉 is the probability amplitude that if at time t1 the system was in the state
|ψ1〉, then the interaction in the system will begin at time t1 and will end at time t2, and at this
time the system will be in the state |ψ2〉. Note that in general S̃(t2, t1) may be only an operator-

valued generalized function of t1 and t2, since only U(t, t0) = 1 +
t∫
t0

dt2
t2∫
t0

dt1S̃(t2, t1) must be

an operator on the Hilbert space. Nevertheless, it is convenient to call S̃(t2, t1) an ”operator”,
using this word in the generalized sense. In the case of an isolated system the operator S̃(t2, t1)
can be represented in the form

S̃(t2, t1) = exp(iH0t2)T̃ (t2 − t1) exp(−iH0t1), (5)

with H0 being the free Hamiltonian.
As has been shown in [9], for the evolution operator U(t, t0) given by equation (4) to be

unitary for any times t0 and t, the operator S̃(t2, t1) must satisfy the following equation:

(t2 − t1)S̃(t2, t1) =

t2∫
t1

dt4

t4∫
t1

dt3(t4 − t3)S̃(t2, t4)S̃(t3, t1). (6)

This equation allows one to obtain the operators S̃(t2, t1) for any t1 and t2, if the operators
S̃(t′2, t

′
1) corresponding to infinitesimal duration times τ = t′2− t′1 of interaction are known. It is
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natural to assume that most of the contribution to the evolution operator in the limit t2 → t1
comes from the processes associated with the fundamental interaction in the system under study.
Denoting this contribution by Hint(t2, t1), we can write

S̃(t2, t1) −−−−→
t2→t1

Hint(t2, t1) + o(τ ε), (7)

where τ = t2 − t1 . The parameter ε is determined by demanding that Hint(t2, t1) must be
so close to the solution of equation (6) in the limit t2 → t1 that this equation has a unique
solution having the behavior (7) near the point t2 = t1. Being a generalization of the interaction
Hamiltonian, operator Hint(t2, t1) is called the generalized interaction operator. One of the
energy representations of GDE (6) takes the form

dT (z)

dz
= −T (z)(G0(z))

2T (z), (8)

where

T (z) = i

∞∫
0

dτ exp(i(z −H0)t2)S̃(t2, t1) exp(−i(z −H0)t1). (9)

Being equivalent to the Schrodinger equation in the case when the interaction in a quantum
system is instantaneous, GDE allows one to extend dynamics to the case of nonlocal-in-time
interactions. This equation provides a new insight into many problems in atomic physics [10–13],
nuclear physics [9, 14–16] and quantum optics [17, 18]. The method allows one to take into
account from the every beginning that the contribution to the Green operator G(z), which comes
from the processes associated with the self-interaction of particles, has the same structure as
the free Green operator G0(z). For this reason it is natural to replace G0(z) by the operator

G
(v)
0 (z), which describes the evolution of the system when particles propagate freely or interact

with vacuum, and, hence, has the structure

〈
m′
∣∣G(ν)

0 (z) |m〉 =
〈m′ | m〉

z − Em − Cm(z)
(10)

with |m〉 being the eigenvectors of the free Hamiltonian (H0 |m〉 = Em |m〉). Other contributions

are described by the operator G(I)(z) = G
(ν)
0 (z)M(z)G

(ν)
0 (z)

G(z) = G
(ν)
0 (z) +G(I)(z) ≡ G(ν)

0 (z) +G
(ν)
0 (z)M(z)G

(ν)
0 (z), (11)

where the operator M(z) describes the processes in which some particles interact each with
other. The equations for C(z) and M(z) are derived from GDE. The equation for the function
Cm(z) referred to as the self-energy function reads

dCm(z)

dz
= −〈m|M(z)

(
G

(ν)
0 (z)

)2
M(z) |m〉 , 〈m | m〉 = 1, (12)

and the conditions
z − E(0)

m − Cm(z) = 0 (13)

determines the physical masses of particles. In the case when we deal with an atom and
|m〉 describes an atomic state, equation (13) determines the self-energy correction (the Lamb
shift) to the energy Em of the state |m〉. An approximative solution of this equation is

Em ≡ E
(0)
m + C

(0)
m (E

(0)
m ) ≡ E

(0)
m + ∆ELm − i

2Γm, with ∆ELm and Γm being the Lamb shift and
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the natural width of the energy level of the state |m〉 respectively. For this approximation to

be valid the variation of Cm(z) in the energy interval between E
(0)
m and Em must be negligible.

This is the case for atoms in free space. In fact, at leading order in α the equation for Cm(z) is
reduced to the equation

dC
(0)
m (z)

dz
= −〈m|HI

(
G

(ν)
0 (z)

)2
HI |m〉 , 〈m | m〉 = 1 (14)

with HI being the interaction Hamiltonian. By solving this equation with an appropriate
boundary condition we arrive at the ordinary expressions for the self-energy shifts and widths
of energy levels. However, in the case of quantum dots the variation of the self-energy function

in the relevant vicinity of the point z = E
(0)
m can be very significant and, as a result, the above

approximation is invalid. In this case the self-interaction function can not be parametrized by a
shift and a width, and one has to derive the self-energy function from a nonperturbative solution
of the equations for Cm(z) and M(z).

3. Exciton-reservoir interaction
Let us consider quantum dot strongly coupled with the resonator field and acoustic phonon
reservoir. To describe the processes of quantum fluctuation of quasiparticles between quantum
dot levels dressed by the resonator field and boson’s mode we use boundary conditions M (0)(z) =
HI . The IBM Hamiltonian describing phonons and exciton-phonon coupling reads [19,20]

HI =
∑
q

ωqb
∗
qbq +

∑
q

gqx(bq + b†q) |x〉 〈x|, (15)

where |x〉 is the vector of the excitonic state, q denote the different phonon modes with energy ωq,

the creation (b†q) and annihilation (bq) operators of phonons with momentum q and frequency ωq
obey the usual commutation relations for bosons, and gqx is the deformation potential coupling,
which depends on the material parameters of the host semiconductor and the exciton wave
function. So, the equation (14) can be written as

dCx,µ(z)

dz
= −

∑
ν

∑
µ

〈x, µ|HI |x, µ, ν〉 〈x, µ, ν|HI |x, µ〉
(z − Ex − Cx(z))2

. (16)

Here we take the average over reservoir degrees of freedom

Cx(z) =
∑
q

{
|g(q)|2(1 + n(q))

z − Ex − ω(q)
+
|g(q)|2n(q)

z − Ex + ω(q)

}
. (17)

In the case of low temperatures the self-energy function in the denominator of equation (16)
cannot be neglected. Substituting Cx(E) represented in the form

Cx(E) = (E − Ex)χ1 + C̃x (E) , (18)

(Ex is assumed to include the self-energy shift Cx (Ex)) with

χl =
dlCn,of (z)

dzl
(19)

into equation (18), and neglecting C̃x (E) that is small for the relevant energies we get

C(2)
x (E) =

∑
q

{
|g(q)|2Z2

1 (1 + n(q))

(E − Ex − ω(q) + i0)Z2
2

+
|g(q)|2Z2

1n(q)

(E − Ex + ω(q)− i0)Z2
2

}
, (20)
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where
Z2 = (1− χ1)

1
2 . (21)

The factor Z2 can be regarded as a constant renormalizing the exciton propagator. Appearance
of the factor Z1 manifests the fact that the renormalization of the exciton propagator must
be accompanied by a renormalization of the exciton-phonon coupling. An additional factor Z2

appears because of the renormalization of the propagators associated with external lines. Since
as usual Z1 = Z2, these constants in equation (20) compensate each other and we come back to
equation (17), in which the parameter Z2 does not manifest itself. However, there are physical
situations where this parameter and hence the self-energy function Cx(E) come into play. This,
for example, takes place in the case when the quantum dot is strongly coupled to a resonator.
In this case emitted spectrum depends on the exciton self-energy function [20].

4. Renormalization of the exciton-reservoir interaction
Let us now determine the parameter Z1 renormalizing the exciton-phonon coupling. The part
of the interaction operator Mqr(z) described by ladder diagrams that are formed by successively

substituting terms HqrG̃0(z)HqrG̃0(z) . . . H̃qr into equation (9)

dML2
qr (z)

dz
= −HqrG̃0(z)

(
1− dCx(z)

dz

)
G̃0(z)Hqr, (22)

ML2
qr (z) = HqrG̃0(z)Hqr, (23)

dML3
qr (z)

dz
= −HqrG̃0(z)

(
1− dCx(z)

dz

)
G̃0(z)HqrG̃0(z)Hqr−

−HqrG̃0(z)HqrG̃0(z)HqrG̃0(z)

(
1− dCx(z)

dz

)
G̃0(z)Hqr,

(24)

ML3
qr (z) = HqrG̃0(z)HqrG̃0(z)Hqr = Hqr

(
G̃0(z)Hqr

)2
, (25)

MLn
qr (z) = Hqr

(
G̃0(z)Hqr

)n−1
. (26)

Note that the interaction operators Hqr in these equations are not connected with each other.
Thus the ladder terms can be represented as

ML
qr(z) = Hqr +

∑
n=1

Hqr

(
G̃0(z)Hqr

)n
. (27)

Other terms in the solution of the equation (27) contains loops associated with emission and
absorption of an quanta in the interaction process. Because we focus on the renormalization
of the exciton-phonon coupling we will restrict ourselves to the contributions from processes
described by a loop with one interaction Hamiltonian inside it:

〈x|Hqr |x, q〉+ 〈x|M(Ex + i0)G̃0(Ex + i0)HqrG̃0(Ex − Eq + i0)M(Ex + i0) |x〉 . (28)

In the limit q → 0 we get this equation

〈x;µ|Hqr |x;µ, q〉+ 〈x;µ|M(Ex + i0)G̃0(Ex + i0)HqrG̃0(Ex − Eq + i0)M(Ex + i0) |x〉 , (29)
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where the energy of the state |µ〉 of the reservoir is chosen to be zero energy point. In the limit
q → 0 this equation is reduced to the expression that after averaging over reservoir degrees of
freedom takes the form

gx + gx
∑
µ

Pµ 〈x;µ|M(Ex + i0)G̃2
0(Ex + i0)M(Ex + i0) |x;µ〉 =

= gx

(
1− dCx(z)

dz

∣∣∣∣
z=Ex

)
= gxZ

2
2 .

(30)

Here we have taken into account equations (19,21). From this it follows that Z2 = Z1. For this
reason parameters Z1 and Z2 compensate each other. Thus the vertex Γx(q) can be represented
in the form

Γx(q) = gx + Λ(q)− Λ(0), (31)

and, as a consequence,

Λ(q) =
∑
µ

∑
q

〈x;µ|M(Ex + i0) |x;µ, q1〉 〈x;µ|Hep |x;µ, q2〉 〈x;µ, q1|M(Ex + i0) |x;µ〉
(−Eq1 + i0) (−Eq1 − Eq + i0)

. (32)

This expression can be rewritten as

Λ(z, q) =
SHR
ω2
b

∞∫
0

ω3(q1)e

(
−ω2(q1)

2ω2
b

)
×
(

1 + n(q1)

(z − Ex − ω(q1))(z − Ex − ω(q1)− ω(q))
+

+
n(q1)

(z − Ex + ω(q1))(z − Ex + ω(q1) + ω(q))

)
dω(q1).

(33)

Then the self-energy is redefined as

C(2)
x (z) =

SHR
ω2
b

∞∫
0

ω3(q)e

(
−ω2(q)

2ω2
b

)
×
{

1 + n(q)

z − Ex − ω(q)
+

n(q)

z − Ex + ω(q)

}
× [Λren(z, q)]2dω(q),

(34)
where

Λren(z, q) = Λ(z, q)− Λ(z, 0). (35)

Figures (1) and (2) show the dependence of the derivative of self-energy function at z = Ex
on the Huang-Rhys [20–22] parameter, which determines the strength of the electron-phonon
interaction, and temperature, taking into account the correction from the vertex function.

5. Conclusion
In conclusion, we investigated the self-interaction effect on quantum dynamics and self-energy
function of quantum dot interacted with acoustic phonon reservoir. The dependence of the self-
interaction processes on energy means that here the non-markovian effects manifest themselves.
In other words, the nonlocality in the time of interaction of the qubit with the reservoir is
manifested here. It is interesting that the exact derivative of the exciton self-energy function
χ1 appears in the renormaliztion procedure and from this it follows that Z1 = Z2. This
dimensionless parameter provides us a very important information about the processes of
dephasing and decoherence. It is shown that nonperturbative and perturbative calculations
differ significantly for realistic Huang-Rhys parameters.
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Figure 1. The derivative of the self-energy function χ1 = dC(z=Ex)
dz as a function of Huang-Rhys

parameter (left) and temperature (right).

Figure 2. The derivative of the self-energy function χ1 = dC(z=Ex)
dz by perturbation theory and

beyond ones at SHR = 0.2 (left) and SHR = 0.6 (right).
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