228 6. The Analysis of Multiple DNA or Protein Sequences

y [F=0 k=1 k=2 k=3 k=4 k=5
7 10.990

8 | 0.682

9 |0.249 0.999

10] 0.069 0.824

11 | 0.018 0.353 0.995
121 0.004 0.102 0.733
131 0.001 0.028 0.281

14 0.007 0.079 0.487

15 0.002 0.020 0.154

16 0.005 0.041 0.224

17 0.002 0.010 0.061

18 0.003 0.016 0.074
19 0.001 0.004 0.019
20 0.000 0.001 0.005
21 0.001
22 0.000

Table 6.6. Approximate P-values for the maximum of 75,000 iid generalized geo-
metric random variables, for various values of k and y, calculated using equations
(3.51), (6.5) and (6.6). p = %.

cult, and we do not pursue further topics here. Recent research results may
be found, for example, in Bailey and Gribskov (1998), Jonassen, Collins,
and Higgins (1995), Karlin and Brendel (1992), Neuwald and Green (1994),
and Rigoutsos and Floratos (1998).

6.4 Alignment Algorithms for Two Sequences

6.4.1 Introduction

One way to discriminate between good and bad alignments is to use a
scoring scheme. A simple example of a scoring scheme is

(the number of matches) — (the number of mismatches and indels). (6.7)

Scoring schemes used for aligning DNA are often not much different from
this simple scheme. For protein sequences, however, a more complex scoring
scheme is appropriate. Commonly used scoring schemes are developed using
statistical analysis of existing data, and we discuss the statistical theory
behind these scoring schemes in Section 6.5. For now, we assume that we
have assigned a score to each alignment in a meaningful way that reflects the
likelihood that this alignment was produced as a consequence of divergence
from a common ancestor. Then we can consider the alignments with the

6.4. Alignment Algorithms for Two Sequences 229

“best” score, and we can define the score of the sequence pair to be this
best score. What “best” means here depends on whether high scores in the
scoring scheme are more indicative of relatedness (so the “best” score is the
maximum over all alignments), or whether low scores are more indicative
(so “best” is the minimum).

This mathematical framework allows a statistical analysis where we make
inferences about the relatedness of the sequences. We can investigate the
hypothesis that they did indeed diverge from a common ancestor by con-
sidering the probability of the observed score (or one more extreme) arising
by chance, under some appropriate model of evolution. If the two sequences
are judged to be related, we can use their alignment to discover common
patterns in the sequences. This is useful in particular for finding functional
domains. Finally, by comparing scores among several different species we
can get information to help reconstruct the phylogenetic tree that relates
them all.

Scores of alignments consist of two main types: similarity scores and dis-
tance scores (also commonly called distance measures). In similarity scores
the higher the score, the more closely related are the two aligned sequences;
in the distance measures the opposite is the case. In the remainder of this
section we use similarity scores. These are usually computed as the sum
of individual scores, one for each aligned pair of residues, together with a
score for each gap. We will denote by s(X,Y") the score assigned to the
aligned pair consisting of the residues X and Y. This score reflects how
conservative the substitution represented by the alignment of X with Y is.
For example, it is much less likely that the amino acid W (tryptophan) will
be substituted for V' (valine) in a functional domain than it is that W will
be substituted for R (arginine). (This is not only an empirically observed
fact, but also makes sense in terms of the chemical properties involved.)
Thus the score s(W,V) assigned to an alignment of the two symbols W
and V is lower than s(W, R), the score assigned to an alignment of the two
symbols W and R. The score assigned to a gap of length £ is usually a func-
tion of ¢, which we denote by J(¢). It represents the cost of having a gap of
length ¢ and is therefore zero or negative. The simplest gap penalty model
is a linear gap model, where §(¢) = —{d for some non-negative constant d,
called the linear gap penalty. Therefore, in the linear gap model, each indel
in a gap is weighted in the same way, namely by a penalty of d.

Thus if the alphabet has size N (N = 4 for nucleotides and N = 20 for
amino acids), a scoring scheme consists of an N x N matrix S and a gap
cost function . The matrix S is called a substitution matriz and the entry
in its ith row and jth column is the score of the alignment of the ith and
jth symbols in the alphabet.

Ezxample. Consider the comparison of two nucleotide sequences with a sim-
ple scoring scheme that assigns +1 to each match, —1 to each mismatch, and
a linear gap score with d = 2. Then the score for the following alignment of

230 6. The Analysis of Multiple DNA or Protein Sequences

the two sequences cttagg and catgagaais 1 —14+1—-241—-2+1—-4 = —5:

cttag-—-—g— —
cat —ga g a a

One of the main aims of the statistical theory is to find for nucleotides,
and more importantly for amino acids, what an optimal scoring scheme
should be. This matter is taken up in detail in Section 6.5 and Chapter 10.

6.4.2 Gapped Global Comparisons and Dynamic
Programming Algorithms

Suppose that we are given a scoring scheme made up of a substitution
matrix and a linear gap penalty. Our aim is to find, of the possible global
alignments of two sequences (with gaps allowed), the one (or those ones)
with the highest score. One method in principle for doing this is to list
exhaustively all possible alignments and their scores, and then note the
highest-scoring alignment(s). However, when the sequences are long, this is
not computationally feasible, and more efficient algorithms are needed. We
describe one such algorithm below, but first we justify our assertion that
the exhaustive search illustrated above is indeed not efficient, by getting
a sense of how large the number of global alignments between a sequence
x = X1 Xs...X,, oflength m and a sequence y = Y1Y5...Y,, of length n is.
We will denote this number by ¢(m,n). Since there is no point in matching
two deletions, no alignments of one indel with another are allowed.

Let g(m, n) be the number of groups obtained by grouping together those
alignments that have the same combination of aligned residue pairs ignoring
the indels. Then g(m,n) < ¢(m,n), and this provides a lower bound for
¢(m,n). We can compute g(m,n) as follows.

The number k of aligned residues for two sequences of lengths m and n
is between 0 and min{m,n}. Moreover, for each such k there are (') ways
of choosing the residues of @ that align with residues of y, and (}}) ways
of choosing the residues of y that align with residues of x. So there are
(") (?) alignments with & aligned residues. Therefore,

k
s = S (1)) (6.5)

k=0

From the result of Problem 6.1 below, it follows that

g(m,n) = (m + ”) . (6.9)

n

In particular, when m = n,

onm) = ().

6.4. Alignment Algorithms for Two Sequences 231

This number grows quite fast with n. Stirling’s approximation (B.4), and
even more directly (B.5), shows that

(2:> ~ jj; (6.10)

Thus the number ¢(1,000,1,000) of global alignments between two
sequences each of length 1,000 satisfies

92000
(1,000, 1,000) > ¢(1,000, 1,000) = 0007 1077,
This shows why it is not feasible to examine all possible alignments. This
motivates the search for algorithms that can compute the best score ef-
ficiently and an alignment with this score, without having to examine
all possibilities. One such algorithm is the Needleman—Wunsch algorithm
(1970), and we discuss a version of this procedure introduced by Gotoh
(1982). These are examples of dynamic programming algorithms, and we
use them to illustrate the general concept of dynamic programming.
The input consists of two sequences,

r=X1Xs...X,, and y=Y1Y>...Y,,

of lengths m and n, respectively, whose elements belong to some alphabet
of N symbols (for DNA or RNA sequences N = 4, for proteins N = 20). We
assume that we are given a substitution matrix S and a linear gap penalty
d. The output consists of the highest score over all alignments between =
and y and a highest-scoring global alignment between x and y.

The broad approach is to break the problem into sub-problems of
the same kind and build the final solution using the solutions for the
sub-problems: This is the basic idea behind any dynamic programming
algorithm. In this problem we find a highest-scoring alignment using previ-
ous solutions for highest-scoring alignments of smaller sub-sequences of x
and y. We denote by x; ; the initial segment of = given by X; X5 --- X; and
similarly we denote by vy, ; the initial segment of y given by Y1Y5---Y.
Fori=1,2,...,mand j = 1,2,...,n, we denote by B(i,j) the score of
a highest-scoring alignment between x;; and y, ;. For i = 1,2,...,m, we
denote by B(i,0) the score of an alignment where x; ; is aligned to a gap
of length 7, so B(i,0) = —id. Similarly, for j = 1,2,...,n, we denote by
B(0,) the score of an alignment where Yy ; is aligned to a gap of length j,
so B(0,j) = —jd. Finally, we initialize B(0,0) = 0. These calculations lead
to an (m+ 1) x (n+ 1) matrix B. The entry in the last row and in the last
column of B, namely B(m,n), is the score of a highest-scoring alignment
between our two sequences & and y, and it is one of the things we want
our algorithm to output.

The essence of the procedure is to fill in the elements of the matrix B
recursively. We already have the values of B at (0,0), (¢,0), and (0,7),
fore =1,2,...,mand 5 = 1,2,...,n. Now we proceed from top left to

232 6. The Analysis of Multiple DNA or Protein Sequences

bottom right by noting that a highest-scoring alignment between x; ; and
Yy ; could terminate in one of three possible ways, namely, with
)}%’, Xi, or oy

In the first case, B(i,7) is equal to the sum of the score for a highest-
scoring alignment between x ;1 and y; ;_; together with the extra term
s(i,7) to account for the match between X; and Yj; that is, B(4,j5) =
B(i—1,5— 1)+ s(i,7). In the second case, B(i,7) is equal to the sum of
the score for a highest-scoring alignment between x; ;1 and y, ; together
with an extra term —d to account for the indel to which X; is aligned, (i.e.,
B(i,j) = B(i—1,j)—d). Similarly, in the third case, B(i,j) = B(i,j—1)—d.
These are all the possible options, and hence B(i,) is the highest of the
three. In other words,

B(i,j) = max{B(i—1,j—1)+s(i,j), B(i—1,5)—d, B(i,j—1)—d}. (6.11)

In this way we recursively fill in every cell in the matrix B and determine
the value of B(m,n), which is the desired maximum score. The running
time of this algorithm is clearly O(mn). To find an alignment that has
this score we must keep track, at each step of the recursion, of one of the
three choices giving the value of the maximum. Although there could be
more than one choice giving the maximum, if we are interested in finding
only one alignment, we choose one and keep a pointer to it. Once B(m,n)
is obtained, by tracing back through the pointers, we can reconstruct an
alignment with the highest score. We now illustrate this procedure with an
example.

Ezxample. Let * = gaatct and y = catt, so that m = 6 and n = 4. Using
the same scoring scheme as in the example in Section 6.4.1, B is given
in Figure 6.1, where we have used arrows to denote where each cell came
from. The best score for an alignment is given by the element in the bottom
rightmost cell, which is —2. Tracing back along the bold arrows, we get the
highest-scoring alignment

By making different choices of arrows in the traceback procedure we can get
the following other alignments, which are also highest-scoring, (i.e., which
also have a score of —2):

ga atct gaatct
ca —t—1 and —cat —t’

We next consider modifications of the Needleman—Wunsch algorithm,
which can be used to address other kinds of pairwise alignment problems.

6.4. Alignment Algorithms for Two Sequences 233

c a t t
— 0 -2 —4 —6 -8
N N N N
g | —2 -1 <~ -3 < -5 <+ =7
NN
a | —4 -3 0 «— -2 <+ -4
NN TN N
a | —6 -5 -2 -1 +« =3
N1 TN N
t -8 =7 —4 —1 0
N T T N7
c | —10 -7 —6 -3 —2
TN TN TN
t | —12 -9 -8 -5 —2
Figure 6.1.

6.4.8 Fitting One Sequence into Another Using a Linear Gap
Model

In this section we address the following problem: Given two sequences, a
longer and a shorter one, find the sub-sequence(s) of the longer one that
can be best aligned with the shorter sequence, where gaps are allowed. This
procedure is relevant when one is interested in locating a specified pattern
within a sequence.

Let x = X7 X5...X,, and y = Y1Y5...Y,, be two sequences with n >
m. For 1 < k < j < n, denote by y, ; the sub-sequence of y given by
Y Y11 ...Y;. For two sequences u and v, denote by B(u,v) the score of
a highest-scoring (global) alignment between w and v. Our aim is to find

max{B(z,y; ;) : 1 <k <j<n} (6.12)

For each choice of k and j the running time of the Needleman—Wunsch al-
gorithm, giving the value of B(z,y, ;), is O(m(j—k)). Thus if we used this
algorithm for all possible choices of k£ and j, and then took the maximum
over all such choices, the total running time would be O(mn?), since there
are (g) possible choices for j and k. We now illustrate another approach
with a better running time, namely an O(mn) running time.

For 1 <i <mand 1 < j < mn, let F(i,j) be the maximum of the
scores B(x1,i, Yy ;) over the values of k between 1 and j. That is, of all the
possible scores for highest-scoring alignments between the initial segment
of up to z; and the segments of y ending at y; and beginning at some
k we take F'(i,7) to be the greatest of such scores. The value of (6.12) is
the maximum of F'(m, j) over all values of j between 1 and n. To find this,
we initialize F'(i,0) = —id for 1 < i < m and initialize F(0,j) = 0 for
0 < j < n, since deletions of the beginning of y should clearly be without

234 6. The Analysis of Multiple DNA or Protein Sequences

penalty. Then we fill in the matrix F' recursively by
F(Zv.]) = max{F(z - 15] - 1) +S(Zv.7)7F(7'a.7 - 1) - dvF(Z - 17.7) - d}v

where the reasoning behind this formula is analogous to that behind (6.11).
Note that there might be more than one value of j giving the maxi-
mum score. In order to recover the highest-scoring alignments of x to
sub-sequences of y we can keep pointers, as in the Needleman—Wunsch
algorithm.

6.4.4 Local Alignments with a Linear Gap Model

Another interesting alignment problem is to find, given two sequences,
which respective sub-sequences have the highest-scoring alignment(s) (with
gaps allowed). This is called a local alignment problem, and it is appropriate
when one is seeking common patterns/domains in two sequences.

In the following we make the assumption that the scoring scheme we
use is such that the expected (or mean) score for a random alignment is
negative. If this assumption did not hold, then long matches between sub-
sequences could score highly just because of their lengths, so that two long
unrelated sub-sequences could give a highest-scoring alignment. Clearly, we
do not want this to occur.

For 1 < h <i < m we denote by x;; the sub-sequence of x given by
XpXpt1...X;. With the notation as in the previous section, we want to
find

max{B(xn,i, Yy ;) : 1 <h<i<m,1<k<j<n}, (6.13)

when this is non-negative. There are (Tg) (g) pairs of sub-sequences of x

and y, one for each choice of h and ¢ among m possible values and of k£ and
j among n possible values. Thus computing a highest-scoring alignment for
each pair, using the Needleman—Wunsch algorithm, requires a total running
time of O(m?3n?). Clearly, we want to give a more efficient approach to this
problem. Such an approach is provided by the Smith—Waterman algorithm
(Smith and Waterman (1981)) which computes (6.13) in O(mn) time. The
procedure is as follows.

For each 1 <i <m and 1 < j < n, we define L(, j) to be the maximum
of 0 and the maximum of all possible scores for alignments between a
sub-sequence of & ending at X; and one of y ending at Y;. That is,

L(i,j) = max{0, B(xnq, Yy ;) : 1 <h <i, 1 <k <j}

The reason we want L(4,j) = 0 when the max of the B(zp, ;,yy, ;)’s is nega-
tive is because it is sensible to always remove the first part of an alignment
if this part has a negative score, as it will just decrease the overall score
of the alignment. Then the maximum of 0 and (6.13) is the maximum of
L(i,j) over all values of i between 1 and m and of j between 1 and n. To

6.4. Alignment Algorithms for Two Sequences 235

determine this maximum we again use dynamic programming, by initializ-
ing L(i,0) =0 = L(0,4) for 0 <i <m and 0 < j < n (since deletions at
the beginning or end of our two sequences should not be penalized), and
by computing

L(i,j) = max{0,L(i — 1,5 — 1) + s(¢,5),L(i — 1,5) — d, L(i,j — 1) — d}.

We then calculate the maximum of L(7, j) over all values of 7 and j. As in
the previous maximizing procedures there might be more than one highest-
scoring local alignment. To find a highest-scoring alignment, we follow the
traceback procedure previously described. However, for this algorithm, we
stop this process when we encounter a 0.

Figure 6.2 shows an example of an L(4,) matrix arising in locally align-
ing two sequences of lengths 7 and 10. In this example, the score of an

Y1 Y, Y3 Y Y5 Ys Y7 Ys Yo Yo

0 0 0 0 0 0 0 0 0 0 0

X110 0 0 0 0 0 0 0 0 0 0

N N
X210 0 0 5 0 5 0 0 0 0 0
N N
X310 0 0 0 2 0 20 «— 12 < 4 0 0
N NN

X4|0 10 « 2 0 0 0 12 18 22 «+— 14+ 6
TN T NN N

X510 2 16 «+ 8 0 0 4 10 18 28 20
TN N N) TN

X510 0 8 21 « 13 5 0 4 10 20 27
N NN NOONN

X~7|0 0 6 13 18 12 «+ 4 0 4 16 26

Figure 6.2.

optimal local alignment of the two sequences is 28, and there is only one
alignment of sub-sequences giving this score, the one indicated by the bold
arrows, which is

Xo X3 — Xy X;
Ys Y Y Ys Yy o

6.4.5 Other Gap Models

There are many variants and extensions of the algorithms discussed above.
For example, while the linear gap model used above is appealing in its
simplicity, it is often not appropriate for biological sequences, since often

