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Abstract
Crystallization of supercooled liquids is mainly determined by two competing processes
associated with the transition of particles (atoms) from liquid phase to crystalline one and, vice
versa, with the return of particles from crystalline phase to liquid one. The quantitative
characteristics of these processes are the so-called attachment rate g+ and the detachment rate
g−, which determine how particles change their belonging from one phase to another. In the
present study, a correspondence rule between the rates g+ and g− as functions of the size N of
growing crystalline nuclei is defined for the first time. In contrast to the well-known detailed
balance condition, which relates g+(N) and g−(N) at N= nc (where nc is the critical nucleus
size) and is satisfied only at the beginning of the nucleation regime, the found correspondence
rule is fulfilled at all the main stages of crystallization kinetics (crystal nucleation, growth and
coalescence). On the example of crystallizing supercooled Lennard–Jones liquid, the rate g−

was calculated for the first time at different supercooling levels and for the wide range of
nucleus sizes N ∈ [nc; 40nc]. It was found that for the whole range of nucleus sizes, the
detachment rate g− is only ≈2% less than the attachment rate g+. This is direct evidence that
the role of the processes that counteract crystallization remains significant at all the stages of
crystallization. Based on the obtained results, a kinetic equation was formulated for the
time-dependent distribution function of the nucleus sizes, that is an alternative to the
well-known kinetic Becker–Döring–Zeldovich–Frenkel equation.

Keywords: phase transitions, crystal nucleation, crystal growth, crystallization kinetics,
molecular dynamics

(Some figures may appear in colour only in the online journal)

1. Introduction

Crystallization of supercooled liquids directly depends on
kinetic and thermodynamic factors [1–4]. Thermodynamic
factors include the interfacial free energy as well as the dif-
ference in chemical potentials between two initial (mother)

∗
Author to whom any correspondence should be addressed.

and new (daughter) phases [5–7]. Kinetic factors are primar-
ily rate parameters characterizing the frequency of particle
‘transitions’ from one phase to another (see figure 1). The
number of particles transferred from mother phase to daugh-
ter phase per unit time is usually called the attachment rate
g+ [8, 9]. The inverse process associated with the return of
particles from new phase to mother phase is characterized by
the value g−, which is usually denoted as the detachment rate
[10]. Both quantities g+ and g− depend on the size of a new
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Figure 1. Schematic representation of the processes that promote and prevent the nucleus growth on the example of filling a water reservoir.
The process of particle attachment to a nucleus can be compared to the process of filling a reservoir, whereas the detachment of particle
from a nucleus is similar to the leakage of water from a reservoir.

phase nucleus and on its surface area. The larger the surface
area, the more probable that a particle located near the nucleus
will be able to proceed into the surface layer [11].

In the classical nucleation theory, it is assumed that the
shape of the new phase nuclei is spherical and the nuclei do
not contact with each other [12–15]. In this case, the surface
layer of the nucleus contains ∼N2/3 particles, where N is the
number of all particles forming the nucleus. Then the concen-
tration of nuclei with the sizeN depends only on the frequency
of addition/removal particles and it is determined by the mas-
ter equation of the following form:

dn(N, t)
dt

= g+(N− 1) · nN−1(t)+ g−(N+ 1) · nN+1(t)

− [g+(N)+ g−(N)]nN(t). (1)

Here, nN is the concentration of the nuclei with size N. Within
the framework of the classical nucleation theory, it is assumed
that for nuclei of near-critical size (i.e. whose size is N∼ nc)
the detailed balance condition is satisfied:

g+(N− 1)exp

(
−∆G(N− 1)

kBT

)
= g−(N)exp

(
−∆G(N)

kBT

)
,

(2)

where ∆G(N) is the minimal free energy required to form
a nucleus with size N. Condition (2) is usually applied to
express g−(N) in terms of the rate g+(N) at N≈ nc, which
makes it possible to simplify the solution of kinetic equations
for calculation of the crystal growth rate in the framework
of such well-known theories as the Wilson–Frenkel theory
[16], Turnbull–Fisher [17], Zeldovich [7]. Thus, the process
that counteracts crystallization is indirectly taken into account
through the applying the condition (2), and the fact that
this condition works only at the beginning of the nucleation
regime is usually ignored. Therefore, to obtain the correct
solution of the equation (1), it is necessary to find a corres-
pondence rule between the kinetic factors g+(N) and g−(N),
which will be fulfilled at all the main stages of crystallization
kinetics.

Estimation of the kinetic factors g+(N) and g−(N) can
be performed with known growth trajectories of crystalline
nuclei, for example, obtained using bright-field microscopy
[18], electron microscopy [19], nuclear magnetic resonance
(NMR) spectroscopy [20] or molecular dynamics simulations
[21, 22]. As a rule, experimental methods make it possible to
obtain only approximate values of the rates g+(N) and g−(N)
for crystallization under specific conditions. For example, in
the case of crystallization of some molecular glasses, such
as ortho-terphenyl, griseofulvin, indomethacin and nifedipine,
the structural ordering usually occurs on the surface of liquid
solution. The surface crystallization of these molecular glasses
is due to the fact that the self-diffusion of surface particles is
much higher than the bulk particles. Therefore, the particle
attachment and detachment events are easy to determine at
the presence of optical contrast between mother and daugh-
ter phases [18, 20, 23–25]. Recently, on the basis of NMR
spectroscopy data, the dynamics of particles was estimated
for the case of the growth of CaF2 and SrF2 fluoride crys-
tals in water [20]. In [20], the particle attachment events was
fixed by changing the position and intensity of the peaks
in NMR spectra, which are responsible for the formation of
the core part and the surface of crystallites. Despite the pro-
gress achieved in the development of experimental methods
for observing the particle attachment and detachment rates, the
method of molecular dynamics simulations remains the only
way to accurately calculate the quantities g+(N) and g−(N). In
molecular dynamics simulations, the trajectories of particles
that form both crystalline nuclei and the mother disordered
phase are known. This makes it possible to determine with
high accuracy the particle attachment/detachment process.

In the present work, we define the kinetic factor g− as a
function of the crystalline nucleus sizeN on the example of the
crystallizing supercooled Lennard–Jones (LJ) liquid. Section 2
discusses methods for estimating the kinetic factor g−(N). In
section 3, the obtained results are discussed. The possibility of
an accurate estimation of the kinetic factor g− is demonstrated
for crystalline nuclei, the size N of which varies over a wide
range N ∈ [nc; 40nc]. Section 4 presents the conclusions. The
computational details are given in appendix.
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2. Methods for calculating the kinetic factor g−

2.1. Method of direct calculation

Estimation of the rate g− for nuclei of arbitrary size and shape
can be carried out directly from molecular dynamics simula-
tions data. For this purpose, cluster analysis of the simulation
results is performed using the local orientational order para-
meters (see appendix and [22, 39]), and identification num-
bers are assigned to each particle. For example, the particles
that form crystalline nuclei are assigned the label ‘1’, while
the particles of the mother phase are denoted by the label
‘0’. In this case, the transitions of particles from one phase
to another are exactly fixed at each time t. Knowing the num-
ber of particles k− detached from the nucleus with size N in
a small time interval ∆t, we can determine the value g−(N)
from the following expression:

g−(N) = lim
∆t→0

〈
k−N (t)− k−N (t−∆t)

∆t

〉
. (3)

Here, the time interval ∆t coincides with the simulation time
step. The angle brackets ⟨. . .⟩ mean averaging over different
molecular dynamics iterations. Expression (3) does not con-
tain fitting parameters and approximations that ensures high
accuracy of the calculated N-dependence of the rate g− for a
wide range of the size N. The applicability of equation (3) also
does not depend on the thermodynamic conditions, in which
the crystallizing system is located.

2.2. Calculation using known nucleus growth rate and
attachment rate

According to the basic definition, the growth rate of new phase
nucleus is the difference between the attachment rate g+(N)
and the detachment rate g−(N) [26]:

ϑ(N) = g+(N)− g−(N). (4)

This expression corresponds to the case of isotropic growth
that occurs with the samemanner in all directions. On the other
hand, the growth rate ϑ(N) can be estimated as a function of
the sizeN from the system of equations for the time-dependent
growth rate ϑ(t) = dN̄(t)/dt and the average growth trajectory
N̄(t):

ϑ(N̄) =

{
ϑ= ϑ(t)
N̄= N̄(t)

. (5)

In fact, equation (5) set the equation for ϑ(N̄) in the parametric
form. Here, we takeN≡ N̄ and assume that the nucleus growth
rate ϑ at the time t must correspond to the N̄-sized nucleus at
the same time. Then from equations (4) and (5) we find expres-
sion for g−:

g−(N) = g+(N)−ϑ(N). (6)

Here, g+(N), ϑ(t), N̄(t) are the input parameters that can be
determined based on experimental data and simulation results
[22, 23]. The accuracy of the estimating g− by equation (6)

depends mainly on the correctness of the averaged growth tra-
jectory N̄(t).

2.3. Theoretical method

Assume that the crystallization of an atomistic system at some
stage is a mixture of crystalline nuclei and particles of mother
disordered phase. A change in the size of crystalline nuclei
occurs only as a result of the attachment and detachment of
particles [13]. Then, in accordance with the Turnbull–Fisher
kinetic model [12, 14, 27], the value of the quantity g− can be
approximately determined as follows:

g−(N)≃ γKN exp

[
∆G(N)
2kBT

]
. (7)

Here, the parameter KN ≃ 4N2/3 is the number of possible
places for detachment of particles on the surface of a spherical
nucleus. The quantity γ is the frequency parameter, which is a
fitting in the present study. For the case of nucleation from
the vapor this parameter can be defined via the expression
γ ≃ 6D/λ2, which is related with the self-diffusion coefficient
D and the mean free path of particles λ [13, 28]. According to
equation (7), it is required to expend energy equal to∆G(N)/2
to detach particles from the nucleus surface.

3. Estimated kinetic factors for crystallizing
supercooled LJ liquid

It is well known that the single-component LJ system is not
capable of forming a stable amorphous phase. The super-
cooled LJ liquid crystallizes by the mechanism of homogen-
eous crystal nucleation immediately after the cooling proced-
ure [29, 30]. Therefore, the supercooled LJ liquid is a con-
venient system for registering particle attachment/detachment
events in relatively short timescales. In the present study, we
consider the LJ liquid at the temperatures T = 0.3, 0.4 and
0.5ϵ/kB corresponding to supercooling levels 66%, 55% and
43%. The growth of the largest crystalline nucleus is taken into
account, which makes it possible to perform a more accurate
averaging of a single attachment/detachment rate. In this case,
the influence of other nuclei on the obtained results will be
minimal. The statistical treatment of the results is carried out
based on 100 independent molecular dynamics iterations.

Figure 2 shows that several crystalline nuclei capable of
stable growth are formed in the supercooled system. The con-
centration of such nuclei increases with decreasing temperat-
ure due to decrease in the activation energy required to the
formation of nuclei of the critical size nc [13, 14]. The values of
the average critical size nc and the average nucleation waiting
time τc are estimated by the method of inverted averaging the
growth trajectories of the largest crystalline nucleus [16, 22,
31, 32]. The critical size nc is about fifty particles at the tem-
perature T= 0.5ϵ/kB, while at the temperature T= 0.3ϵ/kB
for the system is more favorable the formation of nuclei of a
smaller critical size, where nc is 40–45 particles. The value of
the critical size nc is determined by the growth curves N̄(t) of
crystalline nuclei according to the scheme presented in [22];

3
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Figure 2. Crystal structure formed in the supercooled LJ liquid at the temperature T= 0.5ϵ/kB and at different times t: (a) t= 5τ ,
(b) t= 25τ , (c) t= 50τ and (d) t= 100τ . Different colors indicate separated crystalline nuclei.

Figure 3. (a) Reduced growth curves N̄(t)/nc of the largest nucleus versus the reduced time t/τc at various temperatures. The values of the
critical size nc and the nucleation waiting time τc are calculated based on simulation data and presented in table 1. (b) Growth rate ϑ
calculated by equation (5) based on molecular dynamics simulation data. (c) N/nc-dependence of the attachment rate g+ obtained by direct
calculation [22]. The dashed curves show the results of equation (8).

Table 1. Characteristics of the crystallizing system: temperature T;
critical size nc; average time τc for formation of critically-sized
nucleus; attachment rate g+nc for critically-sized nucleus; detachment
rate g−nc for the nucleus of critical size nc; values of the parameters
γ and ∆G/(kBT) in equation (7).

T, ϵ/kB nc τc, τ g+nc , τ
−1 g−nc , τ

−1 γ, τ−1 ∆G/(kBT)

0.5 52± 2 11± 1.3 355± 40 365± 40 6.3 2.0
0.4 48± 2 4.5± 0.6 352± 35 350± 35 7.8 1.8
0.3 45± 3 1.5± 0.2 295± 25 295± 25 8.2 1.5

the found values of the critical size nc are given in table 1.
At the initial stage of crystallization, the nuclei grow mainly
due to attachment of single particles, while at the final stage
of crystallization the nuclei grow by coalescing with smaller
crystallites according to the restructuring/absorption mechan-
ism [33]. We find that under the considered thermodynamic
(p, T)-conditions, the contact of crystalline nuclei is weakly
pronounced if their sizes do not exceed ∼20nc.

Figure 3(a) shows that the stable growth of the quantity N̄(t)
begins only after the appearance of the critically-sized nuc-
leus nc during the time τc (see table 1). The displacement of
the N̄(t)-curves towards longer times t with decreasing tem-
perature is associated with the suppression in crystallization
due to an increase in viscosity. As shown in figure 3(b), the
N-dependence of the nucleus growth rate ϑ also decreases
with decreasing temperature. The value of the growth rate ϑ

demonstrates a pronounced dependence on the nucleus size
in the range N ∈ [nc; 15nc]: the larger the nucleus, the higher
its growth rate. The growth of the nucleus slows down after
it reaches the size N≈ 20nc, which is indicated by the satur-
ation of the ϑ(N)-curves. This is mainly due to the fact that
the attachment rate and the detachment rate take similar val-
ues when the largest nucleus begins to absorb small crystallites
by the formation of a common crystal lattice [33]. Figure 3(c)
shows that the attachment rate g+ rapidly increases with the
nucleus size and reaches saturation only at the final stage
of crystallization. The dependence g+(N) for the size range
N ∈ [nc; 20nc] is reproduced by the power-law

g+(N) = g+nc

(
N
nc

)ξ+

. (8)

Here, g+nc is the attachment rate of particles to the nucleus of the
critical size nc (see table 1). The exponent ξ+ characterizes the
growth regime and takes the value ξ+ ≃ (1.0± 0.005). This
value corresponds to the limiting case, when the attachment
rate increases linearly with the nucleus size [16]. This growth
regime is specific for nuclei with a complex surface geometry,
the large area of which contributes to a rapid increase in the
number of attached particles. In the case of growth of the
nucleus whose shape is close to spherical (that is possible,
for example, at low supercooling levels), the linear regime

4
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Figure 4. Dependence of the kinetic factor g− on the nucleus size N: (a) at the temperature T= 0.3ϵ/kB, (b) T= 0.4ϵ/kB and
(c) T= 0.5ϵ/kB. The results of equations (3) and (6) are denoted as MD and MD-δ respectively. The dashed lines show the result of
equation (7) at the values of the fitting parameters γ and ∆G/(kBT) given in table 1. The dotted curves are the results of equation (9).

becomes less pronounced and the N-dependence of the quant-
ity g+ mainly follows the power law g+(N)∼ N2/3.

Figure 4 shows the N/nc-dependences of the detachment
rate g− at different temperatures calculated directly by expres-
sion (3) and compared with the results of equations (6) and
(7). At the considered temperatures, these dependencies are
increasing functions and have the same form as the N/nc-
dependences of the attachment rate g+. A good agreement
between the results of direct calculation and the data obtained
by equation (6) is due to the fact that the kinetic factors g+

and g− take close values. In this case, the attachment rate g+

in its values only slightly exceeds the values of the detachment
rate g−.

As can be seen from figure 4, good agreement between the
simulation data and theoretical results is observed only at the
temperature T= 0.5ϵ/kB corresponding to moderate super-
cooling. At other considered temperatures, the theory pro-
duces overestimated values of the quantity g− for nuclei with
sizes less than 20nc. This is due to the fact that in expres-
sion (7) the value g− is related to the nucleus size through the
law g−(N)∝ N2/3, which implies the detachment of particles
from the nucleus surface equally probable in all directions.
The small size of nuclei and their high concentration at low
temperatures, for example, at the temperatures T= 0.3ϵ/kB
and T= 0.4ϵ/kB, contribute to unevenly growth of crystal-
lites. Therefore, more accurate theoretical calculations with
equation (7) can be carried out only for the case of the so-
called kinetically limited growth, which occurs at low levels
of supercooling as well as at the stage of coalescence of crys-
tallites [33, 34].

The calculated N/nc-dependencies of the detachment rate
g− are reproduced by the power law

g−(N) = g−nc

(
N
nc

)ξ−

, (9)

which is similar to equation (8) for the attachment rate g+.
In equation (9), the exponent takes the value ξ− ≃ (0.995±
0.005) and does not depend on the thermodynamic state of
the system. It is noteworthy that the found value of the para-
meter ξ− is close to the value of the parameter ξ+: the dif-
ference between these parameters is ξ+ − ξ− ≃ 0.005. The

value of the parameter ξ− is close to unity, which indicates
the linear N/nc-dependence of the quantity g−. As can be seen
from figure 4, at the temperature T= 0.3ϵ/kB, the linear region
corresponds to the range N ∈ [nc; 25nc], while at T= 0.5ϵ/kB
such the region covers the narrow range N ∈ [nc; 15nc]. The
narrowing of the linear region with increasing temperature can
be associated with the transition to the scenario of kinetically
limited growth, when the detachment rate g− depends mainly
on the shape and surface area of the nucleus.

The presence of a small positive difference between ξ+ and
ξ− is due to the fact that the attachment rate g+ only slightly
exceeds the detachment rate g−. We assume that the paramet-
ers ξ+ and ξ− will always take close values for crystallizing
supercooled liquids, where the formation and growth of nuclei
occurs due to the competition between the particle attachment
and detachment processes. Then from equations (8) and (9) we
get the following correspondence rule:

g+(N)
g−(N)

≃
(
N
nc

)ξ+−ξ−

, (10)

which relates the quantities g+(N) and g−(N). This rule allows
us to express g+(N) in terms of the quantity g−(N) for nuclei
of arbitrary size. It follows from equation (10) that the detach-
ment rate g− is only ≈2% less than the attachment rate g+

for the whole range of nucleus sizes. Thus, this is direct evid-
ence that the role of processes that counteract crystallization
remains significant at all stages of crystallization.

Taking into account that g+nc = g−nc for the critically-sized
nucleus, from equations (1), (8) and (9) we find the follow-
ing master equation for calculating the rate of change in the
concentration of nuclei with size N:

dn(N, t)
dt

= g+nc

{(
N− 1
nc

)ξ+

nN−1(t)+

(
N+ 1
nc

)ξ−

nN+1(t)

}

− g+nc

[(
N
nc

)ξ+

+

(
N
nc

)ξ−
]
nN(t). (11)

In a specific case, for the crystallization regime at
N≫ nc we can assume that (N+ 1)/nc ≃ N/nc and

5
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(N− 1)/nc ≃ N/nc. Then equation (11) can be rewritten in
the following form:

dn(N, t)
dt

= g+nc

{(
N
nc

)ξ+

[nN−1(t)− nN(t)]

}

+ g+nc

{(
N
nc

)ξ−

[nN+1(t)− nN(t)]

}
(12)

or

dn(N, t)
dt

= g+nc

{(
N
nc

)ξ−
∂fN+1

∂N
−
(
N
nc

)ξ+
∂fN−1

∂N

}
, (13)

where

∂fN+1

∂N
=
nN+1(t)− nN(t)
(N+ 1)−N

, (14)

∂fN−1

∂N
=
nN(t)− nN−1(t)
N− (N− 1)

. (15)

Thus, equation (11) is an alternative to the well-known kinetic
Becker–Döring–Zeldovich–Frenkel equation [7, 35, 36].

4. Conclusions

In the present work, for the first time, the process inherent in
crystallization, which determines it and counteracts the trans-
ition of particles from the liquid phase to the crystalline one,
is considered in detail. Various methods for estimation of the
detachment rate g− as a function of the crystalline nucleus
size N were presented: the method of direct calculation based
on the results of molecular dynamics simulations (expres-
sion (3)); the method based on the known nucleus growth
rate ϑ(N) and the attachment rate g+(N) (expression (6)). On
the example of homogeneous crystal nucleation in the super-
cooled LJ liquid, it is shown that these methods allow one
to correctly calculate the dependence of the kinetic factor g−

on the nucleus size for the wide range of sizes N ∈ [nc; 40nc]:
from the stage of nucleation of stable crystallites to the final
stage of system crystallization. Such results have not been pre-
viously reported in the scientific literature.

The effects associated with a certain finite size of the sim-
ulation cell—the so-called ‘finite size effects’—can indeed
affect the results for the kinetic factors g+ and g−. The role
of these effects depends on supercooling level of the sys-
tem. In addition, these effects become more pronounced at
the stages of crystallization, at which the linear dimension of
growing nuclei become comparable to the size of the simula-
tion cell, and when the concentration of nuclei becomes signi-
ficant. More specifically, the finite size effects directly determ-
ine the start of saturation for the size-dependent detachment
rate. However, in this study, the transition of the rate factors
to the saturation regime is not considered, but the main atten-
tion is paid to the general regime associated with a monotonic
increase in rates g+ and g− with the nucleus size N. Thus, the
finite size effects are naturally ignored in the study.

From a physical point of view, the values of the rate coeffi-
cients g+ and g− are determined by common kinetic and ther-
modynamic motives, which manifest themselves in the values
of viscosity, interfacial free energy, etc. In addition, the values
of these coefficients can also be determined by structural and
dynamic heterogeneities that arise in a liquid (even simple)
at strong supercoolings as well as by the effects associated
with the interactions of growing nuclei of a new (crystalline)
phase. All these effects can have a significant impact on crys-
tallization kinetics and they define the values of g+ and g−. In
the given study, the rate coefficients g+ and g− were found
directly on the basis of the corresponding registered events
related with attachment and detachment of monomers. Thus,
the g+ and g− values obtained using the applied calculation
scheme contain information about all the effects mentioned
above.

The results of theoretical calculations are revealed that the
N-dependence of the rate g− is not reproduced by any gen-
eral equation, for example, as equation (7), due to the mix-
ing of different crystal growth scenarios. The scenario of kin-
etically limited growth with g−(N)∼ N2/3 is realized at the
stage of formation of critically-sized nuclei. The realization of
this scenario was also discussed earlier in the works of Song
et al on the example of calculating the kinetic factor g+ in the
case of crystallization of amorphous pure Ni and Ni–Al alloys
[21]. The following scenario occurs when the detachment rate
increases linearly with the increasing nucleus size at the stage
of stable growth of nuclei. This scenario is quite expected in
the case of deep supercooling due to unevenly growth of crys-
talline nuclei [34]. At the stage of coalescence, transition to the
scenario close to kinetically limited growth is observed due to
the rearrangement of the crystal structure and the consolida-
tion of nuclei [33]. In this case, the detachment and attachment
kinetics of particles becomes equally probable in all directions.
It is important to note that the kinetic factors g+ and g− show
the same N-dependence regardless of the system supercooling
and these factors are related by the found correspondence rule.
This correspondence rule can be used to obtain more accurate
solution of kinetic equations as applied to the case of crystal-
lization of supercooled or glassy systems with more complex
interatomic interactions, for example, such as metallic alloys,
molecular systems and colloidal solutions.
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Appendix. Computation details

We consider the supercooled LJ liquid, which spontaneously
crystallizes according to the homogeneous scenario. The
simulation is performed using the LJ potential [30, 37]:

U(rij) = 4ϵ

[(
σ

rij

)12

−
(
σ

rij

)6
]
. (16)

Here, σ is the effective diameter of the particle (atom or
molecule), ε is the depth of the potential well, rij is the dis-
tance between particles i and j. The cutoff radius is rcut = 2.5σ
and we have U(rij) = 0 at rij ⩾ rcut. For the considered LJ sys-
tem we have σ= 1 and ε= 1. Particles in the count 13500
are located inside the cubic simulation cell with side lengths
Lx ≈ Ly ≈ Lz ≈ 15σ. Periodic boundary conditions apply in all
directions. Integration of the equations of motion is carried out
with the time step ∆t= 0.01τ , where τ is the time unit.

Liquid samples of the system were brought to a thermo-
dynamic equilibrium at the temperature T= 2.5ϵ/kB on the
isobar p= 2.0ϵ/σ3 (kB is the Boltzmann constant). Super-
cooled samples were obtained by rapid cooling of the liquid
to the temperatures T = 0.3, 0.4 and 0.5ϵ/kB at the isobar
p= 2.0ϵ/σ3. The cooling rate is 0.02ϵ/(kBτ), which in the
case of a real system corresponds to ∼1× 1012 Ks−1. At the
considered temperatures, the supercooling of the system is
(Tm −T)/Tm = 0.66, 0.55, and 0.43 respectively. Here, the
melting temperature of the system is Tm ≃ 0.88ϵ/kB at the
pressure p= 2.0ϵ/σ3 (see the phase diagram of the LJ
system [38]).

Identification of the crystalline structures in supercooled
system is performed by themethod of cluster analysis based on
computation of orientational order parameters [39–42]. For the
single-component LJ system, just a single parameter q6 is suf-
ficient to recognize correctly the particles that belong to crys-
talline phases typical for the LJ system [41]. This parameter is
calculated by the expression:

q6(i) =

(
4π
13

6∑
m=−6

|q6m(i)|2
)1/2

, (17)

where

q6m(i) =
1

nb(i)

nb(i)∑
j=1

Y6m(θij,ϕij). (18)

Here, nb(i) is the number of neighbors for the ith particle,
Y6m(θij,ϕij) are the spherical harmonics with the polar θij and
azimuthal ϕij angles. To recognize crystalline structures, the
ten Wolde–Frenkel condition is applied [40]:

0.5<

∣∣∣∣∣
6∑

m=−6

q̄6m(i)q̄
∗
6m( j)

∣∣∣∣∣⩽ 1, (19)

where

q̄6m =
1

nb(i)
q6m(i)√∑6

m=−6 |q6m(i)|2
. (20)

The ith particle is considered as in a crystalline phase if this
particle has four or more crystal-like bonds with their own
‘neighbors’.
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