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1. Возмущения и обратимость матрицы

1. Пусть A ∈ Mn — обратимая матрица, т. е. |A| ̸= 0. Пусть,
далее, B ∈ Mn. Возникает вопрос, при каких условиях на B матрица
A+B будет также обратимой? Поскольку A+B = A(I +A−1B), то
для существования матрицы, обратной к A+B, очевидно, необходимо
и достаточно, чтобы спектр матрицы A−1B не содержал −11). Отсю-
да вытекают следующие практически важные достаточные условия
обратимости матрицы A+B (∥A∥) :

1) матрица A+B обратима, если ρ(A−1B) < 1;
2) матрица A+B обратима, если ∥A−1B∥ < 1;
3) матрица A+B обратима, если ∥A−1∥∥B∥ < 1,

Здесь
ρ(B) = max

16k6n
|λk(B)|

есть спектральный радиус матрицы B. Третье условие часто записы-
вают так:

cond(A)(∥B∥/∥A∥) < 1, (1.1)
где cond(A) = ∥A−1∥∥A∥. Это число называют числом обусловленно-
сти матрицы A. Ясно, что cond(A) > 1, так как 1 = ∥I∥ = ∥A−1A∥ 6
∥A−1∥ ∥A∥ = cond(A).

Условие (1.1) можно интерпретировать следующим образом: мат-
рица A+B обратима, если относительное возмущение матрицы A, т.
е. ∥B∥/∥A∥, мало по сравнению с ее числом обусловленности.

2. Пример. Пусть A = {aij}ni,j=1 — квадратная матрица с диа-
гональным преобладанием (по строкам), т.е.

|aii| >
∑

16j6n, j ̸=i

|aij| ∀ i = 1, 2, . . . , n. (1.2)

Покажем, что она невырождена (в прошлом семестре было дано до-
казательство того, что все ее главные миноры, а, следовательно, и ее
определитель, отличны от нуля). Пусть D = diag(a11, a22, . . . , ann).
Вследствие условия (1.2) матрица D невырождена. Запишем матри-
цу A в виде A = D+(A−D). Вновь используя условие (1.2), получим,
что ∥D−1(A − D)∥∞ < 1, значит выполнено условие 2, и матрица A
невырождена.

Поскольку определители матриц A и AT совпадают, то матрица
с диагональным преобладанием по столбцам также невырождена.

1)под спектром матрицы понимается множество ее собственных чисел
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Теорема 1. Пусть матрицы A и Ã = A+B обратимы. Тогда

∥A−1 − Ã−1∥
∥Ã−1∥

6 ∥A−1B∥. (1.3)

Если ∥A−1B∥ < 1, то

∥Ã−1∥ 6 ∥A−1∥
1− ∥A−1B∥

, (1.4)

∥A−1 − Ã−1∥
∥A−1∥

6 ∥A−1B∥
1− ∥A−1B∥

. (1.5)

Доказательство. По условию теоремы I = (A + B)Ã−1, сле-
довательно, A−1 = (I + A−1B)Ã−1, поэтому A−1 − Ã−1 = A−1BÃ−1.
Отсюда, очевидно, следует (1.6). Далее, Ã−1 = A−1 − A−1BÃ−1, зна-
чит, ∥Ã−1∥ 6 ∥A−1∥ + ∥A−1B∥∥Ã−1∥, откуда вытекает (1.4). Нако-
нец, (1.5) — очевидное следствие (1.6), (1.4). �

Из теоремы 1 непосредственно вытекает
Следствие 1. Пусть матрицы A и Ã = A+B обратимы. Тогда

∥A−1 − Ã−1∥
∥Ã−1∥

6 cond(A)(∥B∥/∥A∥). (1.6)

Если cond(A)(∥B∥/∥A∥) < 1, то

∥Ã−1∥ 6 ∥A−1∥
1− cond(A)(∥B∥/∥A∥)

, (1.7)

∥A−1 − Ã−1∥
∥A−1∥

6 cond(A)(∥B∥/∥A∥)
1− cond(A)(∥B∥/∥A∥)|

. (1.8)

2. Устойчивость систем линейных уравнений

1. В этом параграфе норма матрицы считается подчиненной нор-
ме вектора. Следующая теорема устанавливает связь относительного
возмущениям матрицы системы и ее правой части с относительным
возмущением решения. Главную роль в получаемых здесь оценках
играет число обусловленности матрицы системы уравнений.
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Теорема 1. Пусть матрица A обратима, матрица ∆A такова,
что ∥A−1∆A∥ < 1, вектор x — решение системы уравнений

Ax = b, (2.1)

вектор x̃ — решение системы уравнений

Ãx̃ = b̃, b̃ = b+∆b, Ã = A+∆A. (2.2)

Тогда
∥x− x̃∥
∥x∥

6 cond(A)

1− ∥A−1∆A∥

(
∥∆b∥
∥b∥

+
∥∆A∥
∥A∥

)
. (2.3)

Если дополнительно потребовать, чтобы выполнялось условие

∥A−1∥∥∆A∥ < 1,

то

∥x− x̃∥
∥x∥

6 cond(A)

1− cond(A)(∥∆A∥/∥A∥)

(
∥∆b∥
∥b∥

+
∥∆A∥
∥A∥

)
. (2.4)

Доказательство. По условию теоремы матрицы A−1 и Ã−1

существуют, поэтому x = A−1b, x̃ = Ã−1(b + ∆b), следовательно,
x̃− x = Ã−1∆b+ (Ã−1 − A−1)b, и

∥x− x̃∥ 6 ∥Ã−1∥∥∆b∥+ ∥Ã−1 − A−1∥∥b∥,

откуда, используя (1.4), (1.5) и неравенство ∥b∥ 6 ∥A∥∥x∥, после эле-
ментарных преобразований получим (2.3). Оценка (2.4) есть очевид-
ное следствие (2.3). �

Оценка возмущения упрощается, когда ∆A = 0.
Следствие 1. Пусть Ax = b, Ax̃ = b̃, b̃ = b+∆b. Тогда

∥x− x̃∥
∥x∥

6 cond(A)
∥∆b∥
∥b∥

. (2.5)

Левая часть в (2.3) характеризует относительную величину воз-
мущения решения, отношение ∥∆b∥/∥b∥ — относительную величи-
ну возмущения правой части СЛАУ, отношение ∥∆A∥/∥A∥ — от-
носительную величину возмущения матрицы A. Если считать, что
∥A−1∆A∥ ≪ 1, то из (2.3) следует, что оценка относительной величи-
ны возмущения решения определяется числом обусловленности мат-
рицы и относительной величиной возмущения данных СЛАУ.
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В случае cond(A) ≫ 1 систему уравнений, а также матрицу A на-
зывают плохо обусловленной. В этом случае, как это следует из оцен-
ки (2.3), погрешность решения системы уравнений может оказаться
неприемлемо большой. Понятие приемлемости или неприемлемости
погрешности определяется постановкой задачи.

2. Пример плохо обусловленной системы. Рассмотрим
СЛАУ, в которой

A =



1 −1 −1 −1
... −1 −1

0 1 −1 −1
... −1 −1

0 0 1 −1
... −1 −1

0 0 0 1
... −1 −1

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


, b =



−1
−1
−1
−1
. . .
−1
1


.

Легко вычислить, что

A =



1 20 21 22
... 2n−3 2n−2

0 1 20 21
... 2n−4 2n−3

0 0 1 20
... 2n−5 2n−4

0 0 0 1
... 2n−6 2n−5

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 1 20

0 0 0 0 0 0 1


Γ

Следовательно, cond∞(A) = n 2n−1, т.к.

∥A∥∞ = n, ∥An−1∥∞ = 1 + 20 + 221 + . . .+ 2n−2 = 2n−1.

При больших n матрица плохо обусловлена. Например, при n = 50
имеем cond∞(A) ≈ 2.8 · 1016. Насколько это число велико?

Система Ax = b имеет единственное решение x = (0, 0, . . . , 0, 1)T ,
∥x∥∞ = 1. Пусть правая часть системы содержит погрешность ∆b =
(0, 0, . . . , 0, ε), ε > 0, ∆A = 0. Если ε = 2.2 · 10−16, что соответствует
относительной точности представления чисел в ЭВМ в плавающей
арифметике типа double, то оценка (2.5) принимает вид

∥x− x̃∥∞
∥x∥∞

6 6.2, (2.6)

из которой не следует малость погрешности решения. Проверим, на-
сколько эта оценка точна.
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Система Ax̃ = b̃ легко решается и, если x̃ = x+∆x, то

∆xn = ε, ∆xn−1 = ε, ,∆xn−2 = 2ε, . . . ,∆x1 = 2n−2ε,

и левая часть оценки (2.5) равна

∥x− x̃∥∞
∥x∥∞

= 2n−2ε ≈ 0.062.

Таким образом, при числе обусловленности матрицы порядка 1016 мы
получили решение с относительной погрешностью 6 · 10−2. Получить
решение с большей точностью невозможно.

3. Пусть некоторым способом найден вектор x̃, который мы счи-
таем приближением к решению уравнения (2.1). Наша цель — оценить
погрешность ∥x− x̃∥ через норму невязки ∥Ax̃− b∥. Введем исполь-
зуемую в дальнейшем вспомогательную величину. Пусть матрица A
обратима, x ̸= 0, Ax = b. Положим η = ∥A∥∥x∥/∥b∥. Очевидно, что
η > 1, и поскольку ∥x∥ 6 ∥A−1∥∥b∥, то η 6 ∥A∥∥A−1∥ = cond(A).
Для x̃ ∈ Cn положим r = Ax̃− b. Тогда x− x̃ = A−1r,

∥x− x̃∥ 6 ∥A−1∥∥r∥.
Поэтому

∥x− x̃∥/∥x∥ 6 (cond(A)/η)∥r∥/∥b∥, (2.7)
и как следствие

∥x− x̃∥/∥x∥ 6 cond(A)∥r∥/∥b∥. (2.8)

Оценка (2.7) показывает, что чем ближе величина η к величине
cond(A), тем лучше относительная погрешность оценивается относи-
тельной невязкой приближенного решения.

4. О точности оценки (2.8). Рассмотрим СЛАУ, в которой

A =

(
1 −1
1 ε− 1

)
, b =

(
1
1

)
.

Ее точное решение x = (1, 0)T , и пусть x̃ = (1 + ε−1/2, ε−1/2)T есть
приближение к этому решению. Тогда r = (0, ε1/2)T , вектор ошибки
x− x̃ = −(ε−1/2, ε−1/2)T . Поэтому

a) ∥r∥/∥b∥ = O(ε1/2) → 0 при ε → 0;
b) относительная ошибка ∥x−x̃∥/∥x∥ = O(ε−1/2) → ∞ при ε → 0.
Как видим, малость невязки не гарантирует точность приближе-

ния к решению. Это объясняется тем, что cond(A) = O(ε−1) → ∞ при
ε → 0. Обе части оценки (2.8) имеют одинаковый порядок O(ε−1/2),
что характеризует точность этой оценки.
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5. Свойства числа обусловленности Установите самостоя-
тельно следующие свойства числа обусловленности:

1) cond(A) > 1;

2) cond(A) = cond(A−1);

3) cond(AB) 6 cond(A) cond(B);

4) Если A = A∗, λmax(A) (λmin(A)) — максимальное (минимальное)

по модулю собственное значение A, то cond(A) =
∣∣∣λmax(A)

λmin(A)

∣∣∣.
5) Пусть cond(A) есть число обусловленности относительно любой

матричной нормы. Тогда cond(A) >
∣∣∣λmax(A)

λmin(A)

∣∣∣ (воспользуйтесь

оценкой ρ(A) 6 ∥A∥).


