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Abstract—The characteristic time scales of the response of the globally averaged climate model with the car-
bon cycle to external forcing with analysis of the spectrum of the linearized evolution operator of the corre-
sponding dynamic system are evaluated. The model exhibits response time scales of about 4–6 years (related
to the carbon dynamics in vegetation) and in the range of 20–100 years (related to the carbon dynamics in
nonhumified soil reservoirs). When taking into account the effect of humification, the model reveals the time
scale of the response, which is on the order of several millennia. For a closed carbon cycle, the time scale is
102 years, which characterizes the joint variations in the atmospheric and oceanic reservoirs. The proposed
approach is highly universal and can be used for a wide range of tasks.
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INTRODUCTION

The analysis of the characteristic time scales of the
response of the Earth’s climate system to external
forcings is among the important tasks in modern sci-
ence dealing with climate. The analysis is especially
significant in the case of nonstationary external forc-
ings, including radiative forcing and natural and
anthropogenic emissions of radioactive substances
into the atmosphere, including greenhouse gases. It is
necessary to estimate particularly the duration of cli-
mate changes after the cessation, stabilization, or
abrupt alteration of external forcings (“legacy effect”)
[1]. Due to the existence of different time scales in the
climate system, hysteresis-like effects [2–4] or pecu-
liarities in climate cause-and-effect relationships [5–7]
manifest themselves.

In geochemical problems, the ratio between the
substance stock C in the reservoir of the system and
the outgoing f lux F from this reservoir is often used to
estimate the time scale of the response [8‒12]:

(1)τ =res / .C F
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The time scale calculated this way characterizes the
residence time of a substance within the reservoir. In
[10, 11], calculations based on Earth’s climate system
models for terrestrial ecosystems as a whole (i.e., for
the combined reservoir of vegetation, litter fall, and
soil) indicated that τres is on the order of several years
in regions dominated by forest ecosystems and on the
order of decades to centuries in regions with grassland
(including tundra) vegetation. It was noted in [10] that
changes in τres for the terrestrial biomass reservoir due
to climate change are a primary source of uncertainty
in estimates of future carbon stock changes in terres-
trial vegetation. It was found in [12] that the residence
time of carbon decreased significantly both in terres-
trial vegetation and in soil from the middle of the 19th
century to the end of the 20th century during the accu-
mulation of CO2 in the atmosphere and associated cli-
mate warming.

We note that the residence time of a substance in
the system reservoirs, determined by the stock and the
intensity of the outgoing or incoming f low, accurately
characterizes the time scales of the response to exter-
nal forcing only in a state of dynamic equilibrium of
the system. The purpose of this work is to assess the
characteristic time scales of different versions of glob-
ally averaged climate system models with the carbon
cycle based on the analysis of the spectrum of the
evolutionary operator of the corresponding dynamic
system.
6
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MODEL AND ANALYSIS METHOD
The temporal structure of the trajectory of changes

in the characteristics of the Earth’s system is deter-
mined by a set of eigenvalues τ and the time scale τG of
changes in the intensity of external forcing G(t):
τG = |G(t)| · |dG/dt|–1. For example, a dynamic model
with an n-dimensional state vector Y and an autono-
mous evolution operator А(Y) and a nonautonomous
term in the right-hand side G(t)

(2)

after linearization with respect to certain state Y(0)
(replacing А(Y) with the product JY, where J is the
Jacobian of А) is reduced to

(3)

Its formal solution in quadratures has the form

(4)

In this case, the time scales of the response are entirely
determined by the spectrum of the Jacobian J, a set of
its eigenvalues {λ1, λ2, …, λn}, satisfying the condition

(5)

where yj (1 ≤ j ≤ n) are the eigenvectors. If

(6)

(7)

then in (3) the interaction between different time
scales takes the form of the displacement of the equi-
librium position of the system that occurs with time
scale τG, relaxation of the trajectories to this time-
varying equilibrium position that occurs with time
scale τj (or, with a negative sign of τj, increasing devia-
tion from it with the same time scale), and oscillations
with period pj (in the case of  ≠ 0). In turn, the
eigenvectors characterize the distribution of the
response to external forcing by the variables of the sys-
tem state.

In this work, we analyze the globally averaged cli-
mate model with a carbon cycle of the form

(8)

(9)

(10)

(11)

(12)

(13)

(14)
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Here, the variables of the system are also carbon stocks
in terrestrial vegetation Сv, in the nonhumified soil
reservoir Cs, and in humus (a very slow soil reservoir)
Ch, the concentration of carbon dioxide in the atmo-
sphere qa (in the well-mixed gas approximation), and
the global annual average near-surface atmospheric
temperature Т. Symbols ∆Х denotes deviations of
variables Х from their initial values. External (includ-
ing anthropogenic) emissions of СО2 into the atmo-
sphere act as forcings of the system. The nonautono-
mous forcing of this system is external (e.g., anthropo-
genic or geological) emissions of СО2 into the
atmosphere with intensity Е. Carbon exchange
between reservoirs occurs through flows due to photo-
synthesis of terrestrial vegetation with intensity Fp,
autotrophic respiration of terrestrial vegetation with
intensity Frv, litter fall/falling off with intensity Fl,
decomposition of organic matter in nonhumified and
humified soil reservoirs with intensities Frs and Frh,
respectively, and humification with intensity Fhum. In
(14), IS(T) and IT(T, qa) represent the transfer of solar
and thermal radiation in the atmosphere, respectively.
The IS(T) dependence is related to the albedo’s depen-
dence on snow and ice cover [13]. The dependence of
IT(T, qa) on the temperature is governed by the Ste-
fan–Boltzmann law for thermal radiation, and this
dependence on qa is related to the greenhouse effect of
СО2. The parameter a0 = 2.12 Pg C/ppm–1 is used to
convert the atmospheric carbon dioxide concentration
into the corresponding mass, and c is the effective heat
capacity of the Earth’s climate system (ECS) per unit
area.

To calculate the intensity of СО2 absorption from
the atmosphere by the ocean FO, we use dynamic
equations with variable rather than constant coeffi-
cients BO and ΓO as in (13) [5, 6], but this would
increase the dimension of the system. The aim of this
study is to analyze the time scales of the response of
the terrestrial carbon cycle, and for the sake of sim-
plicity, we use relation (13).

For the intensities of f lows in the model, we
employ the following relations [5, 6, 8, 14]:

(15)

(16)

(17)

(18)

(19)

(20)
Here, Ai (i is one of the symbols “р”, “rv”, “l”, “rs”,
“rh”, “hum”) are coefficients; functions fi(∆T) have
the form

(21)

( ) ( )= Δp p a p ,F A g q f T

( )= Δrv rv v rv ,F A C f T

=l l v,F AC

( )= Δrs rs s rs ,F A C f T
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with coefficients Q10, i, indicating how much the cor-
responding f low changes with a temperature change
by T0 = 10 K. Relations (21) are equivalent to the
Arrhenius relationship (represented in the conven-
tional form for biogeochemical problems). Function
g(qa) characterizes the influence of the СО2 content in
the atmosphere on the intensity of photosynthesis,
known as the fertilization effect [15]. The absence of
carbon stock in vegetation in expression (15) for pho-
tosynthesis intensity corresponds to relatively dense
terrestrial vegetation. Wildfire contributions to the
carbon cycle dynamics are not considered in this
model.

The system (8)‒(14), along with the energy con-
servation equation [13], includes the carbon mass con-
servation equations in the ECS. It is similar to the sys-
tem used in [5, 6, 14] but extended to include soil
organic matter humification in accordance with [16].
The representation of f lows between reservoirs in ter-
restrial carbon cycle models, where the f low intensity
is proportional to the carbon stock in the donor reser-
voir, ensures that all λj (1 ≤ j ≤ n) have negative real
parts [17]. Thus, the system is stable, and the real parts
of its eigenvalues correspond to relaxation times to the
equilibrium position.

The linearization of the model (8)‒(21) was per-
formed with respect to the stationary state denoted as
“*”. The values of carbon stocks in individual reser-
voirs for the equilibrium state and corresponding f lows
are similar to those used in [15]. To be specific, we
assumed that g( ) = 1. In particular, the equation for
temperature (14) after linearization takes the form

(22)

Here, R(qa) is the radiative forcing of carbon dioxide
and Λ is the climate sensitivity parameter characteriz-
ing the contribution of climate feedback to changes in
the energy balance of the ECS. In particular, the
parameter Λ takes into account changes in the content
of water vapor, the primary greenhouse gas, in the
atmosphere due to climate variations. In this case, the
radiative forcing takes the form [1]

(23)

with R0 = 5.4 W m–2. After linearization, it becomes

(24)

The model considered in this work does not take
into account the hydrological cycle and its influence
on the carbon cycle explicitly. However, it is implicitly
considered due to the choice of model coefficients
with respect to the close relationship between tem-
perature and precipitation changes on decadal and
longer time scales in global averaging of both variables
[18, 19].

∗a,q

( )Δ = ΛΔa/ – .cd T dt R q T

= + ∗ ∗a 0 a a, a,( ) (( ) )ln ]/R q R q q q

( ) = ∗a 0 a a,/ .R q R q q
DO
RESULTS

In this work, we consider four variants of the model
described in section 2.

(1) Model with two reservoirs (vegetation and nonhu-
mified soil) under constant climate and atmospheric СО2
content.

The dynamic core of this model consists of Eqs. (9)
and (10) with Fhum = 0. This model can be regarded as
the simplest model of terrestrial ecosystems under pre-
industrial climate conditions. For equilibrium values
of the carbon stocks in vegetation and soil

= 450‒650 Pg C and  = 1500‒2400 Pg C,
respectively, the intensities of photosynthesis are in
the range of 93‒125 g C/yr with approximately equal
values of autotrophic respiration and litterfall inten-
sity. This leads to values of coefficients Ap =
93‒125 Pg C/yr, Arv = Al = Ap/  = 0.07‒0.14 yr–1,
Ars = Arv /  = 0.05‒0.06 yr–1.

The eigenvalues for the obtained system of
equations are determined analytically and are λ1 =
–(Arv + Al), λ2 = Ars. They correspond to time scales
τ1 = 3.5‒7.0 yr and τ2 = 15‒20 yr. For the first time
scale, the eigenvector is characterized by two nonzero
components with ∆Cs/∆Cv = Al /[Ars – (Arv + Al)]. For
the mentioned intervals of values of coefficients Ars,
Arv, and Al, the ratio of ∆Cs/∆Cv varies from –0.61 to
–0.88. Thus, changes in Cs and Cv on the time scale τ1
are of similar magnitude but have opposite signs. For
the second time scale, the variations are solely associ-
ated with the soil carbon reservoir.

(2) Model with three reservoirs (vegetation, nonhu-
mified, and humified soils) under constant climate and
atmospheric СО2 content conditions.

The dynamic core of the model consists of
Eqs. (9)‒(11). This model can also be regarded as a
model of terrestrial ecosystems under preindustrial
climate conditions with respect to soil humus forma-
tion. For this model, λ1 remains unchanged compared
to variant 1 of the model, λ2 = Ars – Ahum, λ3 = Arh. As
a result, τ1 also remains unchanged compared to vari-
ant 1 of the model [16]. Ahum = (0.5‒3) × 10–2 yr–1,
and Arh = (2‒5) × 10–4 yr–1. In this case, λ2 increases
slightly compared to variant 1 of the model and corre-
sponds to the time scale of 11‒18 years. For the third
eigenvalue, the time scale is 2000‒5000 years.

For the second and third time scales, similarly to
what was obtained for variant 1 of the model, the com-
ponents of the eigenvector are dominated by changes
in carbon stocks in nonhumified and humified soil reser-
voirs, with (∆Ch/∆Cs)2, 3 = Ahum/[Arh – (Ars + Ahum)] =
0.09‒0.33.

(3) Closed carbon cycle (8‒13), (15‒21) with ∆T ≡ 0
(i is one of the symbols “р”, “rv”, “l”, “rs”, “rh”,
“hum”).

∗v,C ∗s,C

∗v,C

∗v,C ∗s,C
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Fig. 1. Ranges of changes in time scales of the response to
external forcing for variant 3 of the model (depending on
the values of its parameters). The x-axis plots the eigen-
value number of the linearized evolution operator for the
model considered. 
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Fig. 2. Similar to Fig. 1 but for variant 4 of the model. 
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According to [1], this variant of the model corre-
sponds to biogeochemical interactions in the Earth
system (i.e., without considering climate changes). In
this case,

(25)
where

(26)
with qa,1/2 = 150 ppmv [14]. The eigenvalues and eigen-
vectors of this model were determined numerically
using the eigenfunction of the R computational sys-
tem. (https://cran.r-project.org/web/packages/Rcp-
pEigen/index.html). For this system, one of the eigen-
values almost coincides with the largest eigenvalue in
magnitude (i.e., corresponding to the shortest time
scale) for variant 2. It turned out that λ1, τ1, and y1
almost do not change compared to the model variants
considered previously (Fig. 1). Accordingly, the orders
of magnitude of λ2 and y2 do not change either. The
variations on this time scale are mainly related to veg-
etation and the relatively fast soil carbon reservoir.
Accounting for carbon exchange between the ocean
and the atmosphere leads to the appearance of the
time scale τ4 = 50‒250 yr, which decreases with
increasing coefficient ВО [13]. Additionally, as in vari-
ant 2 of the model, the time scale τ3 of the order of sev-
eral thousand years associated with the response of
carbon content in humus is identified.

(4) Closed carbon cycle interacting with climate
(8)‒(14), (15)‒(22), and (24).

This variant can be regarded as a globally averaged
carbon cycle model interacting with other compo-
nents of the Earth’s climate system. In this case, we
used in (21) the values Q10,p = 1.5, Q10,l = Q10,hum = 1,

( ) ( ) ( )= ∗a 1 a 1 a,/ ,g q g q g q

( ) ( )= +1 a a a a,1/2 '/g q q q q
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Q10,rv = 2.15, Q10,rs = Q10,rh = 2.4 [5, 6, 14, 16]. For this
variant of the model, the eigenvalues, corresponding
time scales, and eigenvectors remain almost
unchanged (Fig. 2). A time scale on the order of 106 yr
appears, where variations in the carbon stock in
humus play the dominant role. It is associated with the
interaction of the slow dynamics of carbon stocks in
humus with other carbon cycle reservoirs.

DISCUSSION AND CONCLUSIONS

The estimates of the time scales of the response
from a globally averaged climate model with a carbon
cycle to external forcings were obtained based on the
analysis conducted. The use of the spectrum analysis
of the linearized evolution operator of the correspond-
ing dynamic system made it possible to generalize the
results obtained for the states of the Earth’s climate
system far from the equilibrium positions of the system
(but for which the linearized system adequately repro-
duces the dynamics of the initial system at least at a
qualitative level).

It was established that, for all variants of the sys-
tem, the time scales of response of about 4‒6 years
(associated with vegetation carbon dynamics) and in
the span of 20‒100 years (associated with carbon
dynamics in nonhumified soil reservoirs) consistently
manifest themselves. The stable presence of such time
scales suggests, in particular, the possible use of active
layer models that do not take into account soil carbon
humification to analyze changes in the terrestrial car-
bon cycle on time scales from several years to centu-
ries. The identified time scales are consistent with
those obtained in [10, 11]. In particular, the time scale
τ1 of several years is close to that obtained in [10, 11]
for the regions with forest vegetation, where vegetation
plays a major role in carbon storage and turnover pro-
cesses. The time scale τ2 of several decades is consis-
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tent with the findings in [10, 11] for the regions with
grass (including tundra) vegetation, where soil plays a
major role in carbon storage and turnover processes.

When accounting for the humification effect in the
model (variant 2), a response time scale on the order
of millennia was identified. For the closed carbon
cycle, a time scale on the order of 102 yr emerged,
which characterized covariations in atmospheric and
oceanic reservoirs in the model. Formally, this com-
mon reservoir can be divided into atmospheric and
oceanic components (for example, by determining the
change in the carbon stock in the ocean according to

ΔCO = ), but this will not lead to the appear-
ance of a new time scale of response in the model
under consideration.

We note that the response of the linearized model
to small changes in its parameters or to changes in
external forcings occurs smoothly. For nonlinear sys-
tems, the solution may develop not only eigenfrequen-
cies but also other time scales, or qualitative changes
may occur in the system behavior; so-called critical
points may arise [20]. However, from our experience,
the nonlinearity of the system (8)‒(21), (23) is not
strong enough to exhibit such resonance phenomena
and qualitative changes in solutions when external
forcings change.

The approach we used in this work is highly univer-
sal and can be applied to a wide range of problems.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewer for the com-
ments on the manuscript.

FUNDING

The time scales and contributions of individual reser-
voirs of the terrestrial carbon cycle to the overall response
were supported by the Russian Science Foundation, project
no. 21-17-00012. The time scales in the Earth system to
determine the climate cause-and-effect relationships were
supported by the Russian Science Foundation, project
no. 19-17-00240.

CONFLICT OF INTEREST
The authors declare that they have no conflicts of

interest.

REFERENCES
1. Climate Change 2021: the Physical Science Basis. Work-

ing Group I Contribution to the 6th Assessment Report of
the Intergovernmental Panel on Climate Change, Ed. by
V. Masson-Delmotte,  (Cambridge Univ. Press., 2021).

2. A. V. Eliseev, P. F. Demchenko, M. M. Arzhanov,
et al., Clim. Dyn. 42 (5–6), 1203–1215 (2014).

3. A. V. Eliseev, P. F. Demchenko, M. M. Arzhanov, and
I. I. Mokhov, Dokl. Earth Sci. 444 (2), 725–729 (2012).

4. S.-K. Kim, J. Shin, S.-I. An, et al., Nat. Clim. Change
12 (9), 834–840 (2022).

5. K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, and
A. V. Timazhev, Dokl. Earth Sci. 463 (2), 863–868
(2015).

6. K. E. Muryshev, A. V. Eliseev, I. I. Mokhov, and
A. V. Timazhev, Glob. Planet. Change 148, 29–41
(2017).

7. I. I. Mokhov, Herald Russ. Acad. Sci. 92 (1), 1–12
(2022).

8. O. Kwon and J. L. Schnoor, Glob. Biogeochem. Cycles
8 (3), 295–305 (1994).

9. A. Friend, W. Lucht, T. Rademacher, et al., Proc. Nat.
Acad. Sci. U.S.A. 111 (9), 3280–3285.

10. N. Carvalhais, M. Forkel, M. Khomik, et al., Nature
514 (7521), 213–217 (2014).

11. C. D. Koven, J. Q. Chambers, K. Georgiou, et al., Bio-
geosciences 12 (17), 5211–5228 (2015).

12. D. Wu, S. Piao, D. Zhu, et al., Global Change Biol. 26
(9), 5052–5062 (2020).

13. M. I. Budyko, Meteorol. Gidrol., No. 11, 3–12 (1968).
14. A. V. Eliseev and I. I. Mokhov, Theor. Appl. Climatol.

89 (1-2), 9–24 (2007).
15. A. V. Eliseev, Fundam. Prikl. Klimatol. 4, 9–31 (2017).
16. S. Zaehle, S. Sitch, B. Smith, and F. Hatterman, Glob-

al Biogeochem. Cycles 19 (3), GB3020 (2005).
17. A. C. Lasaga, Geochim. Cosmochim. Acta 44 (6),

815–828 (1980).
18. I. I. Mokhov, Diagnostics for the Climate System Struc-

ture (Gidrometeoizdat, St. Petersburg, 1993) [in Rus-
sian].

19. I. M. Held and B. J. Soden, J. Clim. 19 (21), 5686–
5699 (2006).

20. A. V. Eliseev, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 66
(2), 87–103 (2023).

  Translated by L. Mukhortova

Publisher’s Note. Pleiades Publishing remains
neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

 O
0

t
F dt
DOKLADY EARTH SCIENCES  Vol. 514  Part 1  2024


	INTRODUCTION
	MODEL AND ANALYSIS METHOD
	RESULTS
	DISCUSSION AND CONCLUSIONS
	CONFLICT OF INTEREST
	REFERENCES

