

RECEPTORS FOR BIOMOLECULES BASED ON NEW CATIONIC AND ANIONIC CALIX[4]ARENES AMPHIPHILES

Fatikhova G.A^a, Burilov V.A^a, Mironova D.A.^a, Antipin I.S.^{a,b}, Solovieva S.E.^{a,b}

^a*Kazan Federal University, A. Butlerov Institute of Chemistry, 422008, Kazan,*

Kremlevskaya str. 18, e-mail: guselka777@mail.ru

^b*A.E. Arbuzov IOPC KSC RAS, 4220088, Kazan, Arbuzov str., 8.*

Calixarenes are an essential part of supramolecular chemistry [1]. Their ability to form "host-guest" complexes was successfully used in selective extractants, receptors and sensors [2, 3]. Application of calixarenes can be significantly enhanced by using click reactions. Azide- or terminal alkyne functionalities can essentially extend the synthetic potential of calixarene platform by using of the copper-catalyzed azide-alkyne cycloaddition (CuAAC).

Herein, we have developed a new methodology for the synthesis of amphiphilic calix[4]arene derivatives bearing two or our lipophilic alkyl fragments on the lower rim and polyammonium/sulphonate fragments – on the upper rim (Fig.1). The aggregation behaviour of these compounds in water-buffer solutions is discussed. Obtained calixarenes were used for sensing of biomolecules using dye – displacement procedure.

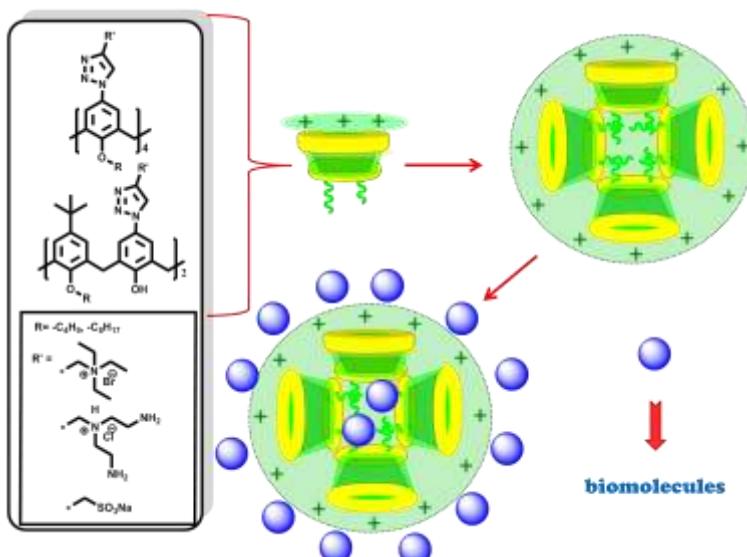


Figure 1.

This work was supported by Russian Science Foundation (14-13-01151).

References:

- [1] L. Mandolini, R. Ungaro, *Calixarenes in action*. London: Imperial College Press. – 2000. – p.272.
- [2] I. Leray, B. Valeur, *Eur. J. Inorg. Chem.*, **24** (2009), 3525.
- [3] R. Ludwig, N. Dzung, *Sensors*, **2** (2002) 397.