03.1

© С.А. Исаев¹⁻³, А.Б Мазо³, Д.В. Никущенко¹, И.А. Попов⁴, А.Г. Судаков²

¹ Санкт-Петербургский государственный морской технический университет, Санкт-Петербург, Россия

² Санкт-Петербургский государственный университет гражданской авиации, Санкт-Петербург, Россия

³ Казанский (Приволжский) федеральный университет, Казань, Россия

⁴ Казанский национальный исследовательский технический университет им. А.Н. Туполева — Казанский авиационный институт, Казань, Россия

E-mail: isaev3612@yandex.ru

Поступило в Редакцию 6 июля 2020 г. В окончательной редакции 22 июля 2020 г. Принято к публикации 24 июля 2020 г.

> Наклон овально-траншейной лунки в коридорном пакете на стабилизированном гидродинамическом участке узкого канала оказывает кардинальное воздействие на аномальную интенсификацию отрывного и закрученного потоков в лунке, приводя к трех-четырехкратному снижению относительного отрицательного трения в диапазоне изменения углов от 40 до 60°, увеличению наибольшей скорости возвратного и вторичного течения до 0.8 и 1.18 по отношению к среднемассовой скорости потока в канале.

Ключевые слова: наклоненные овально-траншейные лунки, узкий канал, интенсификация.

DOI: 10.21883/PJTF.2020.21.50190.18454

Вихревые генераторы для интенсификации процессов переноса в пристеночных турбулентных течениях представляют большой интерес для разработки перспективных технологий в энергетике [1,2]. Среди поверхностных вихрегенераторов выделяются лунки, позволяющие добиваться значительной тепловой эффективности при весьма умеренных гидравлических потерях. В большинстве исследований рассматривались симметричные, в частности сферические, формы лунок как наиболее технологичные при их нанесении на стенку. Однако стремление интенсифицировать отрывное течение внутри лунок и спиралевидные вихри в следе за лунками обусловливает давний интерес к несимметричным формам лунок, в частности формирующим асимметричное течение. Как показано в [3], при выдуве струи под косым углом к сносящему потоку отмечается увеличение скорости течения в развивающихся спиралевидных вихревых структурах. Аналогичное воздействие на пристеночное течение оказывает изменение угла ориентации вихревых генераторов флюгерного типа [4]. В [5] интенсификация вторичного течения в лунке была достигнута при замене боковой половины сферической лунки на эллиптическую. Более эффективной оказалась наклонная к внешнему потоку овальная лунка, в которой две разнесенные половинки сферической лунки соединяются цилиндрической, траншейной вставкой [6]. В [7] исследованы метастабильные вихревые структуры в глубоких сферических и овальных расположенных поперек потока лунках. Показано, что забор среды в глубокую овальную траншею может происходить либо поочередно в области концов лунки с выходом наружу у противоположных

концов (сферические лунки и короткие траншеи), либо одновременно с обоих концов (умеренные и длинные траншеи) с выходом в спутный поток из срединной части траншеи. При наклоне под углом 45° увеличение длины уединенной овально-траншейной лунки (ОТЛ) на стенке узкого канала при условии постоянства площади пятна и глубины приводит к интенсификации вихревого течения в лунке и снижению гидравлических потерь [8]. В [9,10] открыто явление аномальной интенсификации отрывного течения в наклонных однорядных ОТЛ в узком канале на стабилизированном гидродинамическом участке. Установлен многократный рост абсолютной величины относительного трения в отрывной зоне на участке забора среды в лунке. Максимальная скорость возвратного течения в лунках приближается к среднемассовой скорости, а максимальная скорость вторичного течения превышает максимальную скорость в плоскопараллельном канале. Эффект усиливается по мере уплотнения луночного пакета. В настоящей работе анализируется влияние на эффект угла θ наклона ОТЛ в однорядном пакете на стабилизированном гидродинамическом участке канального потока в диапазоне изменения θ от 0 до 65°.

Рассматривается периодическая секция канала с одной лункой на стенке длиной 8, шириной 9 и высотой 1 (рис. 1). Верхняя стенка канала и боковые грани плоские. Лунка имеет ширину 1.05, длину 7.05, глубину 0.3 и радиус скругления кромки 0.21. Угол наклона лунки варьируется от 0 до 65° . Число Рейнольдса, определенное по характерной среднемассовой скорости и высоте канала, задано равным 10^4 . Декартова система коорди-

Рис. 1. Конфигурация периодической секции узкого канала с наклонной ОТЛ (со снятой верхней стенкой) с оцифрованными фрагментарными сетками: канальной (прямоугольной) (1), пристеночной, согласованной с поверхностью нижней стенки (2), и кромочной (3). Показано расположение системы декартовых координат x, y, z с обозначением декартовых составляющих скорости u, v, w.

нат *x*, *y*, *z* вводится с центром в середине нижней грани входного сечения облуненной секции канала (рис. 1).

Развитое турбулентное течение в облуненном канале описывается осредненными по Рейнольдсу уравнениями Навье-Стокса. Для замыкания системы уравнений движения применяется модель переноса сдвиговых напряжений (SST) 2003 г. в модификации, учитывающей влияние кривизны линий тока в рамках подхода Роди-Лешцинера-Исаева [11]. При решении конечно-объемных аналогов записанных в приращениях исходных уравнений применяются многоблочные вычислительные технологии, базирующиеся на разномасштабных пересекающихся сетках и гибридных сетках с неструктурированными вставками в местах наложения структурированных фрагментов. Используется метод коррекции градиента давления, основанный на сохранении расхода воздуха в канале. Применяется пакет VP2/3 (скорость-давление, 2D/3D) [12] и устанавливается сеточная сходимость расчетных результатов на сетках различной густоты и топологии. Использованные в численном исследовании многоблочные структурированные с наложением расчетные сетки состоят из трех оцифрованных на рис. 1 разномасштабных фрагментарных сеток. Общее количество расчетных ячеек многоблочной сетки составляет порядка 2.5 млн. Верификация модифицированной SST-модели и пакета VP2/3 на задачах турбулентного обтекания сферических и овально-траншейных лунок на стенке узкого канала проведена в [13].

Зависимости экстремальных характеристик течения и турбулентности, обезразмеренных по среднемассовой скорости, а также гидравлических потерь в периодической облуненной секции канала, определенных в рамках подхода [14] и отнесенных к потерям в гладком плоскопараллельном канале с индексом *pl*, от углов

наклона ОТЛ на рис. 2 демонстрируют характерные диапазоны изменения, связанные с достижением экстремумов характеристик. Прежде всего отмечается диапазон малых углов наклона θ от 1 до 5–7°, незначительно отличающихся от нуля. Все рассматриваемые на рис. 2 экстремальные величины (минимальные величины рассматриваются со знаком минус) декартовых составляющих скорости и энергии турбулентности довольно резко нарастают, достигая величин, близких к локальным экстремумам. Так, максимальные абсолютные величины скорости отрывного и вторичного течения ($-u_{min}$) и ($-w_{min}$) увеличиваются до 0.37 и 0.6 соответственно. Энергия турбулентности k_m возрастает более чем в 1.5 раза по сравнению со случаем отрывного течения при $\theta = 1^\circ$.

Следующий характерный диапазон углов θ простирается до 18°. В нем ($-w_{\min}$), а также экстремальные скорости нисходящего и восходящего потоков ($-v_{\min}$) и v_m изменяются незначительно, сохраняя величины, близкие к 0.6, 0.62 и 0.22. Все остальные характеристики уменьшаются. Так, ($-u_{\min}$) при $\theta = 18^{\circ}$ достигает минимума порядка 0.2. Также вдвое до этой величины падает максимальная скорость вторичного течения w_m .

Основной диапазон углов наклона θ , в котором наблюдается значительная интенсификация вторичного и возвратного течения, простирается от 18 до 65°. Величина $(-w_{\min})$ в этом диапазоне возрастает почти двукратно, достигая максимума 1.16 при $\theta = 50^{\circ}$, $(-u_{\min})$ увеличивается почти четырехкратно, достигая максимума, близкого к 0.8, при $\theta = 52.5^{\circ}$. Наибольшие величины w_m постепенно нарастают до 0.4 к $\theta = 32.5^{\circ}$. Далее они сохраняются приблизительно на одном уровне до $\theta = 40^{\circ}$, а затем немного увеличиваются и при больших углах наклона остаются неизменными на уровне 0.45. Наибольшие скорости восходящих потоков v_m достигают максимума, близкого к 0.55, при $\theta = 52.5^{\circ}$. Зависимости $-v_{\min}(\theta)$ и $k_m(\theta)$ разбиваются на два участка, на которых наблюдаются локальные максимумы и минимумы. Обе

Рис. 2. Зависимости от угла наклона θ экстремальных и интегральных характеристик течения в облуненном канале: $u_m/u_{m\,pl}$ (1), ($-u_{\min}$) (2), v_m (3), ($-v_{\min}$) (4), w_m (5), ($-w_{\min}$) (6), k_m (7), $\mu_{tm}/\mu_{tm\,pl}$ (8) и $\xi/\xi_{pl}(9)$.

Рис. 3. Сравнение профилей относительного трения f/f_{pl} в срединном сечении ОТЛ. θ , °: *a*) 1 - 1, 2 - 3, 3 - 4, 4 - 5, 5 - 10, 6 - 15; *b*) 1 - 17.5, 2 - 20, 3 - 22.5, 4 - 25, 5 - 27.5, 6 - 30, 7 - 32.5, 8 - 35, 9 - 37.5; *c*) 1 - 37.5, 2 - 40, 3 - 42.5, 4 - 45, 5 - 47.5, 6 - 50, 7 - 52.5, 8 - 55; *d*) 1 - 55, 2 - 57.5, 3 - 61.5, 4 - 62.5, 5 - 65.

характеристики достигают локальных минимумов при $\theta = 22.5-25^{\circ}$ с некоторой задержкой по отношению к другим переменным. При этом минимальная величина $k_m(\theta)$ оказывается ниже уровня, зафиксированного при $\theta = 1^{\circ}$, т.е. наблюдается эффект ламинаризации по мере интенсификации отрывного и закрученного потоков. Величина $(-v_{\min})$ снижается до 0.45, т.е. в 1.5 раза. С ростом θ при $\theta = 35$ и 42.5° обнаруживаются локальные максимумы и минимумы, причем k_m значительно снижается (до 0.05) при $\theta = 42.5^{\circ}$. При θ свыше 42.5° обе переменные растут, достигая максимумов, равных 0.73 и 0.062, при $\theta = 52.5^{\circ}$.

Влияние θ кардинально влияет на интенсификацию отрывного и закрученного потоков в периодической ОТЛ. В двух диапазонах θ от 7 до 10° и от 40 до 57.5° наблюдается увеличение максимальной относительной скорости в ядре потока u_m/u_{mpl} в 1.125 и в 1.2 раза. Здесь u_{mpl} — величина максимальной скорости в гладкостенном узком канале. Максимум относительных гидравлических потерь ξ/ξ_{pl} наблюдается при 60° и в 1.26 раза превышает потери в гладком канале (ξ_{pl}). Максимум относительной вихревой вязкости μ_{tm}/μ_{tmpl} при малых углах наклона линейно падает с 1.3 до 1.04,

т.е. близок к 1. В дальнейшем с ростом θ до 20° он нарастает линейно до 1.17 и остается на этом уровне до 40°. При средних и высоких θ свыше 40° $\mu_{tm}/\mu_{tm\,pl}$ быстро нарастает до величины 1.45, соответствующей 60–63°, после чего начинает снижение. В диапазоне θ от 15 до 40° кривые $u_m/u_{m\,pl}(\theta)$ и $\xi/\xi_{pl}(\theta)$ совпадают.

Классификация режимов течения в лунке по мере ее наклона иллюстрируется профилями относительной x-составляющей трения f/f_{pl} в срединном сечении лунки. Приведенные на рис. 3, *а* зависимости $f/f_{pl}(S)$ показывают значительную интенсификацию течения в центральной части лунки по мере роста θ от 1 до 15°. Относительное трение уже при θ свыше 5° превышает единицу, т.е. трение внутри лунки превосходит трение в гладком канале. На рис. 3, b рассмотрен следующий диапазон изменения θ от 17.5 до 37.5°, который характеризуется прежде всего интенсификацией течения во входной отрывной зоне. Относительное трение падает от -0.75 до -3. Длина отрывной зоны растет примерно от 1.07 до 1.6. В центральной зоне и на выходном участке лунки происходит перестройка течения. По мере роста θ монотонно уменьшается максимум относительного трения с 1.4 до 0.9, оставаясь на расстоянии примерно 2.5 от входной кромки лунки. Третий диапазон изменения относительного трения представлен на рис. 3, с и охватывает диапазон углов наклона от 40 до 55°. По мере роста наклона лунки усиливается интенсификация возвратного течения в передней части лунки и одновременно наблюдается изменение ее размера. Так, минимальное относительное трение снижается от -3.2 до -4.1. Длина отрывной зоны сначала достигает максимальной величины 1.85 при $\theta = 42.5^{\circ}$, а дальше монотонно уменьшается до 1.96. Форма профиля $f/f_{pl}(S)$ становится все более наполненной. Наиболее сложная перестройка течения происходит в центральной части лунки в зоне в целом безотрывного течения. Четвертый диапазон изменения углов наклона лунки представлен на рис. 3, *d* и охватывает диапазон углов наклона от 55 до 65°. Интенсификация отрывного течения во входной части лунки начинает ослабевать. Так, минимальное относительное трение возрастает от -4 до -3.6. Длина отрывной зоны немного сокращается (от 1.46 до 1.36). Наиболее интересные структурные метаморфозы происходят в центральной части лунки, где при больших углах наклона формируется зона интенсивного возвратного течения.

Таким образом, наклон овально-траншейной лунки в коридорном пакете на стабилизированном гидродинамическом участке узкого канала оказывает кардинальное воздействие на аномальную интенсификацию турбулентного отрывного и закрученного потоков в лунке, приводя к трех-четырехкратному снижению относительного отрицательного трения в диапазоне изменения углов от 40 до 60°, увеличению наибольшей скорости возвратного и вторичного течения до 0.8 и 1.18 по отношению к среднемассовой скорости потока в канале, ускорению канального потока в 1.2 раза по сравнению с максимальной скоростью в плоскопараллельном канале.

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 19-19-00259).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Вихревые технологии для энергетики / Под общ. ред. акад. А.И. Леонтьева. М.: Изд. дом МЭИ, 2017. 500 с.
- [2] Rashidi S., Hormozi F., Sunden B., Mahian O. // Appl. Energy. 2019. V. 250. P. 1491–1547.
- [3] *Rutten M., Krenkel L. //* Notes Num. Fluid Mech. Multidiscipl. Des. 2010. V. 112. P. 555–562.
- [4] Henry F.S., Pearcey H.H. // AIAA J. 1994. V. 32.
 P. 2415–2425.
- [5] Исаев С.А., Леонтьев А.И., Баранов П.А. // Письма в ЖТФ. 2000. Т. 26. В. 1. С. 30–37.

- [7] Гувернюк С.В., Чулюнин А.Ю. // Письма в ЖТФ. 2019.
 Т. 45. В. 17. С. 43-46.
- [8] Исаев С.А., Леонтьев А.И., Гульцова М.Е., Попов Ю.А. // Письма в ЖТФ. 2015. Т. 41. В. 12. С. 89–96.
- [9] Isaev S., Gritckevich M., Leontiev A., Popov I. // Acta Astronaut. 2019. V. 163. Pt A. P. 202–207.
- [10] Isaev S.A., Gritckevich M.S., Leontiev A.I., Milman O.O., Nikushchenko D.V. // Int. J. Heat Mass Transfer. 2019. V. 145. P. 118737 (1–13).
- [11] Isaev S.A. // AIP Conf. Proc. 2018. V. 2027. P. 020015 (1-7).
- [12] Исаев С.А., Баранов П.А., Усачов А.Е. Многоблочные вычислительные технологии в пакете VP2/3 по аэротермодинамике. Саарбрюккен: LAP LAMBERT Academic Publ., 2013. 316 с.
- [13] Isaev S., Leontiev A., Chudnovsky Y., Nikushchenko D., Popov I., Sudakov A. // Energies. 2019. V. 12. P. 1–24.
- [14] Isaev S.A., Kornev N.V., Leontiev A.I., Hassel E. // Int. J. Heat Mass Transfer. 2010. V. 53. P. 178–197.