Обзоры

УДК 541.49+546.04+546.06

Стереоселективные эффекты, термодинамика образования, кинетика реакций замещения и структуры комплексов переходных металлов с биолигандами и ароматическими N-донорами*

В. Г. Штырлин,^{*} Н. Ю. Серов, М. С. Бухаров, Э. М. Гилязетдинов, М. А. Жернаков, М. А. Ахмед, А. Р. Гарифзянов, И. И. Мирзаянов, А. В. Ермолаев, Н. С. Аксенин, К. В. Уразаева, А. В. Захаров

> Химический институт имени А. М. Бутлерова, Казанский (Приволжский) федеральный университет, Российская Федерация, 420008 Казань, ул. Кремлевская, 18. Факс: (843) 238 7901. E-mail: Valery.Shtyrlin@gmail.com

В обзоре представлены полученные авторским коллективом в последние годы результаты исследований структуры (в твердом состоянии и в растворах), термодинамики, стереоселективности образования и кинетики реакций замещения ряда гомо- и гетеролигандных комплексов некоторых 3d-элементов с энантиомерно однородными и рацемическими формами аминокислот, природными ди- и трипептидами, ароматическими N-донорами, новыми фосфорилированными дитиокарбаматами и производным гидразона на фоне солей различной концентрации при нескольких температурах. Достоверные результаты получены с использованием комплекса спектральных методов, включая спектрофотометрию, ЭПР, ЯМР-релаксацию и РСА, метода остановленной струи со спектральной регистрацией, а также рН-метрии в сочетании с математическим моделированием с применением ряда современных программ, в том числе авторских. Структуры комплексов в растворах описаны с помощью квантово-химических расчетов методом DFT и путем моделирования методом молекулярной динамики. Выявлены основные факторы, контролирующие стереоселективность комплексообразования, устойчивость комплексов и кинетику реакций замещения лигандов.

Ключевые слова: координационные соединения, термодинамика, кинетика, структура, стереоселективность, спектральные методы, квантовая химия.

Выяснение причин специфичности и селективности процессов в живой природе и связан-

* По материалам XIX Международной конференции «Спектроскопия координационных соединений» (18—23 сентября 2022 г., г. Туапсе).

ной с ними биологической активности соединений является крупнейшей проблемой современной науки. В решение этой проблемы значительный вклад способны внести исследования в области координационной и бионеорганической

© 2023 «Известия Академии наук. Серия химическая»

химии. С этой целью в данном авторском обзоре рассмотрены полученные коллективом авторов за последние годы наиболее важные результаты исследований структуры, термодинамики, стереоселективности образования и кинетики реакций замещения ряда гомо- и гетеролигандных комплексов 3d-элементов с аминокислотами различной хиральности, природными дии трипептидами, ароматическими N-донорными лигандами, фосфорилированными дитиокарбаматами и новым гидразоновым производным на фоне солей различной концентрации при 25.0 и 37.0 °C.¹ Для получения достоверных результатов использованы комплекс взаимодополняющих спектральных методов, метод остановленной струи со спектральной регистрацией и рНметрия. В расчетах широко использованы методы математического моделирования с помощью ряда современных программ, включая авторские программы STALABS² и STALABS-M.³ Структуры многих комплексов в растворах описаны с помощью квантово-химических расчетов методом DFT и путем моделирования методом молекулярной динамики (МД).

Особо отметим важность методов получения достоверной информации о комплексообразовании в растворах и твердой фазе. В исследовании комплексообразования наиболее прецизионным методом является pH-потенциометрия, с которой необходимо начинать всегда, когда это возможно. После этого требуется подключать спектральные, квантово-химические и иные методы исследования структуры, термодинамики образования и кинетики реакций замещения и обмена лигандов гомо- и гетеролигандных комплексов.

Рассмотрим факторы, определяющие специфичность и селективность комплексообразования металлов с энантиомерно однородными и рацемическими формами лигандов различной природы.

Ярким примером проявления стереоселективности служат системы никель(II)—L/DL-гистидин (HisH)³. В таблице 1 приведены рассчитанные из данных рН-метрического титрования и спектрофотометрии (СФ-метрии) константы образования бинарных комплексов в данных системах. Стереоселективность комплексообразования оценивается по разности логарифмов констант образования комплексов ($\Delta lg\beta$) и считается статистически значимой тогда, когда величина $\Delta \lg \beta$ превосходит удвоенную сумму стандартных отклонений каждой из сравниваемых констант (эти отклонения в последней значащей цифре даются в скобках). Как видно из таблицы 1, условию значимой стереоселективности удовлетворяют бис- и трис-комплексы [Ni(His)(HisH)]⁺, Ni(His)₂, [Ni(His)(HisH₁)]⁻ и [Ni(His)₃]⁻, причем для трех последних доминирующими являются мезо-формы (формы с энантиомерно разнородными лигандами).

Данные эксперимента, касающиеся энантиоселективности, детально согласуются с результатами квантово-химических расчетов. Здесь и далее расчеты проводились по программам GAMESS⁴ и ORCA⁵ методом DFT⁶ с обменнокорреляционным функционалом B3LYP^{7,8} и функционалом CAM-B3LYP⁹ в базисе TZVP¹⁰, а также на уровне PBE/TZVPP¹¹ при учете растворителя в модели поляризуемого континуума C-PCM.¹² Локальные минимумы энергии во всех расчетах определены с критерием толерантности 10^{-5} ат. ед. Как видно из рисунка 1, по данным расчетов для бис-гистидината никеля(II) предпочтительным оказывается образование DL-формы (*мезо*-формы). Однако в вакууме и только без

Таблица 1. Логарифмы констант образования (lg β) комплексов никеля(II) с L/DL-HisH (25.0 °C, 1.0 *M* KNO₃, Δ lg β = lg β _L – lg β _{DL})³

Равновесие		lgβ	$\Delta lg\beta$
	L-His	DL-His	
$H^+ + His^- \Longrightarrow HisH$	9.200(3)	_	_
$H^+ + HisH \implies [HisH_2]^+$	6.265(1)	_	_
$H^+ + HisH_2^+ \rightleftharpoons [HisH_3]^{2+}$	1.986(1)	_	_
$Ni^{2+} + HisH \implies [Ni(HisH)]^{2+}$	2.788(4)	2.791(3)	-0.003
$Ni^{2+} + His^{-} \rightleftharpoons [Ni(His)]^{+}$	8.576(1)	8.572(1)	0.004
$Ni^{2+} + His^{-} + HisH \implies [Ni(His)(HisH)]^{+}$	10.781(5)	10.757(4)	0.024
$Ni^{2+} + 2 His^{-} \Longrightarrow Ni(His)_2$	15.464(1)	15.707(1)	-0.243
$Ni^{2+} + 2 His^{-} \rightleftharpoons [Ni(His)(HisH_{-1})]^{-} + H^{+}$	2.36(1)	2.62(1)	-0.26
$Ni^{2+} + 3 His^{-} \rightleftharpoons [Ni(His)_3]^{-}$	15.77(1)	16.20(1)	-0.43

Примечания. Здесь и в таблицах 2—12 в скобках даны стандартные отклонения в последней значащей цифре; курсивом выделены статистически значимые отличия в константах, относящихся к энантиомерно различным формам лигандов.

Рис. 1. Структуры и энергии образования наиболее предпочтительных изомеров комплексов Ni(His)₂·nH₂O (n = 0, 2, 4) с различными энантиомерными формами лигандов, оптимизированные на уровне CAM-B3LYP/TZVP для вакуума (a, b) и с учетом эффектов растворителя в модели C-PCM (c-h)³.

учета молекул воды в дискретной модели *мезо*форма оказывается энергетически менее выгодной, чем LL-форма. Заслуживают внимания причины такого явления. *цис*-Расположению одинаковых групп соседних лигандов благоприятствует *транс*-влияние, при котором сильные *транс*-агенты избегают расположения на одной координате. Однако при *транс*-расположении объемных имидазольных групп в LL-форме минимизируется стерическое отталкивание между ними. В ситуации, когда с *транс*-влиянием конкурирует стерический эффект, решающий вклад может внести эффект сольватации. Действительно, *цис*-структура *мезо*-формы обладает повышенным дипольным моментом, что благоприятствует ее сольватации диполями воды, и, как следует из рисунка 1, разность энергий образования двух рассмотренных изомеров возрас-

Равновесие	Аминокислотные остатки	lgβ	$\Delta lg\beta$
$Ni^{2+} + HisH + Asp^{2-} \implies Ni(HisH)(Asp)$	L-Asp, L-His	10.08(3)	
	L-Asp, D-His	10.19(3)	-0.11
$Ni^{2+} + His^- + Asp^{2-} \rightleftharpoons [Ni(His)(Asp)]^-$	L-Asp, L-His	14.319(5)	
	L-Asp, D-His	14.378(6)	-0.059
$Ni^{2+} + HisH + Glu^{2-} \Longrightarrow Ni(HisH)(Glu)$	L-Glu, L-His	9.90(6)	
	L-Glu, D-His	10.03(4)	-0.13
$Ni^{2+} + His^{-} + Glu^{2-} \rightleftharpoons [Ni(His)(Glu)]^{-}$	L-Glu, L-His	13.28(1)	
	L-Glu, D-His	13.28(1)	0.00
$Ni^{2+} + His^{-} + Ser^{-} \implies Ni(His)(Ser)$	L-Ser, L-His	13.117(6)	
	L-Ser, D-His	13.111(7)	0.006
$Ni^{2+} + Ser^{-} + His^{-} \implies [Ni(His)(SerH_{-1})]^{-} + H^{+}$	L-Ser, L-His	1.776(8)	
	L-Ser, D-His	1.908(8)	-0.132
$Ni^{2+} + HisH + Met^{-} \rightleftharpoons [Ni(HisH)(Met)]^{+}$	L-Met, L-His	9.13(3)	
	L-Met, D-His	9.11(2)	0.02
$Ni^{2+} + His^{-} + Met^{-} \implies Ni(His)(Met)$	L-Met, L-His	13.079(6)	
	L-Met, D-His	13.166(5)	-0.087

Таблица 2. Логарифмы констант образования (lg β) в системах никель(II)—L/D-HisH—L-аминокислота (AspH₂, GluH₂, SerH, MetH) (25.0 °C, 1.0 *M* KNO₃)

тает с увеличением числа молекул воды, введенных в их окружение.

Из данных таблицы 2 очевидна достоверная стереоселективность образования гетеролигандных комплексов никеля(II) с гистидинатанионом, с одной стороны, и аспарататом (Asp²⁻), депротонированным по спиртовой группе серинатом (SerH₋₁²⁻) и метионинатом (Met⁻) с другой, причем во всех трех случаях доминируют *мезо*-формы. Этот факт согласуется с тридентатной координацией приведенных анионов аминокислот в отличие от бидентатной координации глутамата (Glu²⁻). Доминирование *мезо*форм подтверждается и данными квантовохимических расчетов.

Парадоксально, но стереоселективность образования не проявляется для гомолигандных комплеков никеля(II) с метионином, однако обнаруживается в гетеролигандных комплексах³.

Как видно из таблицы 3, по данным калориметрии этот эффект имеет энтальпийную природу. Согласно квантово-химическим расчетам (рис. 2) в этом комплексе реализуется новый тип слабого взаимодействия между тиометильной и имидазольной группами, чему способствует координация к металлу атома серы³. Важно отметить, что открытый нами новый тип слабого взаимодействия может проявляться в биологических системах. В целом можно заключить, что стереоселективное доминирование мезо-форм как гомо-, так и гетеролигандных комплексов никеля(II) с аминокислотами согласуется с проявлением *транс*-влияния в сочетании с эффектами гидратации и межлигандного взаимодействия при цис-координации лигандов.

В плане сравнения с комплексами никеля(II) интересны сведения о комплексообразовании цинка(II) с аминокислотами^{13,14}. Из данных та-

Таблица 3. Термодинамические параметры комплексообразования в системе никель(II)—L-HisH—L/D-MetH (25.0 °C, $1.0 \ M \ KNO_3)^3$

Равновесие	lgβ	$\Delta_{\mathrm{r}}G^{\circ}$	$\Delta_{ m r} H^{\circ}$	$\Delta_{\mathbf{r}} S^{\circ} / \mathbf{Д} \mathbf{ж} \cdot (\mathbf{K} \cdot \mathbf{м} \mathbf{o} \mathbf{n} \mathbf{b})^{-1}$
		кДж•моль ^{−1}		
$Ni^{2+} + L-His^{-} $ $(Ni(L-His))^{+}$	8.576±0.001	-48.92 ± 0.01	-31.40 ± 0.34	58.8±1.1
$Ni^{2+} + 2 L-His^{-} \Longrightarrow Ni(L-His)_{2}$	15.464 ± 0.001	-88.19 ± 0.01	-65.84 ± 0.27	74.9 ± 0.9
$Ni^{2+} + L/DL-Met^{-} \implies [Ni(L/DL-Met)]^{+}$	5.305 ± 0.001	-30.37 ± 0.01	-13.80 ± 0.95	55.6±3.2
$Ni^{2+} + 2 L/DL-Met^{-} \implies Ni(L/DL-Met)_{2}$	9.855±0.001	-56.11 ± 0.01	-33.09 ± 0.54	77.2±1.8
$Ni^{2+} + L-His^{-} + L-Met^{-} \implies Ni(L-His)(L-Met)$	13.079±0.006	-74.66 ± 0.03	-49.64 ± 0.72	83.9±2.4
$Ni^{2+} + L-His^- + D-Met^- \longrightarrow Ni(L-His)(D-Met)$	13.166±0.005	$-75.17{\pm}0.03$	$-51.42{\pm}0.57$	79.7±1.9

Рис. 2. Структуры и энергии образования возможных изомеров комплексов Ni(His)(Met) с различными энантиомерными формами лигандов, оптимизированные на уровне CAM-B3LYP/TZVP с учетом эффектов растворителя в модели C-PCM³.

блицы 4 видно, что как и для никеля(II) значимая стереоселективность проявляется в образовании гомолигандного комплекса $Zn(His)_2$ (в результате d— π -взаимодействия), а также бискомплексов с фенилаланином (PheH) и триптофаном (TrpH), что объясняется межлигандным π — π -стэкинг-взаимодействием. Оба типа этих взаимодействий реализуются в *мезо*-формах.

Значимая стереоселективность проявляется в образовании гетеролигандных комплексов, содержащих наряду с гистидином также цистеин (CysH), фенилаланин и триптофан (табл. 5). Последние два ароматических лиганда могут участвовать в π — π -стэкинг-взаимодействии с координированной имидазольной группой именно в *мезо*-формах. Следует отметить, что в отличие от никеля(II) комплексы цинка(II) чаще предпочитают псевдотетраэдрическую координацию.

Большой интерес вызывают сведения об образовании комплексов с участием меди(II).

Важным фактором стереоселективности их образования и реакционной способности является открытый нами феномен пентакоординации меди(II) в комплексах с биолигандами в водных растворах^{15,16}. Этот феномен установлен на основе данных ЭПР, ЯМР-релаксации протонов воды, а также квантово-химических расчетов, в частности комплексов меди(II) с иминодиуксусной кислотой (IDAH₂), глицином (GlyH), ди- и триглицином (GGH и GGGH) в окружении 10 молекул воды (рис. 3). Как видно из рисунка 3, во всех данных комплексах фиксируется только одна аксиально-связанная молекула воды, а с противоположной стороны на значительном удалении располагаются кольца из четырех водородно-связанных молекул воды¹⁵.

Пентакоординация меди(II) подтверждается и данными расчетов методом МД, которые выполнены с помощью программного пакета GROMACS¹⁷ с использованием несколько моди-

Таблица 4. Логарифмы констант образования (lg β) гомолигандных комплексов цинка(II) с L/DL-аминокислотами (HisH, MetH, PheH, TrpH) (25.0 °C, 1.0 *M* KNO₃)

Равновесие	1	lgβ				
	L	DL				
$Zn^{2+} + HisH \implies [Zn(HisH)]^{2+}$	2.250(2)	2.250(3)	0.000			
$Zn^{2+} + His^{-} \rightleftharpoons [Zn(His)]^{+}$	6.466(1)	6.462(1)	0.004			
$Zn^{2+} + His^{-} + HisH \implies [Zn(His)(HisH)]^{+}$	8.509(2)	8.499(2)	0.010			
$Zn^{2+} + 2 His^{-} \rightleftharpoons Zn(His)_2$	12.026(1)	12.143(1)	-0.117			
$Zn^{2+} + 2 His^{-} \implies [Zn(His)_{2}H_{-1}]^{-} + H^{+}$	1.336(6)	1.35(1)	-0.014			
$Zn^{2+} + Met^{-} \rightleftharpoons [Zn(Met)]^{+}$	4.373(2)	4.373(3)	0.000			
$Zn^{2+} + 2 Met^{-} \implies Zn(Met)_2$	8.180(2)	8.174(5)	0.006			
$Zn^{2+} + Phe^{-} \rightleftharpoons [Zn(Phe)]^{+}$	4.205(3)	4.202(3)	0.003			
$Zn^{2+} + 2 Phe^{-} \implies Zn(Phe)_2$	8.162(3)	8.222(2)	-0.060			
$Zn^{2+} + Trp^{-} \rightleftharpoons [Zn(Trp)]^{+}$	4.38(1)	4.39(2)	0.010			
$Zn^{2+} + 2 Trp^{-} \rightleftharpoons Zn(Trp)_2$	8.751(4)	8.866(4)	-0.115			

Таблица 5. Логарифмы констант образования (lgβ) гетеролигандных комплексов цинка(II) с L/D-аминокислотами (HisH, CysH, MetH, SerH, TrpH, PheH) (25.0 °C, 1.0 *M* KNO₃)

Равновесие	Аминокислотные остатки	lgβ	Δlgβ
$\overline{Zn^{2+} + His^{-} + Cys^{2-}} \rightleftharpoons [Zn(His)(Cys)]^{-}$	L-Cys, L-His	15.17(1)	
	L-Cys, D-His	15.26(1)	-0.09
$Zn^{2+} + His^{-} + Cys^{2-} \rightleftharpoons [Zn(His)(Cys)(OH)]^{2-}$	+ H ⁺ L-Cys, L-His	4.43(2)	
	L-Cys, D-His	4.55(2)	-0.12
$Zn^{2+} + His^{-} + Met^{-} \rightleftharpoons Zn(His)(Met)$	L-Met, L-His	10.427(5)	
	L-Met, D-His	10.435(4)	-0.008
$Zn^{2+} + His^{-} + Ser^{-} \Longrightarrow Zn(His)(Ser)$	L-Ser, L-His	10.38(1)	
	D-Ser, L-His	10.372(8)	0.01
$Zn^{2+} + His^{-} + Thr^{-} \rightleftharpoons Zn(His)(Thr)$	L-Thr, L-His	10.822(5)	
	L-Thr, D-His	10.824(5)	-0.002
$Zn^{2+} + His^{-} + Phe^{-} \rightleftharpoons Zn(His)(Phe)$	L-Phe, L-His	10.500(4)	
	D-Phe, L-His	10.555(5)	-0.055
$Zn^{2+} + His^{-} + Trp^{-} \rightleftharpoons Zn(His)(Trp)$	L-Trp, L-His	10.776(8)	
	D-Trp, L-His	10.897(7)	-0.121

Рис. 3. Структуры и полные энергии комплексов меди(II) с N,О-содержащими лигандами, оптимизированные на уровне CAM-B3LYP/TZVP с учетом эффектов растворителя в модели С-РСМ (показаны расстояния в Å)¹⁵.

фицированного силового поля FFWa-SPCE,¹⁸ а также силового поля GROMOS.¹⁹ Результаты таких расчетов для водных растворов показывают, что среднее число молекул воды в первой координационной сфере бис-комплексов меди(II) всегда меньше двух¹⁶. Отметим, что функции радиального распределения атомов кислорода для второй координационной сферы *транс*-изомеров с глицином, серином, лизином (LysH₂⁺) и аспарагиновой кислотой обнаруживают один максимум, а для *цис*-изомеров — два максимума (рис. 4). Последнее обусловлено тем, что поле соседних *цис*-карбоксигрупп сильнее притягивает ближние молекулы воды, особенно в случае комплекса *cis*-[Cu(Asp)₂]²⁻.

Отметим, что в недавно опубликованной работе²⁰ расчетами методом DFT/B3LYP подтверждена пентакоординация меди(II) в комплексе $CuCl_2L^1L^2H_2O(L^1=2$ -амино-4-метилпиримидин, $L^2 = 2,3$ -диаминопиридин). В этой связи представляется спорным объяснение, данное авторами в статье²¹, различий в константах устойчивости комплексов меди(II) с *N*-[трис(гидроксиметил)-метил]- β -аланином по сравнению с *N*-[2-гидрокси-1,1-бис(гидроксиметил)-этил]- β -аланином (трицином) в предположении октаэдрической координации этих комплексов со ссылкой на работу²². В этой работе для кристалла комплекса бис[*N*-(2-гидроксиэтил)-βаланинато]меди(II) показана слабая аксиальная координация двух спиртовых групп в структуре тетрагонально-искаженного октаэдра. Подобная гексакоординация меди(II) в растворе маловероятна.

Использование совокупности методов (DFT, МД и ЯМР-релаксации) позволяет получить полную информацию о структуре и динамическом поведении первой и второй гидратных оболочек комплексов меди(II) в хорошем согласии с данными эксперимента (табл. 6)^{16,23}. Отметим, что выбор уровня расчета существенно влияет на корректность получаемых результатов. Как видно из таблицы 7, только использование уровня САМ-B3LYP/TZVP с учетом 10 молекул воды в сольватной оболочке и континуальной модели растворителя С-РСМ позволяет получить результаты, согласующиеся с данными РСА для кристаллов всех представленных комплексов меди $(II)^{16}$ (отмечено курсивом). Тем не менее в дальнейшем для более глубокого понимания важности водородных связей в растворах комплексов металлов с биолигандами и их аналогами все большую ценность будут представлять результаты исследований кристаллосольватов (гидратов и пероксосольватов) с биомолекулами, в частности аминокислотами. Сведения, уже по-

Рис. 4. Функции радиального распределения (ФРР) Cu^{II}—O(H₂O) сольватированных комплексов, рассчитанные из данных моделирования методом МД в течение 10 нс при 25 °C: Cu(Glu)₂ (*a*), Cu(Ser)₂ (*b*), [Cu(Asp)₂]^{2–} (*c*), [Cu(LysH)₂]²⁺ (*d*).¹⁶

лученные в этой области, приведены в работах^{24,25} (см. также ссылки в них). Важным фактором стереоселективности служит d-*π*-взаимодействие, проявляющееся

Таблица 6. Результаты, полученные из расчетов методом DFT, функции радиального распределения (ФРР) $Cu^{II}-O(H_2O)$ и $Cu^{II}-H(H_2O)$, а также экспериментальные данные метода ЯМР-релаксации: r_1 , r_{Hi} , CN_i — расстояния между Cu^{II} и атомом кислорода молекулы воды, между Cu^{II} и атомами водорода молекулы воды и среднее число молекул в *i*-й координационной сфере соответственно, τ_{M2} — среднее время жизни для второй координационной сферы молекул воды¹⁶

Комплекс	D	FT		МД-расчет					AMP-pe	лаксация	
	r_1	r_1	$\overline{CN_1}$	$r_2/\text{\AA}$	CN ₂	$r_{\rm H_1}$	$r_{\rm H_2}$	$r_{\rm H_1}$	$r_{\rm H_2}$	$ au_{M2}$	/пс
	Å	Å				Å		1	Å	теор.	эксп.
Cu(Gly) ₂											
цис-изомер	2.40	2.44	1.8	4.3	7.7	3.08	4.8	3.1	4.0	5.5	5(1)
транс-изомер	2.36	2.40	1.6	4.4	7.6	3.15	a	b	b	4.9	b
Cu(L-Ser) ₂											
цис-изомер	2.47	2.43	1.7	4.3	6.8	3.10	4.8	3.2	4.05	6.3	10(2)
транс-изомер	2.43	2.37	1.1	4.6	7.1	3.07	a	b	b	5.7	b
$[Cu(L-Asp)_2]^{2-}$											
цис-изомер	2.38	2.41	0.5	4.0	6.0	3.10	4.8	3.2	4.15	15.4	11(2)
<i>транс</i> -изомер	2.35	2.37	0.9	4.7	~8	2.83, 3.22	4.8	b	b	9.7	b
$[Cu(L-LysH)_2]^{2+}$											
цис-изомер	2.36	2.40	1.4	4.2	7.4	3.10	4.7	3.2	4.05	7.4	9(2)
транс-изомер	2.34	2.38	1.0	4.6	~8	3.13	a	b	b	7.0	b

^{*а*} Молекулы воды 2-й и 3-й оболочек неразличимы в ФРР Си^{II}—Н_{вода}. ^{*b*} цис-Изомеры и *транс*-изомеры неразличимы методом ЯМР-релаксации.

Таблица 7. Расстояния Cu^{II}—O (r_O /Å) и Cu^{II}—H (r_{H1} /Å, r_{H2} /Å) для аксиальной молекулы воды в структурах, оптимизированных на уровнях B3LYP/aug-cc-pVTZ, B3LYP/TZVP и CAM-B3LYP/TZVP с учетом модели растворителя C-PCM при различном числе молекул воды в сольватной оболочке¹⁵

Комплекс	B3LYP/aug-cc-pVTZ c C-PCM и 1 молекула H ₂ O		B3LYP/TZVP с C-PCM и 1 молекула H ₂ O		САМ-B3LYP/TZVP с С-РСМ и 1 молекула H ₂ O		САМ-ВЗLYP/TZVP с С-РСМ и 10 молекул H ₂ O		Данные РСА (см. лит. ¹⁵ и ссылки в ней)				
	r_0	$r_{\rm H_1}$	$r_{\rm H_2}$	r_0	$r_{\rm H_1}$	$r_{\rm H_2}$	r_0	$r_{\rm H_1}$	$r_{\rm H_2}$	r _O	$r_{\rm H_1}$	$r_{\rm H_2}$	r _O
Cu(IDA)	2.46	3.04	3.08	2.37	2.98	3.01	2.31	2.92	2.95	2.34	2.88	2.97	2.38
trans-Cu(Gly)2	2.49	3.05	3.17	2.43	2.99	3.10	2.36	2.92	3.05	2.36	2.91	2.93	_
<i>cis</i> -Cu(Gly) ₂	2.56	2.83	3.21	2.48	2.89	3.10	2.40	2.83	3.14	2.40	2.91	2.99	2.40
$Cu(GGH_{-1})$	2.54	3.06	3.06	2.47	3.00	3.01	2.39	2.94	2.95	2.40	2.98	3.09	2.3-2.39
$[Cu(GGGH_{-2})]^{-1}$	4.17	4.34	4.94	4.17	4.35	4.96	4.13	4.32	4.92	2.71	3.03	3.40	2.57

во влиянии природы лигандов на параметры спин-гамильтониана, полученные из спектров ЭПР комплексов меди(II) с ди- и трипептидами $(табл. 8)^{26-28}$. Так, введение в ди- или триглицин ароматического заместителя — фенильного (Phe) или феноксильного (Туг = Y) — приводит к уменьшению д-фактора и увеличению изотропной константы СТС (A_0), что указывает на аксиальное связывание акцепторных групп, явно отражая d—π-взаимодействие. Блокирование единственного аксиального положения ароматическим заместителем олигопептида препятствует координации других лигандов. По этой причине значимая стереоселективность проявляется в образовании гетеролигандных комплексов, содержащих глицил-L-тирозин (GYH) и L- или D-гистидин, включая биядерный комплекс $Cu_2(GY \cdot H_{-1})(His)_2$, в отличие от аналогичных комплексов с диглицином, где стереоселективность отсутствует (табл. 9).

В соответствии с данными квантово-химических расчетов (рис. 5) стереоселективность образования двух гетеролигандных комплексов с глицил-L-тирозином объясняется тем, что из-за сильного *транс*-влияния депротонированного пептидного атома азота аминогруппа гистидина располагается в *цис*-положении. При этом в случае L-гистидина наиболее выгодными являются изомеры с четырьмя экваториально координированными атомами азота, в случае же D-гистидина в экваториальной плоскости присутствует одна карбокси-группа. Отметим, что стереоселективность проявляется и в спектрах поглощения соответствующих комплексов (рис. 6).

В тройных системах с гистидином, триглицином (GGGH) и глицилглицил-L-тирозином (GGYH) образуются соответственно 5 и 6 гетеролигандных комплексных форм (табл. 10), включая биядерные. Стереоселективность образования проявляется только для комплекса Cu(GGY)(His), при этом по данным расчета наиболее выгодной является структура с L-изомером аминокислоты (рис. 7), когда аминогруппы соседних лигандов находятся в *цис*-положении друг к другу, обеспечивая π - π -стэкинг-взаимодействие между феноксильной и имидазольной группами, что невозможно для *транс*-изомеров.

Таблица 8. Параметры спектров ЭПР комплексов меди(II) с ди- и трипептидами (LH) (25 °C, 1.0 M KNO₃), $\tau_{\rm R}$ — вращательное время корреляции

Система	Комплекс	g_0	A_0	$A_{ m N}$	$\tau_{\rm R}$ •10 ¹¹ /c
				Гс	
Cu ^{II} —GlyGlyH	CuLH ₁	2.1232(2)	67.7(2)	14.2(3), 11.8(4)	3.4(2)
	$[Cu(LH_{-1})(OH)]^{-1}$	2.1190(2)	37.2(3)	12.5(2), 12.2(2)	5.3(2)
Cu ^{II} —GlyTyrH	CuLH ₋₁	2.1207(2)	71.4(2)	14.1(2), 11.7(3)	6.3(2)
	$[Cu(LH_{-1})(OH)]^{-1}$	2.1164(2)	42.0(3)	12.6(2), 12.2(2)	10.7(6)
Cu ^{II} -TyrLeuH	CuLH ₋₁	2.1196(2)	72.0(3)	14.3(3), 11.8(4)	7.0(4)
	$[Cu(LH_{-1})(OH)]^{-1}$	2.1137(3)	43.3(4)	12.5(3), 12.0(3)	12.9(8)
Cu ^{II} —TyrPheH	CuLH ₋₁	2.1202(2)	71.7(2)	14.3(3), 11.7(4)	8.5(6)
	$[Cu(LH_{-1})(OH)]^{-1}$	2.1161(3)	42.4(4)	12.6(2), 12.5(2)	12.8(7)
Cu ^{II} —TyrTyrH	CuLH ₋₁	2.1187(2)	69.6(2)	14.5(2), 11.4(2)	10.3(5)
	$[Cu(LH_{-1})(OH)]^{-1}$	2.1163(2)	42.4(2)	12.5(1), 12.4(1)	19(1)
Cu ^{II} –GlyGlyGlyH	$[Cu((LH_{2})]^{-}$	2.0947(3)	80.9(2)	17.2(3), 14.5(3), 8.4(3)	4.3(1)
Cu ^{II} –GlyGlyTyrH	$[Cu(LH_{-2})]^{-}$	2.0918(2)	83.6(2)	17.5(2), 14.6(2), 8.2(3)	8.0(2)
	$[Cu(LH_{-3})]^{2-}$	2.0925(2)	83.0(2)	17.2(2), 14.7(2), 8.3(3)	9.5(3)

1493

Таблица 9. Логарифмы констант образования (lgß) гетеролигандных комплексов в системах медь(II)—L/D-HisH—дипептид (глицилглицин (GlyGlyH=GGH)/глицил-L-тирозин (GlyTyrH = GYH)) (25.0 °C, 1.0 M KNO₃)

Равновесие	lgβ	Δlgβ	
	L-His	D-His	
$\overline{\text{Cu}^{2^+} + \text{GG}^- + \text{HisH}} \rightleftharpoons [\text{Cu}(\text{GG})(\text{HisH})]^+$	10.74(2)	10.75(2)	-0.010
$Cu^{2+} + GG^{-} + His^{-} \rightleftharpoons Cu(GG)(His)$	15.416(7)	15.410(7)	0.006
$Cu^{2+} + GG^- + His^- \rightleftharpoons [Cu(GG \cdot H_{-1})(His)]^- + H^+$	6.91(1)	6.88(3)	0.030
$Cu^{2+} + GG^{-} + His^{-} \rightleftharpoons [Cu(GG \cdot H_{-1})(HisH_{-1})]^{2-} + 2 H^{+}$	-4.49(1)	-4.46(2)	-0.030
$2 \operatorname{Cu}^{2+} + \operatorname{GG}^{-} + 2 \operatorname{His}^{-} \rightleftharpoons \operatorname{Cu}_2(\operatorname{GG} \cdot \operatorname{H}_{-1})(\operatorname{His})_2 + \operatorname{H}^{+}$	21.90(4)	21.87(5)	0.030
$Cu^{2+} + GY^{-} + HisH \rightleftharpoons [Cu(GY)(HisH)]^{+}$	10.64(3)	10.65(3)	-0.010
$Cu^{2+} + GY^{-} + His^{-} \rightleftharpoons Cu(GY)(His)$	15.455(9)	15.421(9)	0.034
$Cu^{2+} + GY^{-} + His^{-} \rightleftharpoons [Cu(GY \cdot H_{-1})(His)]^{-} + H^{+}$	7.00(1)	6.87(1)	0.13
$Cu^{2+} + GY \cdot H_{-1}^{2-} + His^{-} \rightleftharpoons [Cu(GY \cdot H_{-2})(His)]^{2-} + H^{+}$	6.857(7)	6.817(7)	0.040
$2 \operatorname{Cu}^{2+} + \operatorname{GY}^{-} + 2 \operatorname{His}^{-} \rightleftharpoons \operatorname{Cu}_2(\operatorname{GY} \cdot \operatorname{H}_{-1})(\operatorname{His})_2 + \operatorname{H}^{+}$	22.89(1)	22.75(1)	0.14

Рис. 5. Структуры и полные энергии гетеролигандных комплексов меди(II) с глицил-L-тирозином (GYH) и L/D-гистидином (HisH), оптимизированные в программном пакете ORCA на уровне PBE/TZVPP с учетом модели растворителя C-PCM.

Рис. 6. Реконструированные спектры поглощения гетеролигандных комплексов меди(II) с L/D-гистидином (HisH) и глицил-глицином (GGH) (*a*), глицил-L-тирозином (GYH) (*b*); 25 °C, 1.0 *M* KNO₃.

Равновесие	1,	lgβ			
	L-His	D-His			
$Cu^{2+} + GGG^- + HisH \iff [Cu(GGG)(HisH)]^+$	10.56(2)	10.58(2)	-0.02		
$Cu^{2+} + GGG^- + His^- \Longrightarrow Cu(GGG)(His)$	14.915(5)	14.906(6)	0.011		
$Cu^{2+} + GGG^- + His^- \Longrightarrow [Cu(GGG \cdot H_{-1})(His)]^- + H^+$	6.39(2)	6.36(2)	0.03		
$Cu^{2+} + GGG^- + His^- \Longrightarrow [Cu(GGG \cdot H_{-2})(His)]^{2-} + 2 H^+$	-4.141(8)	-4.126(9)	0.015		
$2 \text{ Cu}^{2+} + \text{GGG}^- + 2 \text{ His}^- \Longrightarrow [\text{Cu}_2(\text{GGG} \cdot \text{H}_2)(\text{His})(\text{HisH}_{-1})]^{2-} + 3 \text{ H}^+$	1.99(8)	2.04(8)	-0.05		
$Cu^{2+} + GGY^{-} + HisH \Longrightarrow [Cu(GGY)(HisH)]^{+}$	10.75(1)	10.76(1)	-0.01		
$Cu^{2+} + GGY^{-} + His^{-} \rightleftharpoons Cu(GGY)(His)$	15.086(3)	14.983(4)	0.103		
$Cu^{2+} + GGY^- + His^- \rightleftharpoons [Cu(GGY \cdot H_{-1})(His)]^- + H^+$	6.72(1)	6.74(2)	-0.02		
$Cu^{2+} + [GGY \cdot H_{-1}]^{2-} + His^{-} \implies [Cu(GGY \cdot H_{-2})(His)]^{2-} + H^{+}$	6.94(1)	6.91(2)	0.03		
$2 \operatorname{Cu}^{2+} + \operatorname{GGY}^{-} + 2 \operatorname{His}^{-} \rightleftharpoons \operatorname{Cu}_2(\operatorname{GGY} \cdot \operatorname{H}_{-1})(\operatorname{His})_2 + \operatorname{H}^{+}$	20.65(9)	20.61(8)	0.04		
$2 \operatorname{Cu}^{2+} + [\operatorname{GGY} \cdot \operatorname{H}_{-1}]^{2-} + 2 \operatorname{His}^{-} \rightleftharpoons [\operatorname{Cu}_2(\operatorname{GGY} \cdot \operatorname{H}_{-3})(\operatorname{His})(\operatorname{His}\operatorname{H}_{-1})]^{3-} + 3 \operatorname{H}^+$	2.34(5)	2.37(6)	-0.03		

Таблица 10. Логарифмы констант образования (lgβ) гетеролигандных комплексов в системах медь(II)—L/D-HisH трипептид (глицилглицилгицин (GGGH)/глицилглицил-L-тирозин (GGYH)) (25.0 °C, 1.0 *M* KNO₃)^{27,28}

Рис. 7. Структуры и полные энергии наиболее стабильных гетеролигандных комплексов меди(II) с глицилглицил-L-тирозином (GGYH) и L/D-гистидином (HisH), оптимизированные на уровне B3LYP/TZVPP с учетом эффектов растворителя в модели С-РСМ и дисперсионной коррекции (D3BJ)²⁸.

Модифицированная программа²⁹ в режиме быстрого движения и пакет программы EasySpin³⁰ в приближении медленного движения наряду

с программой STALABS-М позволяют реконструировать спектры ЭПР и электронные спектры поглощения многих образующихся ком-

Рис. 8. Экспериментальные спектры ЭПР в системах медь(II)—глицилглицил-L-тирозин—L/D-гистидин (1:1:1) (рН 6.60, 25 °C) (*a*) и реконструированные спектры поглощения гетеролигандных комплексов меди(II) с глицилглицил-L-тирозином (GGYH) и L/D-гистидином (HisH) при 25 °C (*b*), 1.0 *M* KNO₃: $1 - [Cu(GGY)(HisH)]^+$, 2 - Cu(GGY)(His), $3 - [Cu(GGY \cdot H_{-1})(His)]^-$, $4 - [Cu(GGY \cdot H_{-2})(His)]^{2-.28}$

плексных форм (рис. 8), выявляя стереоселективность образования одного из них — Cu(GGY)(His)²⁸.

Методом остановленной струи исследована кинетика реакций замещения олигопептидных лигандов на гистидин в условиях псевдопервого порядка^{27,28}. Из зависимостей на рисунке 9 видно, что с ростом pH происходит увеличение скорости замещения. Для замещения на гистидин три- и дипептидных лигандов предложена схема, состоящая из трех и двух стадий соответственно (схема 1).

В обоих случаях определяющей скорость является последняя стадия, причем активность в замещении проявляют как анионная, так и протонированная форма гистидина (с константами k_3 и k_3' соответственно). Из таблицы 11 очевидно, что скорость замещения лигандов уменьшается с введением феноксильной группы как для дипептидов, так и для трипептидов, что объясняется стерическим блокированием боковой группой тирозина одного из аксиальных положений меди(II) как места атаки вступающего лиганда. Для замещения глицил-L-тирозина или глицилглицил-L-тирозина на гистидинат-анион наблюдается статистически значимая стереоселективность (см. табл. 11).

Puc. 9. Зависимости наблюдаемых констант скорости (k_{exp}) от pH в системах медь(II)—глицилглицилглицин—L-гистидин (1:1:10) (*a*; концентрация His: 0.03 (*I*), 0.032 (*2*), 0.040 (*3*), 0.045 (*4*), 0.05 моль•л⁻¹ (*5*)) и медь(II)—глицилглицил-L-тирозин—L-гистидин (1:1:10) (*b*; концентрация His: 0.03 (*I*), 0.04 (*2*), 0.05 моль•л⁻¹ (*3*)), полученные методом остановленной струи путем смешивания эквивалентных объемов растворов I и II с регистрацией при $\lambda = 550$ нм (l = 1 см); I — Cu^{II}, GGH•H (*a*)/Cu^{II}, GGY•H (*b*); II — L-HisH (*a*, *b*); C_{Tris} = 0.1 моль•л⁻¹, T = 298 K.^{27,28}

Схема 1

$$v = k_{obs}[[Cu(LH_{-2})]^{-}] = (k_0 + k_L[His^{-}] + k_{LH}[HisH])[[Cu(LH_{-2})]^{-}]$$

$$k_{obs} = k_0 + k_L[His^{-}] + k_{LH}[HisH] = k_0 + k_{LH} \cdot C_{HisH} + (k_L - k_{LH})[His^{-}]$$

$$Cu(LH_{-2})^{-} + His^{-} \stackrel{k_1}{\underset{k_{-1}}{\longrightarrow}} [Cu(LH_{-2})(His)]^{2-}$$

$$[Cu(LH_{-2})(His)]^{2-} + H_2O \stackrel{k_2}{\underset{k_{-2}}{\longrightarrow}} [Cu(LH_{-1})(His)]^{-} + OH^{-}$$

$$[Cu(LH_{-1})(His)]^{-} + His^{-} + H_2O \stackrel{k_3}{\longrightarrow} Cu(His)_2 + L^{-} + OH^{-}$$

$$[Cu(LH_{-1})(His)]^{-} + HisH \stackrel{k_3}{\longrightarrow} Cu(His)_2 + L^{-}$$

Таблица 11. Константы скорости реакций замещения L/D/ DL-гистидином олигопептидных лигандов из комплексов меди(II) (25 °C, 1.0 M KNO₃, буфер Tris)^{27,28}

Комплекс	Амино-	k_0/c^{-1}	$k_{\rm LH}$	$k_{\rm L}$
	кислота		моль-1	•л•с ⁻¹
$Cu(GG \cdot H_{-1})$	L-Гистидин	0.7±0.1	34.9±1.6	359±6
$Cu(GG \cdot H_{-1})$	DL-Гистидин	0.9±0.1	32.8±2.0	337±7
$Cu(GY \cdot H_{-1})$	L-Гистидин	$0.20{\pm}0.01$	_	26.7±1.0
$Cu(GY \cdot H_{-1})$	D-Гистидин	0.25 ± 0.01	_	21.8±0.7
$[Cu(GGG \cdot H_2)]^-$	L-Гистидин	4.9±0.2	68.7±6.0	740±6
$[Cu(GGG \cdot H_{2})]^{-}$	DL-Гистидин	4.1±0.3	87.7±8.5	782±6
$[Cu(GGY \cdot H_{2})]^{-}$	L-Гистидин	$3.46 {\pm} 0.03$	44.9±0.7	<i>439</i> ±5
$[Cu(GGY \cdot H_2)]^-$	D-Гистидин	3.37±0.10	43.9±3.1	459±3

Особый интерес представляют комплексы меди(II) с фосфорилированными дитиокарбаматами (PDTC), синтезированными впервые³¹. Как видно из таблицы 12, полученные методом СФметрии константы образования гетеролигандных комплексов с этими дитиокарбаматами и ароматическими N-донорами, включая 1,10-фенантролин (phen) и 2-метилдипиридо[3,2-*f*:2',3'-*h*]хиноксалин (MeDPQ), демонстрируют их значительную экстрастабилизацию по стандартному критерию $\lg X = 2 \lg \beta_{MAB} - \lg \beta_{MA2} - \lg \beta_{MB2}$ (индексы отвечают гетеролигандному комплексу состава МАВ и гомолигандным бис-комплексам составов МА2 и МВ2 соответственно, статистическая оценка $\lg X = 0.60$). Этот факт объясняется сильным d—л-взаимодействием с переносом электронной плотности с л-донорных орбиталей карбокси-групп аминокислот через центральный ион на π-акцепторные орбитали ароматических N-доноров. Важно, что именно эти комплексы проявляют наиболее высокую антибластомную активность среди всех исследованных нами соелинений³².

Особо отметим, что в Научно-образовательном центре фармацевтики Казанского федерального университета синтезированы новые изоникотиноилгидразоны с производными витамина B_6 , один из которых, (E/Z)-N'-{[5-гидрокси-3,4-

бис(гидроксиметил)-6-метилпиридин-2-ил]метилен}изоникотиногидразид (LH), проявил наивысшую антибактериальную активность³³. Методом PCA в работе ³³ охарактеризована структура нового лиганда LH в виде *E*-изомера (рис. 10), а методом СФ-метрии определены константы образования ряда комплексов этого лиганда с 3d-металлами. Лидерный лиганд (LH) является перспективным кандидатом в противотуберкулезные средства, намного превосходящим в этом отношении известный препарат пиридоксаль-изоникотиноилгидразон (PIH)³³.

Исследования в данном направлении продолжаются.

Таким образом, можно отметить основные факторы, контролирующие стереоселективность комплексообразования, устойчивость комплексов и кинетику реакций замещения лигандов:

Таблица 12. Константы образования комплексов меди(II) с фосфорилированными дитиокарбаматами и ароматическими N-донорами — phen и MeDPQ (37.0 °C, 0.15 *M* NaCl)

Лиганд (PDTS)	Cu(PDTC) ₂] ²⁻	Cu(phen)	(PDTC)	Cu(MeDPQ)(PDTC)		
	lgβ	lgβ	lgX	lgβ	lgX	
[Bu(OEt)PDTC] ^{2–} [cHex(OEt)PDTC] ^{2–} [Pr ⁱ (OEt)PDTC] ^{2–} [EtOMe(OBu)PDTC]	$ \begin{array}{c} 16.3(2) \\ 16.8(4) \\ 16.30(2) \\ 1^{2-} 16.7(1) \end{array} $	16.96(6) 17.17(3) 16.83(5) 16.17(3)	3.32 3.21 3.06 2.71	16.64(5) 17.01(3) 16.50(4) 16.34(6)	4.49 4.71 4.21 3.54	

Рис. 10. Структура *Е*-изомера LH по данным PCA³³.

- *транс*-влияние;
- сольватационные взаимодействия;

 образование внутрикомплексных водородных связей;

 новый тип слабого взаимодействия тиометильная группа—имидазольный цикл;

- «мягкость» лиганда и центрального иона;

– π–π-стэкинг-взаимодействие;

— эффект межлигандных водородных связей;

— пентакоординационное окружение меди(II) в растворах;

— d—π-взаимодействие металл—лиганд;

— стерическое блокирование аксиального положения меди(II).

Отметим, что методология исследований, позволяющая получать полноценные сведения о координационных соединениях, предусматривает квалифицированное использование комплекса взаимодополняющих спектральных методов, включая СФ-метрию, ЭПР, ЯМР-релаксацию, РСА, метод остановленной струи со спектральной регистрацией, рН-метрию, в сочетании с математическим моделированием при помощи ряда современных программ, а также корректные расчеты методами МД и квантовой химии высокого уровня.

Работа выполнена при финансовой поддержке Государственной программы повышения конкурентоспособности Казанского федерального университета и субсидии, выделенной Казанскому федеральному университету на выполнение государственного задания в сфере научной деятельности Министерства науки и высшего образования Российской Федерации (№ 0671-2020-0061), а также при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 16-33-00674, 16-33-00691, 18-33-20072 и 20-33-90235).

Настоящая статья не содержит описания исследований с использованием в качестве объектов животных и людей. Авторы заявляют об отсутствии конфликта интересов в финансовой или какой-либо иной сфере.

Список литературы

- В. Г. Штырлин, Н. Ю. Серов, М. С. Бухаров, Э. М. Гилязетдинов, М. А. Жернаков, М. А. Ахмед, А. Р. Гарифзянов, И. И. Мирзаянов, А. В. Ермолаев, Н. С. Аксенин, К. В. Уразаева, А. В. Захаров, Спектроскопия координационных соединений (Сб. науч. трудов XIX Межд. конф., Туапсе, 18—23 сентября 2022 г.), Краснодар, Кубанский гос. ун-т, 2022, с. 210.
- A. A. Krutikov, V. G. Shtyrlin, A. O. Spiridonov, N. Yu. Serov, A. N. Il'yin, M. S. Bukharov, E. M. Gilyazetdinov, *J. Phys. Conf. Ser.*, 2012, **394**, 012031; DOI: 10.1088/1742-6596/394/1/012031.
- V. G. Shtyrlin, E. M. Gilyazetdinov, N. Yu. Serov, D. F. Pyreu, M. S. Bukharov, A. A. Krutikov, N. S. Aksenin, A. I. Gizatullin, A. V. Zakharov, *Inorg. Chim. Acta*, 2018, 477, 135–147; DOI: 10.1016/j.ica.2018. 02.018.
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, *J. Comput. Chem.*, 1993, 14, 1347–1363; DOI: 10.1002/jcc.540141112.
- 5. F. Neese, *WIREs Comput. Molec. Sci.*, 2012, **2**, 73–78; DOI: 10.1002/wcms.81.
- W. Kohn, A. D. Becke, R. G. Parr, J. Phys. Chem., 1996, 100, 12974–12980; DOI: 10.1021/jp9606691.
- A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; DOI: 10.1063/1.464913.
- C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, 37, 785–789. DOI: 10.1103/PhysRevB.37.785.
- 9. T. Yanai, D. P. Tew, N. C. Handy, *Chem. Phys. Lett.*, 2004, **393**, 51–57; DOI: 10.1016/j.cplett.2004.06.011.
- 10. A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829–5835; DOI: 10.1063/1.467146.
- J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868; DOI: 10.1103/PhysRevLett. 77.3865.
- 12. M. Cossi, N. Rega, G. Scalmani, V. Barone, *J. Comput. Chem.*, 2003, **24**, 669–681; DOI: 10.1002/jcc.10189.
- 13. Э. М. Гилязетдинов, В. Г. Штырлин, Н. Ю. Серов, Л. А. Романова, М. С. Бухаров, *Тез. докл. XX* Менделеевского съезда по общей и прикладной химии (Екатеринбург, 26—30 сентября 2016 г.), Уральское отделение РАН, 2016, т. 1, с. 168.
- 14. E. M. Gilyazetdinov, M. S. Bukharov, L. A. Romanova, N. Yu. Serov, V. G. Shtyrlin, 27th Int. Chugaev Conf. on Coordination Chemistry (N. Novgorod, October 2–6, 2017), Book of Abstracts, N. Novgorod, 2017, p. 32.
- M. S. Bukharov, V. G. Shtyrlin, G. V. Mamin, S. Stapf, C. Mattea, A. S. Mukhtarov, N. Yu. Serov, E. M. Gilyazetdinov, *Inorg. Chem.*, 2015, 54, 9777–9784; DOI: 10.1021/acs.inorgchem.5b01467.
- M. S. Bukharov, V. G. Shtyrlin, E. M. Gilyazetdinov, N. Yu. Serov, T. I. Madzhidov, *J. Comput. Chem.*, 2018, 39, 821–826; DOI: 10.1002/jcc.25154.

- M. J. Abraham, T. Murtola, R. Schulz, S. Pall, J. C. Smith, B. Hess, E. Lindahl, *SoftwareX*, 2015, 1–2, 19; DOI: 10.1016/j.softx.2015.06.001.
- J. Sabolović, V. Gomzi, J. Chem. Theory Comput., 2009, 5, 1940–1954; DOI: 10.1021/ct9000203.
- N. Schmid, A. P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A. E. Mark, W. F. van Gunsteren, *Eur. Biophys. J.*, 2011, **40**, 843–856; DOI: 10.1007/s00249-011-0700-9.
- 20.M. S. Al-Fakeh, S. Messaoudi, F. I. Alresheedi, A. E. Albadri, W. A. El-Sayed, E. E. Saleh, *Crystals*, 2023, **13**, 118; DOI: 10.3390/cryst13010118.
- 21. Г. П. Жарков, О. В. Филимонова, Ю. С. Петрова, А. В. Пестов, Л. К. Неудачина, *Изв. АН. Сер. хим.*, 2022, **71**, 152 [G. P. Zharkov, O. V. Filimonova, Yu. S. Petrova, A. V. Pestov, L. K. Neudachina, *Russ. Chem. Bull.*, 2022, **71**, 152; DOI: 10.1007/s11172-022-3389-2].
- 22. A. V. Pestov, E. V. Peresypkina, A. V. Virovets, N. V. Podberezskaya, Y. G. Yatluk, Y. A. Skorik, *Acta Crystallogr. C*, 2005, **61**, m510; DOI: 10.1107/ s0108270105033780.
- 23. M. S. Bukharov, V. G. Shtyrlin, A. Sh. Mukhtarov, G. V. Mamin, S. Stapf, C. Mattea, A. A. Krutikov, A. N. Il'in, N. Yu. Serov, *Phys. Chem. Chem. Phys.*, 2014, 16, 9411–9421; DOI: 10.1039/c4cp00255e.
- 24.Л. Г. Кузьмина, А. В. Чураков, Изв. АН. Сер. хим., 2022, 71, 283 [L. G. Kuz'mina, A. V. Churakov, Russ. Chem. Bull., 2022, 71, 283; DOI: 10.1007/s11172-022-3409-2].
- 25. А. Г. Медведев, А. А. Михайлов, П. В. Приходченко, Т. А. Трипольская, О. Лев, А. В. Чураков, *Изв. АН. Сер. хим.*, 2013, **62**, 1871 [А. G. Medvedev, А. А. Mikhailov, P. V. Prikhodchenko, T. A. Tripol'skaya, O. Lev, A. V. Churakov, *Russ. Chem. Bull.*, 2013, **62**, 1871; DOI: 10.1007/s11172-013-0269-9].
- 26. N. Yu. Serov, A. V. Ermolaev, V. G. Shtyrlin, 27th Int. Chugaev Conf. on Coordination Chemistry (N. Novgorod, October 2–6, 2017), Book of Abstracts, N. Novgorod, 2017, p. Y38.

- 27. N. Yu. Serov, V. G. Shtyrlin, M. S. Bukharov, A. V. Ermolaev, E. M. Gilyazetdinov, A. A. Rodionov, *Polyhedron*, 2021, **197**, 115041; DOI: 10.1016/j.poly. 2021.115041.
- 28. N. Yu. Serov, V. G. Shtyrlin, M. S. Bukharov, A. V. Ermolaev, E. M. Gilyazetdnov, K. V. Urazaeva, A. A. Rodionov, *Polyhedron*, 2022, **228**, 116176; DOI: 10.1016/j.poly.2022.116176.
- 29. R. R. Garipov, V. G. Shtyrlin, D. A. Safin, Yu. I. Zyavkina, F. D. Sokolov, A. L. Konkin, A. V. Aganov, A. V. Zakharov, *Chem. Phys.*, 2006, **320**, 59–74; DOI: 10.1016/j.chemphys.2005.06.026.
- 30.S. Stoll, A. Schweiger, J. Magn. Reson., 2006, 178, 42–55; 10.1016/j.jmr.2005.08.013.
- 31.I. I. Mirzayanov, A. R. Garifzyanov, D. R. Islamov, V. G. Shtyrlin, *Russ. J. Gen. Chem.*, 2020, **90**, 381–384; DOI: 10.1134/S1070363220030081.
- 32. М. С. Бухаров, Э. М. Гилязетдинов, Н. Ю. Серов, А. И. Гизатуллин, А. В. Ермолаев, Н. С. Аксенин, А. Р. Гарифзянов, И. И. Мирзаянов, Д. Р. Исламов, В. Г. Штырлин, Сб. материалов XIV Всерос. молодежной научно-инновационной школы «Математика и математическое моделирование» (Саров, 7–9 апреля 2020 г.), Саров, Интерконтакт, 2020, с. 15–16.
- 33. N. V. Shtyrlin, R. M. Khaziev, V. G. Shtyrlin, E. M. Gilyazetdinov, M. N. Agafonova, T. I. Vinogradova, M. Z. Dogonadze, N. V. Zabolotnykh, E. G. Sokolovich, P. K. Yablonskiy, Y. G. Shtyrlin, *Med. Chem. Res.*, 2021, **30**, 952–964; DOI: 10.1007/s00044-021-02705-w.

Поступила в редакцию 23 ноября 2022; после доработки — 13 января 2023; принята к публикации 23 января 2023