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Abstract—H. Behnke’s and E. Peschl’s definition of plänarkonvexitat leads to the Epstein-type
inequalities when applies to the Hartogs domains in C

2. One-parameter series of such inequalities
reveals the following rigidity phenomenon: the set of the parameters with contensive inequalities is
exactly the segment which center corresponds to the well-known Nehari ball. The latter plays the
crucial role in the forming the Gakhov class of all holomorphic and locally univalent functions in
the unit disk with no more than one-pointed null-sets of the gradients of their conformal radii. The
sufficient condition for the piercing of the Nehari sphere out of the Gakhov class is found. We deduce
such a condition along the lines of the subordination approach to the proof of Haegi’s theorem about
the inclusion of any convex holomorphic function into the Gakhov class.
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This sketch was intended as a (quite superficial, but sufficiently post-modernistic) attempt to grope
for the hidden interdependence between two “worlds” generically connected with the ideas of E. Peschl:
linear convexity (of the domains in C

2 or P
2; [1]) and differential invariants (of the coverings over

C; [2, 3]). As the tools of such a “romanticizing” the results of the works [4–7] are used; the
“underlying landscape” is provided by the paper [8] executed along the Gakhov tradition [9] which has
been “engrafted upon a trunk of the conformal radius” by L.A. Aksent’ev in [10]. The note [10] absorbed
also the ideas and findings of Ju.E. Hohlov, S.R. Nasyrov, F.F. Mayer and M.I. Kinder (see [11–15]).

The Hartogs domains appear here as a sort of some “link” between the “worlds” above mentioned,
and the naturalness of this appearance is justified by the Riemann Mapping Theorem. The latter states
the existence of the function w = F (Z, z) holomorphic and univalent with respect to Z in the hyperbolic
domain D, and such that F (z, z) = 0, FZ(z, z) = 1.

The function F generates the one-to-one correspondence (Z, z) �→ (F (Z, z), z) between the product
D ×D and the Hartogs domain {(w, z) ∈ C×D : |w| < R(z)} where R(z) is the inner mapping, or
conformal radius of the domain D at its point z ([16], Bd. 2, Abschn. 4, Kap. 2, [17]; see also [18]). The
holomorphic parametrization, f : D → D, of the domain D by the unit disk D = {ζ ∈ C : |ζ| < 1} gives
the well-known expression for R(f(ζ)) = hf (ζ),

hf (ζ) = (1− |ζ|2)|f ′(ζ)|. (1)

It is convenient to call the quantity (1) by the hyperbolic derivative of the function f holomorphic in
D (see [8]). It should be noted that the logarithm of (1) is exactly the invariant α or δ from [3] or [2],
respectively.

For “our version of the definition” of the linear convexity we are needed in the expressions for the real
Hessian of the function of n complex variables,

Hessr(Z)ξ = 2
n∑

j,k=1

rZjZ̄k
(Z)ξj ξ̄k + 2Re

⎧
⎨

⎩

n∑

j,k=1

rZjZk
(Z)ξjξk

⎫
⎬

⎭ ,
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and for the complex tangent space,

TC
Z (∂G) =

⎧
⎨

⎩ξ ∈ C
n :

n∑

j=1

rZj (Z)ξj = 0

⎫
⎬

⎭ ,

to the boundary ∂G of the domain G = {W ∈ C
n : r(W ) < 0} at a point Z ∈ ∂G.

In order to avoid the “ritual” discussion on the correspondences and interdependences between the
various definitions of the linear convexity together with their strengthening and weakening (however,
see, for instance, [19–21]), we introduce “our” term and give its definition (suitable also in the general
case) at once for the Hartogs domains in C

2.
Let D be a Riemann surface having the hyperbolic universal covering surface, i.e. there exists a

holomorphic parametrization f : D → D. By a Hartogs domain over D we mean a domain of the form

H = {(z, w) ∈ D × C : |w| < Ω(z)} (2)

where the function Ω ∈ C2(D) is positive and satisfies the inequality (log Ω)zz̄ < 0 in D (i.e. the
domain H is strictly pseudoconvex). We shall refer to the domain H as to the locally non-strictly
linear convex domain over D if Hessr(z, w)(λ, μ) ≥ 0 for any (z, w) ∈ r−1(0) ∩ (D × C) and for any
(λ, μ) ∈ TC

(z,w)(∂H). Our choice of the defining inequality r(z, w) < 0 for H corresponds to the function
r(z, w) = log |w| − log Ω(z), so we have

1

2
Hessr(z, w)(λ, μ) = −(log Ω)zz̄|λ|2 − Re

{
1

2w2
μ2 + (log Ω)zzλ

2

}

and

TC

(z,w)(∂H) =
{
(λ, μ) ∈ C

2 :
μ

w
= 2(log Ω)zλ

}
.

Excluding the intermediate divisions by w, we rewrite our definition as follows:

Re
{[

(log Ω)zz + 2(log Ω)2z
]
λ2

}
≤ −(log Ω)zz̄|λ|2, z ∈ D, λ ∈ C,

or, equivalently,
∣∣(log Ω)zz + 2(log Ω)2z

∣∣ ≤ −(log Ω)zz̄, z ∈ D. (3)

The change

Ω =
√

R/es (4)

(R = R(z) is the conformal radius) and the subsequent reduction to the unit disk by means of z = f(ζ),
σ := s(f(ζ)), transform the estimate (3) into Epstein inequality [4]

∣∣∣∣σζζ − σ2
ζ −

1

2
Sf (ζ)−

2ζ̄

1− |ζ|2σζ
∣∣∣∣ ≤ σζζ̄ +

1

(1− |ζ|2)2 , ζ ∈ D, (5)

guaranteeing the univalence of the function f under the certain additional conditions ([4], see also[5]).
Here, as usual, Sf = (f ′′/f ′)′ − (f ′′/f ′)2/2 is the Schwarzian derivative of the function f . So, we have
the following

Theorem 1. If the domain (2) is locally non-strictly linear convex over D, then any holomor-
phic covering f : D → D is Epsteinian in the sense of (5).

Let’s consider the choice s = logR1−2β in (4) where β ∈ R, i.e. Ω = Rβ. The substitution such
an s in (3) implies β > 0, and the reduction to D extracts the class N (β) of all holomorphic functions
f(ζ) = ζ + . . . in D satisfying the condition

∣∣∣∣∣Sf (ζ) +

(
β − 1

2

)(
f ′′

f ′ (ζ)−
2ζ̄

1− ζζ̄

)2
∣∣∣∣∣ ≤

2

(1− ζζ̄)2
, ζ ∈ D. (6)

It should be noted that for the holomorphic functions f in D the estimate (6) implies the property of
local univalence in the unit disk, i.e. the inequality f ′(ζ) �= 0 at any point ζ ∈ D.
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An interesting rigidity effect is revealed by the following
Theorem 2. If β ∈ [0, 1], then the class N (β) is the linear-invariant family of the order

ord(N (β)) ≤ (1− β)−1/2, and contains S0, the class of all convex functions in D. The classes
N (β) are empty when β /∈ [0, 1].

The sketch of the proof (see [8]). The non-existence of the function f ∈ N (β) with

ordf := sup
ζ∈D

∣∣∣∣−ζ̄ +
1− |ζ|2

2

f ′′

f ′ (ζ)

∣∣∣∣ = +∞ (7)

is established in the spirit of [7] by the convergence ordfr → ordf , r → 1−, where fr(ζ) = f(rζ)/r and
β �= 1. Assumption (7) leads to the violation of the inequality (6) writing in terms of the second and third
coefficients of the linear-invariant actions on f by Möbius automorphisms of the unit disk. The above
violation occurs at the expense of the relation between these coefficients ([6], Theorem 2.3a) which we
shall use now to prove the “rigidity” of the series N (β) with respect to the parameter.

So, let β �= 1, let the class N (β) contains the function f with ordf = α (< +∞ by the just proved),
and let Aα be the universal linear-invariant family of order α. Since the intersection N (β) ∩ Aα is
compact, there exists a function g(ζ) = ζ + a2ζ

2 + a3ζ
3 + . . . ∈ N (β) ∩Aα with a2 = α. Then we have

a3 = (2α2 + 1)/3 by the above mentioned Theorem 2.3a from [6]. Thus the inequality (6) implies the
relation

∣∣2(β − 1)α2 + 1
∣∣ ≤ 1, whence 0 ≤ (1− β)α2 ≤ 1, and, as the result, 0 ≤ β ≤ 1 with regard to

α ≥ 1. In passing we have established the required estimate for the order of N (β).
The inclusion S0 ⊂ N (β), β ∈ [0, 1], may be proved, e.g., by the use of the well-known inequality

|b3 − b22| ≤ (1− |b2|2)/3 for the functions f(ζ) = ζ + b2ζ
2 + b3ζ

3 + . . . ∈ S0 [22] (the traditional refer-
ence is [23]) providing the fulfillment of the coefficient form of (6).

Hypothesis. If the Hartogs domain (2) is linear convex overD (in the suitable version of the definition
of the linear convexity), then any holomorphic covering of the Riemann surface (Riemann domain over
C
n when n ≥ 2) D is univalent.

Classes N (β), β ∈ [0, 1], inherit a number of properties from their “center” which is the well-known
Nehari class N (1/2) [24] (see theorems 2 and 3 in [25]). In particular, we have the following

Theorem 3. Let β ∈ [0, 1] and f ∈ N (β). If f(D) �= strip, then the hyperbolic derivative (1) of
the function f has no more than one critical point in D.

Proof. See [8]. �

For no one to think the author is only able to “glide” through the work [8], we dwell on the problem
of the uniqueness of the critical point of (1) more explicitly.

This problem occured in [16] and was issued in [17]. S. Peschl in [2] and [3] “has passed on a tangent
to it”, but his “descendants”, [26], established the equivalence

∇hf (ζ) = 0 ⇔ f ′′(ζ)

f ′(ζ)
=

2ζ̄

1− |ζ|2 , (8)

where the relation on the right-hand side is called the Gakhov equation (see [10]).
The null-set of the gradient of the function (1), i.e. the set of the form

Mf = {ζ ∈ D : ∇hf (ζ) = 0}, (9)

appeared in some boundary value problems of mathematical physics and PDE (see the survey [27]).
However, the frontal study of the sets (9) for the functions (1) took place in the frame of the boundary
value problems for the analytic functions ([9; 28, § 33]) and started by the works of Kazan mathemati-
cians ([10–15, 29, 30]). The source of inspiration was the fact observed in [10] that the connection (8)
was essentially known to Gakhov [9], who used it to prove the solvability of his version of the inverse
boundary value problem (cf. canonical references [28, § 33], and [31, § 3]).

It was an epochal result [25, 30] that the set Mf is empty or a singleton for any function f ∈
N (1/2) \ {f(D) = strip} (the case f(D) = strip corresponds to Mf is a continuum). Later on this
result was reproved in the articles [32, 18] and [33], but the proof in [33] closely resembles the adapted
version (without the reference!) of the segment on pp. 397–398 of the well-known paper of O. Martio
and J. Sarvas [34]. The significant resemblance just mentioned is well romanticized: one of the most
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intriguing topics in the geometric function theory during the last 25 years (see [33, 5, 35], etc.) gains
a hint at its own original sin and, moreover, its own “mysteriology”: it is quite possible that an absent
structure (in Eco’s terminology [36]) of the intrigue could be hidden in the dramatic events at Kazan
Seminar on the Geometric Function Theory in 1980’s (see [37]; cf. [12] and [13] as [12] versus [13]).

Now we restrict our space of attention (in the sense of [38]) to some questions on a simultaneous
going out of the class N (1/2) and of the Gakhov set, or class G which is the class of all holomorphic
and locally univalent functions f in D with Mf is no more than a singleton [37]. It is quite easy to show
that if f ∈ N (1/2) \ {f(D) = strip} and Mf �= ∅, then the unique element of Mf is a maximum of the
function (1). Our task here is to construct a workable version of the above simultaneity. Moreover, we
want to immerse this task into the atmosphere of the article [10] keeping the charisma of the Soviet “la
Belle Epoque”.

We use the notations ρf (ζ) = (1− |ζ|2)2|Sf (ζ)| and ||Sf || = supζ∈D ρf (ζ). Finiteness of ||Sf || is the
criterion of the local univalence for holomorphic f in D (cf. remark after the inequality (6)). For the sake
of convenience we shall work with the class H0 of all holomorphic and locally univalent functions f in D

normalized by f(0) = f ′(0)− 1 = 0. As is well-known, the Nehari condition, f ∈ N (1/2), is equivalent
to the estimate ||Sf || ≤ 2 where the constant 2 is sharp for the inclusion f ∈ G ([29, 30, 18]). Therefore,
our case is

||Sf || > 2, (10)

and we shall study how the set Mfr lose its one-pointed status for the so-called level set family

fr(ζ) = f(rζ)/r, (11)

where r varies over the interval 0 < r < 1. The framework for our study is given by the following
Definition. Let us say that a family (11) with f ∈ H0 and (10) pierce the Nehari sphere S = {h ∈

H0 : ||Sh|| = 2} into the complement H0 \ G to the Gakhov class G at the level set time r = r0 through
the point a ∈ Mfr0

, if the following conditions are fulfilled simultaneously:

||Sfr0
|| = ρfr0 (a) = 2 and g′r0(a) = 0, (12)

where gr(ζ) = g(rζ), g(ζ) = ζf ′′(ζ)/f ′(ζ).
The correctness of this definition is based on the fact that the norm ||Sfr || is continuous and monotone

increasing in r ∈ (0, 1). Inequalities Mfr0 �= ∅ and fr0 �= strip take place due to the relation r0 < 1
following from (10). The epoch-making result above mentioned (or the theorem 3 with β = 1/2) implies
Mfr0

= {a}. The descent of the conditions (12) goes back to the paper [39] (see also [18] and [8]).

When a = 0 (f ′′(0) = 0), these conditions may be reformulated as follows: r0 = rN (f) =√
2/|Sf (0)|, where rN (f) := sup{r > 0 : f ∈ N (1/2)} is the “radius of Neharicity” of the function f ∈

H0. In fact, the equivalences r0 = rN (f) ⇔ ||Sfr0
|| = 2 and r0 =

√
2/|Sf (0)| ⇔ ρfr0 (0) ≡ r20|Sf (0)| =

2 are valid, and if a = 0, then the relation g′r(a) = 0 is fulfilled for any r ∈ (0, 1). It remains to note that
the quantity rN (f) is correctly defined for every f ∈ H0 with (10) by the virtue of the continuity and the
monotonicity of ||Sfr || in r ∈ (0, 1) again. Furthermore, frN (f) ∈ N (1/2), and r = rN (f) is the unique
root of the equation ||Sfr || = 2 in the r-interval (0, 1).

The first condition (12) means that ζ = a is a point of extremum (maximum) of the function ρfr0(ζ).
Acting along the lines of derivation of the Gakhov equation (see [26, 10]), we obtain the extremum
necessary condition for ρfr0 (ζ),

S′
fr0

(ζ)/Sfr0
(ζ) = 4ζ̄/(1− |ζ|2), (13)

which must be satisfied at the point ζ = a. When a = 0, the condition (13) turns into equality

f (IV)(0) = 0. (14)

An exclusion of the parameter r is possible here due to the construction of (11).
The second condition (12) means that (ζ, r) = (a, r0) is a bifurcation point for the Gakhov equation

f ′′
r (ζ)/f

′
r(ζ) = 2ζ̄/(1 − |ζ|2) (15)
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corresponding to the functions of the family (11) (see [18, 39]). We need the following particular case of
the main lemma from the paper [18] (or the following extract of the theorems 1 and 2 in [39]).

Lemma. Let f ∈ H0, and let fr, r ∈ (0, 1), be the family (11). Let 0 < r0 < 1. Suppose Mfr is
a singleton for any r ∈ (0, r0] with Mfr0

= {a}, where a ∈ D. Then the equation (15) has exactly
three roots in D for every r > r0 near r0 if and only if g′r0(a) = 0 when a �= 0, or if and only if
r0 =

√
2/|Sf (0)| when a = 0.

Now we give the simple sufficient condition for the piercing when a = 0:

Proposition. Let the function f ∈ H0 satisfies the conditions (10) and f ′′(0) = f (IV)(0) = 0.
Suppose that for any ξ ∈ ∂D the function |Sfr(ξ)| increases along with r ∈ (0, 1). Then the
family (11) pierce the Nehari sphere S into the complement H0 \ G to the Gakhov class G through
the origin at the level set time r0 = rN (f) =

√
2/|Sf (0)|.

Proof. We want to show that for any r ∈ (0, 1) the function ρfr(ζ) decreases along the radii {ρξ : ρ ∈
(0, 1)}, |ξ| = 1. Since |Sfr(ξ)| = r2|Sf (rξ)| is the increasing function in r ∈ (0, 1), the quantity Sf (w)
doesn’t vanish on D. So, we have

2 + Rew
S′
f (w)

Sf (w)
= r

∂

∂r
log |Sfr(ξ)| > 0,

where w = rξ, r ∈ (0, 1) and |ξ| = 1. Then there exists a function ϕ from the Schwarz lemma, such that

w
S′
f (w)

Sf (w)
=

4ϕ(w)

1− ϕ(w)
, w ∈ D,

and |ϕ(w)| ≤ |w|2, w ∈ D, due to (14). Therefore,
∣∣∣∣∣w

S′
f (w)

Sf (w)

∣∣∣∣∣ ≤
4|w|2

1− |w|2 , w ∈ D \ {0}. (16)

Now we substitute w = rζ into (16) and use the obvious “scaling lows” Sfr(ζ) = r2Sf (rζ) and
S′
fr
(ζ) = r3S′

f (rζ) to get the following inequality

Reξ
S′
fr
(ρξ)

Sfr(ρξ)
<

4ρ

1− ρ2
, ρ = |ζ| ∈ (0, 1), |ξ| = 1, r ∈ (0, 1).

Thus we have proved that for any r ∈ (0, 1) the function ρfr(ζ) decreases along the radii of D. Hence
||Sfr || = ρfr(0) = r2|Sf (0)|, r ∈ (0, 1), rN (f) =

√
2/|Sf (0)|, and the above lemma imply that fr ∈

H0 \ G when r > rN (f) near rN (f). So, the level set time is r0 = rN (f) =
√

2/|Sf (0)|, and the proof is
complete. �

Remark. The class of f ’s defining by the assumptions of the above Proposition is non-empty (see,
e.g., [29]).

Let us briefly examine the effect of déjà vu which has been laid in the situation. Transferring the
corpus of last proof to the case of the function hf instead of ρf , f ∈ H0, we shall find that if f ′′(0) = 0,
then the condition

∂

∂r
|f ′

r(ξ)| > 0, ξ ∈ ∂D, r ∈ (0, 1), (17)

implies the decrease of the function hfr along the radii of D for any r ∈ (0, 1), and, moreover, for r = 1
with the only exclusion f(D) = strip. It is easy to see that the condition (17) is equivalent to the
convexity of a function f , i.e. f ∈ S0. So, in the proof of the above Proposition one can recognize
the elements of the subordination approach used in the spirit of L.A. Aksent’ev’s proof [10] of Haegi’s
Theorem 4 [17] asserting the inclusion which gains now the form S0 \ {f(D) = strip} ⊂ G.
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19. S. M. Einstein-Matthews, “Boundary behaviour of extremal plurisubharmonic functions,” Nagoya Math.

J. 138, 65–112 (1995).
20. S. V. Znamenskii, “Seven problems on C-convexity,” in Complex Analysis in Contemporary Mathemat-

ics, On the 80th Anniversary of the Birth of B.V. Shabat, Ed. by E. M. Chirka (Fazis, Moscow, 2001), pp.
123–131 [in Russian].

21. A. V. Kazantsev, “Linear convexity of some Hartogs domain is Epsteinian,” in Proceedings of the 3rd
International Conference on Geometric Analysis and its Applications, Volgograd, May 30–June 3,
2016 (Mat. Inst. SO RAN Soboleva, Volgograd Univ., Volgograd, 2016).

22. F. G. Avkhadiev, “Conditions for the univalence of analytic functions,” Izv. Vyssh. Uchebn. Zaved., Mat. 11,
3–13 (1970).

23. J. A. Hummel, “The coefficient regions of starlike functions,” Pacif. J. Math. 7, 1381–1389 (1957).
24. Z. Nehari, “The Schwarzian derivative and schlicht functions,” Bull. Am. Math. Soc. 55, 545–551 (1949).
25. F. W. Gehring and Ch. Pommerenke, “On the Nehari univalence criterion and quasicircles,” Comm. Math.

Helv. 59, 226–242 (1984).
26. St. Ruscheweyh and K.-J. Wirths, “On extreme Bloch functions with prescribed critical points,” Math.

Z. 180, 91–106 (1982).
27. B. Kawohl, “Rearrangements and convexity of level sets in PDE,” Lect. Notes Math. 1150, 1–136 (1985).
28. F. D. Gakhov, Boundary Value Problems (Fizmatlit, Moscow, 1958, 1963; Nauka, Moscow, 1977;

Pergamon, Oxford, 1966).
29. L. A. Aksent’ev, A. V. Kazantsev, and A. V. Kiselev, “Uniqueness of the solution of an exterior inverse

boundary value problem,” Izv. Vyssh. Uchebn. Zaved., Mat. 10, 8–18 (1984).
30. L. A. Aksent’ev and A. V. Kazantsev, “A new property of the Nehari class and its application,” Izv. Vyssh.

Uchebn. Zaved., Mat. 8, 69–72 (1989).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 38 No. 3 2017



CONFORMAL RADIUS 475

31. G. G. Tumashev and M. T. Nuzhin, Inverse Boundary Value Problems and Their Applications (Kazan
Univ., Kazan, 1965) [in Russian].

32. S. Yamashita, “The Schwarzian derivative and local maxima of the Bloch derivative,” Math. Jpn. 37, 1117–
1128 (1992).

33. M. Chuaqui and B. Osgood, “Ahlfors-Weill extensions of conformal mappings and critical points of the
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