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Abstract: The paper studies the modified theory of induced gravity (MTIG). The solutions of the
MTIG equations contain two branches (stages): Einstein (ES) and “restructuring” (RS). Previously,
solutions were found that the values of such parameters as the “Hubble parameter”, gravitational
and cosmological “constants” at the RS stage, fluctuate near monotonously developing mean values.
This article gives MTIG equations with arbitrary potential. Solutions of the equations of geodesic
curves are investigated for the case of centrally symmetric space and quadratic potential at the RS
stage. The oscillatory nature of the solutions leads to the appearance of a gravitational potential
containing a spectrum of minima, as well as to antigravity, which is expressed by acceleration directed
from the center. Such solutions lead to the distribution of the potential of the gravitational field
creating an additional mass effect at large distances and are well suited for modeling the effect of
dark matter in galaxies. The solutions of the equation of geodesic lines are obtained and analyzed.
We found that the transition from flat asymptotics to oscillatory asymptotics at large distances from
the center with a combination of the presence of antigravity zones leads to a rich variety of shapes
and dynamics of geodesic curves and to the formation of complex structures.

Keywords: dark matter; symmetry; dark energy; cosmological constant; dark matter in galaxies

1. Introduction

This work is a continuation of the author’s previous studies, which consider the modified theory
of induced gravity (MTIG). The relevance of the work is due to the following problems.

1. In the opinion of most researchers, the presence of dark matter in and around galaxies is a
well-established fact (see review [1]). The bulk of cosmological data in the commonly adopted model
of the expanding Universe suggests the dominance of dark mass over the baryonic matter: the DM
mass fraction is about a quarter of the total mass/energy, including dark energy, and the baryonic
fraction is merely around 4–5%, which in turn is by an order of magnitude higher than the total mass
of luminous matter concentrated in galaxies. Thus, both DM and most of the baryonic matter remains
undiscovered by direct observations.

2. There is a problem of “accuracy of gravitational constant measurement” G. Despite the many
experiments [2–4] to refine its value, the gravitational constant has not been determined even to the
fourth decimal place. This fact suggests the possible variations of the parameter G depending on the
coordinates of space-time.

3. Two methods are used to measure the Hubble constant. The first method is based on measuring
the brightness of standard candles, the second method based on the analysis of CMB radiation. The first
method shows a “local” rate of expansion in near our galaxy, and the second one provides information
on the initial stage of evolution, 380,000 years after the Big Bang.The first method gives a value of
Hlocal = 73.48± 1.66 km·s−1 Mpc−1, and the second—HCMB = 67.0± 1.2 km·s−1 Mpc−1. These two
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independent measurements give a discrepancy of approximately 9% This situation of inconsistency is
called Hubble tension (see [5,6]). The measurement accuracy of Hlocal is about 4.5%.

In works [7,8], we presented a model in which, due to the oscillatory regime in the solutions
of equations, the Hubble parameter also oscillates relative to the average value. In the article [8],
we proposed, as a discussion, that for the later evolutionary time, the oscillation amplitudes of the
Hubble constant should increase compared to previous times. From a numerical comparison with our
various [8] models, it follows that this paradox is better explained by the so-called “stochastic models”
(Purusha Universe in [7].

In this article we will show that a similar mechanism holds for solutions in a centrally symmetric
space. The influence of anharmonic vibrations on the metric increases with increasing distance from
the center, more precisely, from the point (r = rs), where the deviation of the square of the scalar field
(Z) from its vacuum value (Z = 1) is given as the boundary condition (∆Z ' 10−6). This point is
chosen close to the center and is located at a distance of the order of the gravitational radius (but a little
further) of the central mass. For mass M ≈ 4 · 106M� the deviation from the Schwarzschild-de Sitter
solution becomes significant at distances greater than 0.07 kpc and leads to additional gravitational
acceleration of the order of 10−10 ÷ 10−9 m/s2.

We have shown that the quadratic potential of the scalar field and the inclusion of deviations of
the metric from the Schwarzschild–De-Sitter metric up to the second order are essential factors for the
realization of oscillatory solutions. This fact can be compared with studies of nonlinear stability in the
anti-de Sitter (AdS) space. Despite the fact that the space-time AdS is linearly stable, unstable behavior
occurs when quadratic perturbations are taken into account, which also lead to the emergence of new
stable structures. The paper [9–11] states: “some initial data with a small amplitude remain small
for a much longer (possibly for all) time, although other initial low-amplitude data ε collapse, after
multiple reflections from the AdS boundary, to form black holes on time scales of the order of 1/ε2”.
Similar conclusions were obtained for Einstein’s vacuum equations in the anti-de Sitter space [12],
where time-periodic solutions (geons) were postulated.

In order to try to solve the above problems and compare them with observations of DE and DM,
a phenomenological model of the modified theory of induced gravity (MTIG) was proposed, which
is described in our works [7,8,13–15]. In a simplified version of the theory, we made an attempt to
introduce a certain macroscopic parameter of the theory Y, which generates both gravitational (Ge f f )
and cosmological (Λe f f ) “constants” [7]:

Ge f f = Ge f f (Y, Ue f f ), Λe f f = 3Ue f f , (1)

where Ue f f = Ue f f (Y)—effective potential of the theory (note: the definition of Ue f f in this article
differs from its definition in articles [7,8]); Ge f f some function of Y depending on the type of
potential Ue f f (Y).

In our works [7], we compare the Newtonian gravitational constant (kn) with the effective
“gravitational constant”.

8πkn h̄
c3 ≡ 6.5653 · 10−65cm2 = Ge f f (Cm), (2)

where Cm is the value of the function Y = Y(tm) corresponding to the age of the Universe tm;
h̄—Planck’s constant, c—speed of light. The value of the cosmological constant (in length dimensions) is
assumed to be equal Λm ' 1.271 · 10−56/cm2, which approximately corresponds to observational data.

Attempts to find the value of Cm and its agreement with the values of all parameters of the theory
(see [14]) did not lead to success because the number of parameters is too large. Not only for this
reason, but because of the desire to maintain the scale invariance of the theory, we moved on to the
model where we are trying to operate with dimensionless parameters, where possible. Therefore,
from the function Y, which has the dimension of the square of the length (a priori, it was assumed
that all quantities in action are determined through the dimension of the length), we switched to the
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dimensionless function Z = Y/Cm. Given the certainty of the gravitational constant of not more than
the fourth decimal place (described above as problem 2), the deviation condition is |∆Z| ≤ 10−4.

The concept of “induced gravity”, first introduced by A.A. Sakharov in 1967, in the work [16]
meant that gravity is not “fundamental” in the sense of elementary particle physics, but follows from
quantum field theory (see [17–19]) .

In connection with an expanded understanding of the concept of “induced gravity”, we want
to mention the works of E. Verlinde [20,21], in which he attributes the attraction of two macroscopic
bodies to an increase in total entropy with a decrease in the distance between the bodies. In other
words, the system simply goes into a more probable macrostate.

In the context of our theory, the term “induced gravity” means that in the initial action the
Einstein part R/(2κ) is not introduced, since such a term arises due to the fixing of the function Y at
the solutions of the equations.

The original version of the theory, the macroscopic parameter Y ≡ (X, X) = XAXBηAB represents
a scalar product in D dimensional flat space-time Π with metric ηAB, with arbitrary signature; functions
XA = XA(σµ), where A, B = 1, 2, . . . , D, µ, ν = 0, 1, . . . , n − 1, maps n dimensional Riemannian
manifold M described by the metric gµν, into space—time Π ([13]. The image of this mapping is an
n-dimensional surface in space-time Π. Then, by analogy with string theory, we would get the theory
of n branes, which has the property of conformal invariance for certain values of the parameter ξ = ξ0.
However, due to the mathematical difficulties associated with resolving the differential equations of
coupling, this program is still far from being implemented. For further calculations we set n = 4.

Earlier [22], we obtained the following self-consistent equations:

Gαβ =
1

2ξY
[−n− 2

2
B + U]gαβ +

1
Y
[∇α∇β − gαβ�]Y− w

2ξY
T(e)αβ, (3)

where Gαβ—the Einstein tensor; T(e)αβ the EMT of matter fields (for example, perfect fluid); the
consequence of these equations is the law of conservation of energy, which has the form:

− n− 2
2
∇βB +∇βY · (ξR +

dU
dY

)− w∇αTα
(e)β = 0. (4)

Initially, the theory was based on the desire to generalize string theory:

S0 =
1
w

∫ {
− ε

2
(∇νX,∇νX) + ξR(X, X) + U + Lm(X, S)

}√
−gd̂nσ. (5)

where w, ξ, ε there are constant; here fixing the Levi-Civita connection∇ of the metric g; (∇νX,∇νX) =

∇νXA∇µXBgνµηAB. For simplicity, in this paper U(XA) = U(Y(XA)). Lm(X, S)—characterizes all
possible interactions XA with other fields of matter. S0 is conformal invariant for ξ = ξ0 ≡ − n−2

8(n−1) ,

ε = 1, U(Y) = ΛXY2.
In our previous works, the Equations (3) and (4) obtained from action (5) were considered under

the following additional “embedding” conditions:

B0gµν = (∇µX,∇νX) µ, ν = 0, n− 1. (6)

To ensure the self-consistency of the equations, it was supposed to introduce unknown functions
SA, which affect the equations for gνµ, Y only through EMT. This approach is not consistent and
mathematically correct in order to say that Equation (3) (or (12) of the cited article [7]) are obtained
from action (5) for ε = 1 . We can assume that equations (3) are given phenomenologically, or they can
be obtained from action (5) at ε = 0 and overriding the potential U on Ũ(Y) = U(Y)− n−2

2 B. In the
latter case, from a mathematical point of view, everything is justified. We use action (5) for the case
ε = 1 to indicate the further prospects of the theory. For example, we continue the study of this model
for the case ε = 1, by introducing the Lagrange parameters, with the condition for constraints (6) to be
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fulfilled. Thus, in this article, equations for individual fields XA and constraints (6) are not considered
at all.

In order to take into account the effect of vacuum polarization energy into gravity, we highlighted
from EMT matter a part related to this energy, which satisfies the equation of state: εvac + pv = 0,
where εvac and pv are interpreted as the energy density and vacuum polarization pressure. Therefore,
in the equations (except for (6)) we made a substitution: B0 ⇒ B,

B =
n− 2

2
B0 − wεvac. (7)

Equations (3) can also be obtained by varying the action:

S1 =
1
w

∫ {
ξRY + Ũ(Y) + Lm(Y, S)

}√
−gd̂nσ, (8)

by the metric g, where Ũ(Y) = U(Y)− n−2
2 B is the new potential.

In this form, the action can be considered within the framework of the principle of P. A. Dirac,
which reduces to the possible dependence of physical constants on each other, as well as on
cosmological evolution. Modification of Einstein’s equations by introducing an additional scalar
field led to the creation of various versions of scalar-tensor theories of gravity. Among them,
we note the Brans-Dicke theory [23], P. Jordan [24], J. Narlikar [25] and the conformally invariant
scalar-tensor theories of gravity (see [26–29]). At the same time, the problem of breaking the
conformal invariance of the theory arose, which was facilitated by the successful implementation
of the principle of “spontaneous symmetry breaking” and the Higgs mechanism [30] for combining
fundamental interactions. Based on this approach, studying the action (8) at the transition point
Y = const↔ Y 6= const is of great interest. This transition is not trivial, but leads to the appearance of
special instability. This can be seen from the equation (4), which for the case of this article has the form:

∇βY · (ξR +
dŨ
dY

) = 0, B = const, Lm = 0. (9)

The RS stage for the system is when we solve equation ξR = −dŨ/dY. However, among the
solutions of this equation, the solutions Y = const may also be contained, depending on the parameters
of the potential Ũ. In this case, the RS and ES states are mixed.

We noticed that the system of Equation (3) can be rewritten so that for one of the equations we can
take the Equation (9), which disappears when Y = const. Thus, we also explore solutions containing
transitions from ES to RS and vice versa. As shown in previous papers, such solutions resemble phase
transitions and contain elements of stochasticity [7].

The MTIG theory can be considered as some generalization of Einstein’s theory of GR. Indeed,
for the case Y = const = Cm, the MTIG equations are equivalent to the Einstein equations (GR)
with a cosmological constant (ES stage). Small deviations of Y from the constant value of Cm can be
investigated as deformations of the manifold M. It is clear that for small deviations, the experimental
results of the theory of GR will be fulfilled with great accuracy in the theory of MTIG. It was surprising
for us that in solutions for the RS stage in centrally-symmetric space, a noticeable difference from the
GR theory occurs at large distances from the center r > rcr.

Different models of dark energy and dark matter and their implications have recently been
studied in the context of scalar-tensor theories [31–37] and also in the context of F(R) gravity [38].
The connection of dark energy with the thermodynamics of the Universe is studied in [37,39].
In works [40,41] the problems of dark energy oscillations are discussed, including their comparison
with observational data [40], and it is also investigated which model of the various classes presented
can create oscillations with the smallest amplitude [41].
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Studies on the possibility of the phenomenon of antigravity were carried out in the works [42,43].
The article [43] it is noted: “... negative kinetic energy in antigravity presents no problems of principles
but is an interesting topic for physical investigations of fundamental significance”.

2. Centrally Symmetric Solutions

Let’s consider the above Equations (3) with the potential Ũ(Y) = ΛXY2 + fwY − B, B = const,
for a static centrally-symmetric space defined by the metric:

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2(θ)dϕ2), (10)

where ν = ν(r), λ = λ(r), T(e)αβ = 0. As follows from (3), the effective potential of the scalar field
is Ue f f = (ΛXY + fw − B/Y)/(2ξ).

From a comparison with the cosmological model, for the case Y = Cm = const, the cosmological
constant is: Λe f f = Ue f f (Cm). We fix the value of Cm equal to the modern cosmological value of Y
and proceed to the dimensionless function Z = Y/Cm, after redefining the parameters: fn = fw/(6ξ),
Ln = ΛXCm/(6ξ), Bn = B/(6Cmξ), we have Λe f f /3 = Ln + fn − Bn and

Ue f f (Z) = 3(LnZ + fn − Bn/Z). (11)

For the case Y = Cm, the metric coincides with the Schwarzschild-de Sitter metric:

ν0(r) = −λ0(r); e−λ0(r) = 1−
Λe f f

3
r2 −

rg

r
, rg = 2GM, (12)

where Λe f f at the ES stage is expressed, based on the cosmological solutions discussed in previous
articles Refs. [7,8]. For the sake of brevity, we will not indicate the arguments of the functions, and the
derivative with respect to r will be denoted by (′).

After the introduction of notation Z = Z(r) = Y(r)/Y0, the Equations (3) in the metric (10) take
the form:

G0
0 : −Ue f f (Z) + e−λ

(
λ′Z′

2Z
+

λ′

r
− Z′′

Z
− 2Z′

Zr
− 1

r2

)
+

1
r2 = 0; (13)

G1
1 : −Ue f f (Z)− e−λ

2Z
Z′ν′ − e−λ

r
ν′ − 2e−λ

Zr
Z′ − e−λ

r2 +
1
r2 = 0; (14)

G2
2 = G3

3 : −Ue f f (Z) + e−lam

(
−ν′2

4
+

ν′λ′

4
− ν′′

2
− ν′Z′

2Z
+

λ′Z′

2Z
− ν′

2r
+

λ′

2r
− Z′′

Z
− Z′

Zr

)
= 0. (15)

One of the equations that we will use to describe the RS stage is Equation (9). For ES stage the
solutions Equations (4) are of the form (12).

For the case RS stage, by simplifying equations by means of algebraic actions, in [7] we obtained
three independent equations for the functions F(r), λ(r), Z(r). Instead of ν(r) we use the function
F(r) = λ(r) + ν(r). Two of these are the first-order equations, one is the second-order equation:

F′ =
2r

Z′r + 2Z

[
Z′
[((

Ue f f (Z)− g(Z)
)

r− 1
r

)
eλ +

Z′

Z
− 1

r

]
− 2Zg(Z)eλ

]
; (16)

λ′ =
2Z′r

Z′r + 2Z

[((
Ue f f (Z)− g(Z)

)
r− 1

r

)
eλ +

Z′

Z
+

1
r

]
+

+
2Z

Z′r + 2Z

[
eλ

(
r
(

Ue f f (Z)− 2g(Z)
)
− 1

r

)
+

1
r

]
; (17)
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Z′′ = Z′
[

Z′

Z
+ eλ

[
r
(

Ue f f (Z)− g(Z)
)
− 1

r

]
− 1

r

]
− 2Zeλg(Z), (18)

Here we introduced a new function g ≡ g(Z) = fn − 2Bn/Z and expressed the derivatives of the
potentials through it: dUe f f /dY = (Ue f f − 3g)/Z, (dŨ/dY)/ξ = 4Ue f f − 6g.

Note that the Equations (16)–(18) (RS of the stage) also contain the solution Z = Z1 = const,
under the following condition on the parameters: g(Z1) = 0 =⇒ fn = 2Bn/Z1. At the points where
this relation holds transitions from RS to ES are possible. However, we are not considering this issue
yet. Based on the interest in this point of instability, and also because of the desire to reduce the
number of parameters, we will use this relationship in various anzats in further calculations. In this
article, we will use the following relation for constants: fn = 2Bn. Then g(Z1)÷4ZBn ÷ Bn10−6 is a
small quantity.

Remark 1. In the article [7] I missed the following typos related to the system of Equations (13)–(15): in
formula (81) instead of the term fn, write 3 fn; in formula (83) instead of e−λλ′Z′/Z, write e−λλ′Z′/(2Z);
field potential is determined by a different sign than in this article (the parameters fn, Ln, Bn are indicated with a
different sign) . These typos are in no way connected with calculations and results.

Numerical Solutions for Geodesic Lines

For a further numerical solution of obtained equations, we pass to the functions F(r), α(r), Z(r):

eλ(r) =
eα(r)

T(r)
; eν(r) = eF(r)−λ(r), T(r) ≡ 1−

Λe f f

3
r2 −

rg

r
, (19)

where, rg = 2 · GM—gravitational radius, GM—central mass parameter. Direct calculations prove the
following statement. For a centrally symmetric metric given in the form (10),the equations of geodesic curves
in the ecliptic plane (θ = π/2) can be reduced to the (canonical) form:

d2r
dτ2 = −1

2
d
dr

Vτ ; vτ(r)2 ≡
(

dr
dτ

)2
= E2 −Vτ ;

dϕ

ds
=

Lϕ

r2 , (20)

where, E = const, Lϕ = const, Vτ ≡
(

L2
ϕ/r2 + 1

)
eν(r)—the modified potential of the geodesic equation;

instead of s the parameter τ is introduced: ds/dτ = e(ν(r)+λ(r))/2.
The period of oscillation depends on the value of Bn. Its value for all calculations presented in

this article is the same Bn ≈ 0.332 kpc−2, and was chosen because of a desire to receive a period of
about 5.7∼6 kpc (at distances from rcr to 50 kpc). An attempt at justification is given in [7].

Below are graphs of numerical solutions of the geodesic equation for parameter values indicated
each time and invariable boundary conditions for solving Equations (16)–(18):

α(s0) = 0; F(s0) = 0; Z(s0) ≡ Z1 = 1.000001238; Z′(s0) = 0, (21)

are given at the s0 ≈ rg · (1 + 10−10) kpc.
The algorithm for numerical solution of the obtained equations is as follows. For the boundary

condition (21), Equations (16)–(18) are solved numerically and the values of the field Z and metric
functions are found: G(r) = {Z(r), Z′(r), F(r), α(r)}. Then, initial conditions (22) are set for the
complete system of Equations (16)–(18), (20), in which we pass from the variable r to the variable s
(or τ) along the geodesic r = r(s):

r(0) = r2, Z(0) = Z2, Ż(0) = p2, F(0) = F2, α(0) = α2, vr(0) = v20, φ(0) = 0, (22)

where {Z2, p2, F2, α2} = G(r2), dot means derivative with respect to s.
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Figure 1 shows a graph of potential energy for mass GM = 3.95 · 106GM�. In Figure 1a
r ∈ (0.09, 1); In Figure 1b r ∈ (0.05, 55). The dashed line shows the potential for the Schwarzschild-de
Sitter field, with the same values of the parameters.

(a) (b)

Figure 1. Potential energy for mass GM = 3.95 · 106GM�, Lφ = 0; (a) r ∈ (0.09, 1); (b) r ∈ (0.05, 55).

In Figure 2 is a comparison of acceleration (solid line) with acceleration in the Schwarzschild metric
(dashed line) (Figure 2a) and the transition to oscillations (Figure 2 b) for mass GM = 3.95 · 106GM�.
Acceleration (test body) with a positive sign corresponds to the movement from the center, and
acceleration with a negative sign—to the center. Thus, zones of gravity and antigravity arise, which
leads to an unusual distribution of the types of geodesic curves. The types of geodesic curves and the
distribution of velocities (test bodies) are determined by the presence of many extrema of the potential
of the gravitational field and their location in relation to each other and to the center. For speeds much
less than the speed of light, the parameter “s” can be considered as a parameter of time.

(a)
(b)

Figure 2. Radial acceleration, with zero angular momentum, GM = 3.95 · 106GM�; figure (a) for
r ∈ (0.025, 6.8) shows a comparison with the Schwarzschild solution (dashed line) and the transition
to oscillations, figure (b) for r ∈ (0.1, 55).

Approximate orbital velocities vL (obtained from the equality of gravitational and centripetal
forces) depending on distances are shown in Figure 3. These pictures are similar to the rotation
curves of galaxies obtained from observational data. This is easily explained—acceleration from
the center in the local zone can be combined with a fictitious mass located further from this zone
(dark matter). In the first gravitational zone near the center, the motion along the geodesics differs
little from motion in the Schwarzschild field. For (considered in this article) mass GM = 1010GM�
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this zone can be conditionally limited by the radius rcr ≈ 0.9 kpc. This is the distance at which the
acceleration difference in the MTIG theory from the acceleration calculated in the Schwarzschild
metric is approximately equal to the acceleration itself. For the mass GM ≈ 4 · 106GM� this radius is
rcr ≈ 0.1 kpc (Figure 2a).

The dips in the orbital velocities in the figures of Figure 3b–d, correspond to antigravity zones
where the velocity vector deviates from the tangent (for more details see in [7]). In these figures,
we see that the number of such zones increases with distance, depending on the mass of the central
body. For masses of the order of 108GM� or more, the widths of neighboring zones of gravity and
antigravity are compared at distances greater than 50 kpc. For mass 3.95 · 106GM� (Figure 3a , we see
a quick transition to zones of the same width (but with different directions of acceleration relative to
the center).

(a)
(b)

(c) (d)

Figure 3. Galaxy rotation curve (vL in km/s, for different central masses: (a) GM = 3.95 · 106GM�;
(b) GM = 1010GM�; (c) GM = 4.5 · 1010GM�; (d) GM = 1011GM�. Dashed Lines—Keplerian
speeds.

There are radii for which gravitational acceleration vanishes even in the absence of angular
momentum (Lφ = 0, see Figure 2) and initial velocity. Let Ri

GA, i = 1, 2 ... and Ri
AG denote the radii

for which the acceleration equals zero and changes sign from positive to negative and vice versa,
respectively (see Figure 2a). The points and Ri

AG correspond to the minimum potential, as computer
studies show, the circles r = Ri

AG, ∀φ are stable geodesics, and the circles r = Ri
GA, ∀φ are unstable.

As follows from Figure 2a, for the mass 3.95 · 106GM�, immediately after the point r = rcr,
there follows the gravity well Gw with additional acceleration to the center, and then a hump with
acceleration from the center, with a maximum value compared to other antigravity extrema. Therefore,
the instability point r = R1

GA ≈ 3.901 kpc separates internal orbits (around the center) with energies
less than a certain value of E1a, from external ones that are affected by acceleration from the center
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and their trajectories are located (along the radius) further from the radius R1
GA. In simple terms, the

potential configuration in the vicinity of R1
GA does not let some test bodies (with E < E1a) move from

the center, and the antigravity zone immediately after the point R1
GA also does not allow bodies with

energies below a certain value E1b to move from the outer region to the center.
Figure 4 shows some geodesic curves internal relative to the radius R1

GA. In Figure 4a shows a
part of the curve over a period of 750 million years, with a small angular momentum L = 0.00002 kpc
that intersects the zone Gw, approaching the center to distances of 0.016 kpc and moves most of the
time near the circle r = R1

GA. Near the center, the speed reaches 300 km/s and drops to zero near
r = R1

GA. Note that the orbit parameters for distances r < rcr from the point of view of Kepler’s theory
(also Schwarzschild’s theory) would be classified as hyperbolic.However, at distances r ≥ rcr, due
to the influence of additional acceleration in the Gw zone, the orbit becomes finite. Figure 4b,c show
examples of stable geodesics corresponding to the zone Gw, the envelopes of the circles of which can
come close to the circle r = R1

GA (Figure 4b).

(a) (b)

(c) (d)

Figure 4. Geodesic curves, for initial conditions: (a) r2 ≈ 3.89 kpc, v20 = 0 km/s, Lφ ≈ 2 · 10−5 kpc;
(b) r2 ≈ 0.7 kpc, v20 = 304.05 km/s, Lφ ≈ 4.203 · 10−4 kpc; (c) r2 ≈ 1.9 kpc, v20 = −130 km/s,
Lφ = 0.001457675 kpc; (d) r2 ≈ 3.778358 kpc, v20 = 0 km/s, Lφ ≈ 0.001103125149 kpc.

The exotic geodesic curve in Figure 4d shows a test body with a nonzero angular momentum
and high radial velocity, moving from a distant region toward the center. After braking in the
antigravity zone R1

GA, receiving additional acceleration in the zone Gw, the body enters an almost
circular unstable orbit r ≈ R1

GA, performs several revolutions and flies back from the center. The part
of the curve for the period 1.2 billion years is given. This orbit was obtained by fitting parameters
during a computer experiment. We specifically looked for examples of curves that are impossible in
the Schwarzschild field in order to further try to find the corresponding observational confirmations in
astronomy—inexplicable points of view of the standard theory of gravity. Another example that is
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impossible from the point of view of the Schwarzschild model is shown in Figure 5a,b. Here, a test
body moving from outside the galaxy toward the center at a speed of more than 200 km/s is repelled
from the anti-gravity zone R1

GA and flies out of bounds. The radial velocity depending on the radius
for this geodesic is shown in Figure 5b.

(a) (b)

Figure 5. (a) geodesic curve for initial values: r2 ≈ 4 kpc, v20 = 0 km/s, Lφ = 0.0026685 kpc; (b) radial
velocity versus radius.

For geodesics with zero or small angular momentum, oscillatory movements occur along
the radius at the boundary of the transition from the antigravity zone to the gravitational zone
(r = Ri

AG). Parts of geodesic curves are shown in the Figure 6. Here, a small value of the angular
momentum is added only for the purpose of obtaining a solvable pattern in a rectangular coordinate
system on the plane of motion. The Figure 6 shows parts of the graphs of geodesic curves for
mass—GM = 3.95 · 106GM�, angular momentum—Lφ ≈ 6.6712819 · 10−12 kpc, the initial speed
is v20 = 0 km/s and for various initial values: (a) r2 = 5 kpc—for the zone to the right of R1

AG;
(b) r2 = 10.5 kpc—for the zone to the right of R2

AG. Both graphs are given for 600 million years.
A physical mechanism appears that accelerates matter (for example, gas, dust) towards each other and
increases the temperature of the gas. In the above examples, this mechanism accelerates test bodies to
speeds of 155 km/s and may be responsible for the star formation process. For this, it is necessary to
take into account dissipative processes in gas flows and solve hydrodynamic equations, which we do
not do. We can only make the assumption that the radial vibrational motion of gas flows and their
interaction with flows having high circular velocities leads to the appearance of stable structures.

(a) (b)

Figure 6. Geodesic curves, for initial conditions: (a) r2 ≈ 5 kpc, v20 = 0 km/s,
Lφ = 6.6712819 · 10−12 kpc; (b) r2 ≈ 10.5 kpc, v20 = 0 km/s, Lφ = 6.671281904 · 10−12 kpc.
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Thus, in this model, we can assume a significant star formation outside the radius R1
AG ≥ 4 kpc

from the center of the Galaxy. This assumption correlates with the conclusion based on astronomical
observational data and given in [44]. Based on the lack of Cepheids in the inner part of the Galaxy, the
authors of the work claim that there was no significant star formation in the radius of 2.5 kpc around
the center of the galaxy for hundreds of millions of years.

With an increase in the angular momentum (angular velocity), the shape and dynamics of the
geodesic curves are formed as a result of the orbital and oscillatory motion along the radius. There are
a family of stable circular (or almost circular) orbits in the gravitational zones Ri

AG < r < Ri+1
GA , for

the corresponding initial conditions: r = r2, v2 = 0 and the parameter Lφ. To obtain such curves, it is
enough to use the graphs of Figure 3 and determine the corresponding rotation moment Lφ0 = r2vL/c,
where vL is circular rotation velocity corresponding to the radius r2. As a comparison: for a distance of
r2 = 8 kpc, approximately equal to the radius of the Sun’s rotation around the center of the galaxy,
for a mass of 3.95 · 106GM� the value is vL ≈ 236 kpc/s and for the mass 1010GM� the value is
vL ≈ 246 kpc/s. The approximate rotation periods, respectively 203 and 210 million years. Thus, the
rotational velocities are comparable, despite the huge difference in the value of the central masses.
Without giving the circles themselves, in Figure 7 we give the geodesic trajectories for cases of deviation
from the circles due to the addition of the initial radial velocity v2 = −15 kpc/s, over a period of
1 billion years.

(a) (b)

Figure 7. Geodesic curves , for initial conditions: (a) GM = 3.95 · 106GM�, r2 = 8 kpc, v20 = −15 km/s,
Lφ = 0.00547 kpc; (b) GM = 1010GM�, r2 = 8 kpc, v20 = −15 km/s, Lφ = 0.006584 kpc.

In case of partial violation of the correspondence of the orbit parameters to the values for circular
orbits, the geodesic curves may partially go into neighboring antigravity zones. If this zone is on the
left (r < Ri

AG) and the total energy of the curve is less than the potential energy at the maximum of the
anti-gravity zone, acceleration from the center returns the curve back to a stable region. Thus, the orbits
located closer (in their orbital parameters) to the point Ri

AG are more stable than the orbits near the
point Ri

GA. This resistance to changing parameters (for example, v2 and vL) depends on the ratio of
the heights of neighboring potential highs and lows. For example, we give the trajectories of closed
geodesics (Figure 8), for the initial conditions corresponding to the second half of the antigravity zone
and with less energy—so as not to slip through the following gravitational zones of attraction (right).
Figure 8 shows the trajectory and radial velocity for a geodesic differing from the previous case only
in angular momentum: GM = 1010GM�, r2 = 8 kpc, v20 = −15 km/s, Lφ ≈ 0.00480693 kpc—this
angular momentum corresponds to the circular velocity vL = 180 km/s at a distance of 8 kpc.
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(a) (b)

Figure 8. (a) geodesic curve and (b) radial velocity depending on radius for initial values:
GM = 1010GM�, r2 = 8 kpc, v20 = −15 km/s, Lφ ≈ 0.00480693 kpc.

Figure 8 shows the trajectory (over a period of 1600 million years) and radial velocity for a
geodesic differing from the previous case only in angular momentum: GM = 1010GM�, r2 = 8 kpc,
v20 = −15 km/s, Lφ ≈ 0.00480693 kpc—this angular momentum corresponds to the circular speed
vL = 180 kpc/s at a distance of 8 kpc. Thus, with decreasing angular momentum, the step width
along the radius increases (in Figure 8 this width is about 1.25 kpc) and the radial velocity. The type of
geodesic line in Figures 8a and 4a is the most common. There are rare limiting cases of such trajectories
leading to exotic closed forms, some of which are shown at the end of the article (see Figure 9).

(a) (b)

Figure 9. Geodesic curves, GM = 3.95 · 106GM� for initial conditions: (a) r2 = 5.34998 kpc, v20 = 0,
Lφ ≈ 0.001935333888 kpc; (b) r2 = 5.355 kpc, v20 == 0, Lφ ≈ 0.001927466767693 kpc.

3. Conclusions and Discussion

The solutions of the MTIG equations for the centrally symmetric metric, in addition to the
Schwarzschild solution for Z = 1, contain a branch that goes over to the oscillatory mode at large
distances. For distances r << rcr, the observed characteristics of the gravitational field coincide
with the characteristics of the Schwarzschild solution. For example, for the mass GM = 1010GM�,
the deviation of acceleration from acceleration in the Schwarzschild field at a distance of 10−4 kpc is
10−13 km/s, and then decreases linearly with decreasing r, amounting to an order of 10−16 km/s at a
distance of 10−7 kpc. At large distances, where (presumably) the influence of the galaxy is compared by
the influence of other galaxies and the Schwarzschild field can be completely neglected, the vibrational
regime continues to operate and the acceleration amplitude remains at the level of Aas ' 10−10 km/s,
regardless of the central mass. This fact leads to reflection on the use of the theory in question to
describe the large-scale structure of the Universe.
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In works [45–47], a team of authors report that they have discovered a galaxy in which dark matter
is almost completely absent. On the other hand, there are a lot of data on other galaxies, indicating
that they almost entirely consist of dark matter [5,48].

Recall that the mass parameter in the Schwarzschild solution appears as a certain constant of
integration of the Einstein differential equations in the void. As you know, the same solutions can be
obtained if we introduce matter proportional to GMδ(r) on the right side of the Einstein equations,
where δ(r) is the Dirac delta function, which, from the point of view of mathematics, replaces the
boundary condition at the point r = 0. By analogy, with the approach by which the mass parameter is
introduced and with the assignment of ∆Z = Z− 1 as the boundary condition, we can hypothesize
the existence of some hidden parameter responsible for the asymptotic behavior of the gravitational
field at large distances.

Unfortunately, we do not yet have analytical solutions to the MTIG equations and cannot find
all the integration constants. Instead, we can consider ∆Z as a parameter responsible for gravity in
the far asymptotic, along with mass. In the general case, the deviations of the characteristics of the
gravitational field from the same characteristics for the case of the Schwarzschild solution depend on
the boundary condition on the field Z. A boundary condition is imposed near the event horizon, in
order to simplify computer calculations related to the singularity (this is not important, it is important
that it is near the center). Smaller |∆Z|—leads to smaller deviations from the Schwarzschild solution
and to smaller values of the oscillation amplitude.

It is shown that in the vicinity of the galaxy, at least three types of zones can be distinguished.
For rg > r < rcr, this is the Schwarzschild zone, where the behavior of geodesics, with an accuracy
of the order of 10−9 ÷ 10−10, does not differ from the Schwarzschild solutions, although it is possible
to design experiments to detect them. Further, the zones of antigravity and gravity are periodically
repeated with increasing r > rcr. We have obtained many solutions for orbits that are impossible in
the theory of Newton and Einstein. Comparison of such solutions with unexplained astronomical
observations is the task of subsequent research. For example, we can recall the effect of the “pioneers”
(see works [49,50]), which is associated with the problem of additional gravitational acceleration at the
far reaches of the Solar system, at the free flight of space probes “Pioneer -1” and “Pioneer -2” .

We found that the transition from flat asymptotics to oscillatory asymptotics at large distances
from the center with a combination of the presence of antigravity zones leads to a rich variety of
shapes and dynamics of geodesic curves and to the formation of complex structures. This emphasizes
the value of further research in the studied direction of research and the importance of searching for
experimental data on measuring the gravitational potential far from the center without reference to the
value of the central mass.
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