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Abstract The Riemann boundary value problem (RBVP to shorten notation) in the
complex plane, for different classes of functions and curves, is still widely used in
mathematical physics and engineering. For instance, in elasticity theory, hydro and
aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials,
and so on. In this paper, we present an appropriate hyperholomorphic approach to the
RBVP associated to the two dimensional Helmholtz equation in R

2. Our analysis is
based on a suitable operator calculus.

Keywords Quaternionic analysis · Helmholtz equations · Boundary value problems

Mathematics Subject Classification Primary 30G35

B Juan Bory Reyes
juanboryreyes@yahoo.com

Ricardo Abreu Blaya
rabreu@facinf.uho.edu.cu

Ramón Martin Rodríguez Dagnino
rmrodrig@itesm.mx

Boris Aleksandrovich Kats
katsboris877@gmail.com

1 SEPI-ESIME-Zacatenco, Instituto Politécnico Nacional, Mexico, CD-MX, Mexico

2 Facultad de Informática y Matemática, Universidad de Holguín, Holguín, Cuba

3 School of Engineering and Sciences, Tecnológico de Monterrey,
Monterrey, NL, Mexico

4 Kazan Federal University, Kazan, Russian Federation

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s13324-018-0210-3&domain=pdf
http://orcid.org/0000-0002-7004-1794


J. Bory Reyes et al.

1 Introduction

The algebra of quaternions, in combination with classical and modern analytic meth-
ods, give rise to the development of the so-called Quaternionic Analysis. Nowadays,
this is the most attractive and close generalization of complex analysis since it pre-
serves many of its key features. A summary of developments of this function theory
and its relations to physics is contained in [23,24]. Moreover, both [29,30] empha-
size applications in great details to boundary value problems associated to Helmholtz
equation.

The theory of quaternion-valued hyperholomorphic functions (i.e., null solutions
to the two dimensional Helmholtz equation) becomes, in recent years, a powerful
mathematical tool for applications in potential theory [19,21] and in physical problems
with elliptic geometries [32,33]. Detailed treatment of this theory, which is in the same
relation to the two dimensional Helmholtz equation as the usual one-dimensional
complex analysis is to the Laplace equation inR2, can be found in [4,5,16,18,20,42–
44], see also [30, Appendix 4]. Because of the close connection to the Helmholtz
equation, its applications have been made in electromagnetic radiation, seismology,
acoustics, and also quantum mechanics.

An important question that is not addressed in the aforementioned works, and
which is the main focus of the present paper, is the Riemann boundary value problem
for hyperholomorphic functions. This generalization, besides its own undoubted pure
mathematical interest, seems reasonable to be expected that it would be important for
concrete applied problems.

The classical Riemann boundary value problem for holomorphic functions on
piecewise-smooth closed Jordan curves γ have been studied for many researchers
so far, see for example [14,31,35] for extensive treatments and discussions.

There is no need to remind the reader of the theoretical significance and success of
this theory, it has been proven to be a desired effectiveness for solving large classes
of boundary value problems, including among others, the Dirichlet, Neumann and
Schwarz, which are either special cases of Riemann boundary value problems or
closely linked to them. Also, is closely connected with the theory of singular integral
equations [14,35] and has a wide range of applications in other fields, such as in the
theory of cracks and elasticity [31,35], in quantummechanics and of statistical physics
[9] as well as in the theory of linear and of nonlinear partial differential equations [13]
and in the theory of orthogonal polynomials and in asymptotic analysis [11].

The classical Riemann boundary value problem may be formulated as follows:
Let us assume that twoC-valued functions G and g belonging to the Hölder function

space are given on a piecewise-smooth closed Jordan curve γ , and we need to find
a function � with the following properties: a) it is holomorphic in both the internal
and external (infinite) domains uniquely determined by γ ; b) it is representable by a
Cauchy type integral with a Hölder density and has limit values �± everywhere on γ

such that on γ satisfies the condition

�+ = G · �− + g. (1.1)
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The aim of this paper is to treat, instead of the above statement, a generalized
Riemann boundary value problem for hyperholomorphic functions on closed Jordan
rectifiable curves in R2. The main focus is on the solvability conditions, where a very
important role is played by the boundedness assumed for a principal-value integral
operator (reminiscent of the singular Cauchy’s integral), whose kernel is a certain
fundamental solution of Helmholtz equation.

We obtain the main result under a stated growth condition at infinity by using the
Cauchy formula for hyperholomorphic functions and the so called method of reg-
ularization of quasi-solutions, which is offered by B. A. Kats [25,26] for solving of
holomorphic RBVP on non-rectifiable curves.We prove that the RBVP for hyperholo-
morphic functions is solvable by combining the Plemelj–Sokhotski formulas with a
sort of Liouville theorem given here. The proof of uniqueness is based on versions of
the Painleve theorem.

2 Preliminaries

In this section we collect definitions and basic results that will be used constantly
through the rest of this paper.

We shall denote by H(R) and H(C) the sets of real and complex quaternions
(=biquaternions), respectively. Then, each quaternion a can be represented in the
form a = ∑3

k=0 akik where {ak} ⊂ R for real quaternions and {ak} ⊂ C for complex
quaternions, i0 is the multiplicative unit and {ik | k = 1, 2, 3} are the quaternionic
imaginary units. As usual, we denote by i the imaginary unit in C. By definition

i · ik = ik · i, k = 0, 1, 2, 3.

The quaternionic conjugation a is defined by a := a0 − �a, where �a := ∑3
k=1 akik .

The module of a quaternion a coincides with its Euclidean norm : |a| = ‖a‖R8 . In
particular, for a ∈ H(R) we have |a| = ‖a‖R4 and |a|2 = a · a = a · a whereas
for a complex quaternion |a|2 �= a · a. Moreover, for a, b belonging to H(R) there
holds: |a · b| = |a| · |b| which is an extremely important property while working
with real quaternions. However, for a, b ∈ H(C) there only holds the inequality
|ab| �

√
2 · |a| · |b|. If a ∈ H(C) is invertible, we will denote as a−1 its inverse.

Let � denotes a Jordan domain in R
2 ∼= C, and let us define �+ := � and

�− := C \ �+. Furthermore, we assume the boundary � of � to be, until further
notice, a closed Jordan rectifiable curve.

We shall consider H(C)-valued functions defined in �:

f : � −→ H(C).

For a suitable subset E ⊂ R
2 we define, in usual component-wise meaning,

the following classes of functions: Cs(E;H(C)), s ∈ N ∪ {0}, of s times continu-
ously differentiable functions; L p(E;H(C)), p > 1 of p-integrable functions; and
C0,ν(E;H(C)), 0 < ν ≤ 1 of Hölder continuous functions, respectively.
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The Hölder space C0,ν(E;H(C)) equipped with the norm

| f |ν,E := max
(t,τ )∈E

| f (t, τ )| + sup
(t1,τ1),(t2,τ2)∈E
(t1,τ1) �=(t2,τ2)

| f (t1, τ1) − f (t2, τ2)|
|(t1, τ1) − (t2, τ2)|ν ,

is a Banach space.
Let λ ∈ C \ {0}, and let α denote an arbitrary fixed square root of λ in C. This λ

generates the two dimensional Helmholtz operator with a quaternionic wave number,
which acts on C2(�;H(C)) and must be left and right:

λ
 := 
R2 +λ M, (2.1)


λ := 
R2 + Mλ,

where 
R2 := ∂21 + ∂22 , ∂k := ∂
∂xk

, Mλ[ f ] := f λ, λM[ f ] := λ f .
Finally, we discuss one more piece of notation. The following partial differential

operators:

st∂ := i1 · ∂1 + i2 · ∂2; st∂ := i1 · ∂1 + i2 · ∂2;
∂st := ∂1 ◦ Mi1 + ∂2 ◦ Mi2; ∂st := ∂1 ◦ Mi1 + ∂2 ◦ Mi2 .

Thus,

st∂
2 = ∂2st = −
R2 .

Set

α∂ := ∂st +αM; ∂α := st∂ + Mα.

Then we have the following factorizations of the Helmholtz operator:


λ = −∂α ◦ ∂−α = −∂−α ◦ ∂α. (2.2)

A function f ∈ C1(�,H(C)) is said to be hyperholomorphic if it satisfies the equation
∂α f ≡ 0 in �.

Furthermore, the set of hyperholomorphic functions in � will be denoted by
Mα(�,H(C)). We will use the letter c to denote a generic positive constant, and
reserve the notation z := (x, y) for a typical point of R2 \ {0}.

Let θα(z) denote the fundamental solution of 
λ:

θα(z) := (−1)
i

4
H (1)
0 (α|z|),
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where {α ∈ C \ {0} : Im(α) ≥ 0} and H (1)
0 is the usual zero-order Hankel function

of the first kind. For a more detailed discussion of this fundamental solution see the
excellent treatment in [15, pp. 59–74].

By taking into account (2.2), and with these clarifications, the quaternionic Cauchy
kernel Kα is defined as a fundamental solution of the operator α∂ , and it can be
calculated by the formula

Kst,α(z) = −∂−α θα(z), z ∈ R
2 \ {0}. (2.3)

Hence, it can be obtained explicitly as

Kst,α(z) = (−1)
iα

4

(

H (1)
1 (α|z|) z

|z| + H (1)
0 (α|z|)

)

. (2.4)

The Hankel functions can be expanded (at the origin) into the series, see [7,49]:

H (1)
0 (t) =

(

1 − (−1)
2i

π
(ln

t

2
+ χ)

) ∞∑

k=0

(−1)k t2k

22k(k!)2 + 2i

π

∞∑

k=1

(−1)k+1t2k

22k(k!)2
k∑

m=1

1

m
,

(2.5)

H (1)
1 (t) =

(

1 − (−1)
2i

π
(ln

t

2
+ χ)

) ∞∑

k=0

(−1)k t2k+1

22k+1k!(k + 1)! + (−1)

(
2i

π t

)

+ i

π

∞∑

k=1

(−1)k+1t2k+1

22k+1k!(k + 1)!

(
k+1∑

m=1

1

m
+

k∑

m=1

1

m

)

, (2.6)

where χ is the Euler’s number.
We should remark thatEq. (2.6) is slightly different from the corresponding equation

in [16–18,20] since they are developing these series expansions in accord to equations
8.402, 8.403 and 8.405 of [22]. However, we are using the most common definitions
(Sect. 3.6 of [49], Equations 14.76 and 14.77 of [7])

H (1)
n (t) = Jn(t) + iYn(t).

The Bessel function of the second kind, Yn(z), is defined in Sect. 3.53 of [49] and
equation 14.61 of [7], and it is slightly different from the function Nn(z) used in [22].

Before stating the main results of this work, we will perform some necessary esti-
mations. If Im(α) > 0 then Kst,α decays exponentially at infnity. Furthermore, if
Est,α(z) has a mathematical form such that

Kst,α(z) = Est,α(z) exp{iα|z|}

then

|Est,α(z)| = O

(
1

|z| 12

)

, as |z| → ∞.
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This fact follows from the definition of θα(z) in addition to a straightforward com-
putation, see [34, Section 3]. For such a purpose, they are also used the classical
asymptotic expansions at infinity (in the sense of Poincaré; cf., e.g., [45, (9.13.1), p.
166]) of Hankel functions that are given by

H (1)
0 (z) ∼

(
2

π z

)1/2

ei(z−π/4)

[

1 +
∞∑

m=1

(−1)m (0, m)

(2i z)m

]

H (1)
1 (z) ∼

(
2

π z

)1/2

ei(z−3π/4)

[

1 +
∞∑

m=1

(−1)m (1, m)

(2i z)m

]

as |z| → ∞, where

(ν, m) = (4ν2 − 12)(4ν2 − 32) · · · (4ν2 − (2m − 1)2)

22mm! .

See also [7], Sect. 14.6.
We highlight the important fact, by Rellich’s lemma, that any solution f of the

Helmholtz equation (2.1) for non-zero real α which satisfies f (z) = O(|z|− 1
2 ) in

a (connected) neighborhood of infinity in R
2 must vanish identically (the Liouville

theorem for hyperholomorphic functions). For further details see [34, Lemma 8.1]

3 Hyperholomorphic Cauchy integrals

3.1 Some results in complex analysis and historical facts

The classical RBVP theory in the plane was developed based on three basic results
related to the Cauchy integral. Namely, the Plemelj–Sokhotski formulas, estimates in
L p or Hölder norms of the corresponding boundary values, as well as the Plemelj–
Privalov theorem, which states the boundedness of the Cauchy singular integral in the
Hölder classes on closed Jordan curves, see [6] for more details. These results directly
apply to the study of the solvability condition of the Riemann problem with Hölder
class data.

As it was pointed out in [47] many linear operators occurring in analysis enjoy one
or both of the following properties: to map the space of Hölder continuous functions
with order μ to the one of order ν for appropriated μ and ν, and the same for the
Lebesgue space for exponent p to one for exponent q, for appropriated p, q.

Suppose γ is a closed rectifiable Jordan curve in the complex plane. G. David [10]
has shown that the Cauchy singular integral operator

S f : L p(γ ;C) −→ L p(γ ;C), (3.1)

is bounded if and only if γ is Ahlfors–David-regular (Carleson curve). The later means
that there is a c > 0 so that for all z ∈ γ and for all r > 0 the arc-length measure
of γ ∩ B(z, r) is at most c r, where B(z, r) stands for the closed disk with center
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z and radius r . The class of Ahlfors-David-regular curves includes among other the
piece-wise Liapunov, K-curves, Lipschitz, etc.

As a matter of fact, the necessity of the Ahlfors–David-regularity for (3.1) was also
proved by Salimov [41] using different techniques.

The classical Plemelj–Privalov theorem in complex analysis deals with the bound-
edness of the Cauchy singular integral operator in Hölder spaces, i.e., the implication

f ∈ C0,ν(γ ;C) ⇒ S f ∈ C0,ν(γ ;C)) 0 < ν < 1, (3.2)

as a bounded operator for closed rectifiable Jordan curves.
This theorem iswell-known, see [35,37,38]. A geometric condition that completely

characterizes the class of all closed rectifiable Jordan curves on which the Plemelj–
Privalov theorem is valid is given in [40] in terms of the planar measure of boundary
strips of sets constructed from the curve.

As far as we know, the first time that (3.2) was denominated as the Plemelj–Privalov
theorem was in a not well-known paper of Babaev and Salaev [8].

3.2 The hyperholomorphic functions case

We refer to [1,3] for a recent overview of the historical developments of the higher
dimensional Plemelj–Privalov theorem. In particular, this result is discussed in [3,
Theorem2.4] in the context of realClifford algebras-valued functions in Jordandomain
of Rn . Moreover, these authors presented the maximal class of surfaces (curves when
n = 2) for the validity of the Plemejl–Privalov theorem in Clifford analysis.

The Cauchy kernelKst,α generates, as usual, two important hyperholomophic inte-
grals:

• The Cauchy type integral

Kα[ f ](x, y) := −
∫

�

Kst,α(x − u, y − v)nst (u, v) f (u, v) d�(u,v), (x, y) ∈ R
2 \ �,

(3.3)

where nst (u, v) = (n1(u, v), n2(u, v)) denotes the unit outward normal vector to �

at the point (u, v).

• The Teodorescu transform

Tα[ f ](x, y) :=
∫

�

Kst,α(x − u, y − v) f (u, v) du ∧ dv, (x, y) ∈ R
2.

We will also need the following two well-known results in order to prove the main
theorems of this paper.

Theorem 1 [43]Let � ⊂ R
2 be a domain and let its boundary � be a closed rectifiable

Jordan curve. Assume that f ∈ C1(�,H(C)) ∩ C0(�,H(C)), then

f (x, y) = Kα[ f ](x, y) + Tα · ∂α[ f ](x, y), (x, y) ∈ �.
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Theorem 2 [43]Let � ⊂ R
2 be a domain and let its boundary � be a closed rectifiable

Jordan curve. If f ∈ Mα(�,H(C) ∩ C1(�,H(C)), then

f (x, y) = Kα[ f ](x, y), (x, y) ∈ �.

The hyperholomorphic Cauchy integral allows us to prove the following theorem,
which is an analogy of the Painleve theorem for holomorphic functions (see [36]).

Theorem 3 Let � be a domain of R2 containing a rectifiable curve �. If function f
is hyperholomorphic in � \ � and continuous in �, then it is hyperhomorphic in �.

The proof of this result repeats the proof of the Painleve theorem for holomorphic
functions.

The proof of next theorem follows from Theorem 2 and the behavior of Kst,α(z)
as |z| → ∞. It is a suitable analogue of the complex Liouville theorem. Here and
throughout the rest of the paper we assume that α takes only non-zero real values.

Theorem 4 Let f ∈ Mα(R2,H(C)) and

| f | = O

(
1

|z| 12

)

, as |z| → ∞,

then f = 0 in R
2.

Based on the Cauchy type integral Kα[ f ], which is well defined for any f ∈
C0,ν(�;H(C)), a singular Cauchy integral was introduced in [18,20] by taking bound-
ary limits. As a matter of fact, there are intimate connections between both integrals,
which is expressed by Plemelj–Sokhotski formulas. So, the investigation of boundary
values of Cauchy-type integrals requires the study of the corresponding properties of
the singular integral.

A recent work presenting the Plemelj–Sokhotski formulas in the two dimensional
hyperholomorphic theory setting is [39], where the boundary � is regarded as a Lia-
punov curve (i.e., the angle formed by the tangent to the curve satisfies Hölder’s
condition). It should be noted that, in contrast to thiswork inLiapunov curves, Plemelj–
Sokhotski formulas for more general class of curves include both a curvilinear and an
area integral.

Theorem 5 [16,18,20] Let � be a bounded domain with Ahlfors–David-regular
boundary and let f ∈ C0,ν(�;H(C)), 0 < ν < 1. Then the boundary values

K ±
α [ f ](t, τ ) := lim

�±�(x,y)→(t,τ )∈�
Kα[ f ](x, y)

of the Cauchy type integral Kα[ f ] are given by

K +
α [ f ](t, τ ) = (Iα(t, τ ) + 1) f (t, τ ) + Fα[ f − f (t, τ )](t, τ )

=: 1
2
( f (t, τ ) + Sα[ f ](t, τ )) =: P+

α [ f ](t, τ ),
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K −
α [ f ](t, τ ) = (Iα(t, τ )) f (t, τ ) + Fα[ f − f (t, τ )](t, τ )

=: 1
2
(− f (t, τ ) + Sα[ f ](t, τ )) =: P−

α [ f ](t, τ ),

for all (t, τ ) ∈ �, which take the form of the usual Plemelj–Sokhotski formulas and
where Fα[ f ] is the singular Cauchy integral given by

Fα[ f ](t, τ ) := −
∫

�

Kst,α(t − u, τ − v)nst (u, v)[ f (u, v) − f (t, τ )] d�(u,v)

and

Iα(t, τ ) := −α

∫

�

Kst,α(t − u, τ − v) du ∧ dv.

Remark 3.1 It is assumed that f ∈ C0,ν(�;H(C)) in Theorem 5, hence all inte-
grals must be interpreted in the Riemann sense (proper or improper). If now f ∈
L p(�;H(C)) then one has to understand Kst,α[ f ] as a Lebesgue integral, and the
necessary changes can be easily made. For instance, the limits in Theorem 5 exist
almost everywhere on � with respect to the Lebesgue measure. An L p-formulation
of this theorem follows from the standard Calderon-Zygmund theory and by recalling
that C0,ν(�;H(C)) is dense in L p(�;H(C)) according to classical arguments.

The next theorem shows a result similar to Plemelj–Privalov theorem in the hyper-
holomorphic framework.

Theorem 6 [16,42] Let � be a piecewise-Liapunov closed Jordan curve. Then Sα is
a bounded operator acting on C0,ν(�;H(C)), i.e.,

f ∈ C0,ν(�;H(C)) ⇒ Sα f ∈ C0,ν(�;H(C))) 0 < ν < 1, (3.4)

as a bounded operator.

There is certain evidence that Theorem 6 may be extended to a setting larger than the
piecewise Liapunov curves, in particular the Ahlfors–David regular curves, see [17,
Corollary 2]. Here the main difficulties arise from finding a Hölder estimation for all
terms of the Cauchy integral boundary values, i.e., including the estimation of Iα .

We should notice that for α = 0, the complete characterization of the class of
rectifiable Jordan curves for what Theorem 6 holds is given in [3, Theorem 2.4, for
n = 2].

Through the remainder of our work we take it for granted that the relation (3.4)
holds, and leave the geometric properties of the curves at a second importance level.
This approach will allow us to make the exposition in a more general setting.

Observe now that, condition (3.4) and Plemelj–Sokhotski formulas of Theorem 5
combine to obtain the following result, which will be needed in the sequel.
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Theorem 7 Let 0 < ν < 1. There exist a real constant c� = c �(α) such that for any
f ∈ C0,ν(�;H(C))

|P−
α [ f ]|ν,� ≤ c �| f |ν,�. (3.5)

4 Riemann problems for hyperholomorphic functions

In a hyperholomorphic scenario the RBVP may be described as follows: Find � in
Mα(�±,H(C)), which is continuous up to the boundary �, vanishes at infinity and
such that their boundary values �± on the curve � satisfies the condition

�+(t, τ ) = �−(t, τ ) · G(t, τ ) + g(t, τ ), ∀ (t, τ ) ∈ �, (4.1)

where G(t, τ ) and g(t, τ ) are given functions in C0,ν(�;H(C)).
The simplest case of the RBVP is called the jump problem

�+(t, τ ) − �−(t, τ ) = g(t, τ ), ∀ (t, τ ) ∈ �, (4.2)

i.e., the RBVP with G ≡ 1. Its solution for sufficiently smooth curve is given by a
Cauchy type integral.

Theorem 8 If � is Ahlfors–David regular and g ∈ C0,ν(�;H(C)), then the jump
problem (4.2) has a unique solution equals to Kα[g].
Proof The function Kα[g] satisfies the boundary condition (4.2) by Theorem 5, and
it is a unique solution by virtue of the Painleve and Liouville theorems for hyperholo-
morphic functions. ��

The next step to deal with a RBVP is to consider a RBVP with constant G.

Theorem 9 If � is Ahlfors–David regular, G is a constant invertible complex quater-
nion and g ∈ C0,ν(�;H(C)), then the problem (4.1) has a unique solution.

Proof This result reduces to the preceding theorem by introducing a new desired
function

�(x, y) =
{

�(x, y), (x, y) ∈ �+
�(x, y)G, (x, y) ∈ �−.

Let us establish an explicit reduction of the problem (4.1) to an equivalent singular
integral equation.

We may assume that the solution of (4.1) is of the form

�(x, y) = −
∫

�

Kst,α(x − u, y − v)nst (u, v)ϕ(u, v) d�(u,v), (4.3)

where ϕ ∈ C0,ν(�;H(C)). Then, the function ϕ should satisfy the following singular
integral equation:
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P+
α [ϕ](t, τ ) = P−

α [ϕ](t, τ )G(t, τ ) + g(t, τ ), (t, τ ) ∈ �. (4.4)

Conversely, if ϕ ∈ C0,ν(�;H(C)) represents a solution of (4.4), then (4.3) is a solution
of (4.1). Combining these results and the Plemelj–Sokhotski formulas in Theorem 5
gives

ϕ(t, τ ) = �+(t, τ ) − �−(t, τ ).

Here is another manner of stating (4.4).

ϕ(t, τ ) = P−
α [ϕ](t, τ )(G(t, τ ) − 1) + g(t, τ ), (t, τ ) ∈ �. (4.5)

��
Theorem 10 Let � be a piecewise-Liapunov curve, and G and g are functions in
C0,ν(�;H(C)). If the value |G −1|ν,� is sufficiently small, then the problem (4.1) has
a unique solution.

Proof Theorem 7 implies that the integral operator, defined by the first term of the
right hand side of (4.5), is a contractive operator mapping C0,ν(�;H(C)) into itself.
Therefore, there exists a unique solution of (4.4) and thus a unique one of (4.1). ��

After combining the last two theorems we obtain

Theorem 11 Let G = G0G1, where G0 is an invertible constant quaternion and
G1 is a function from C0,ν(�;H(C)) such that |G − 1|ν,� is sufficiently small, and
g ∈ C0,ν(�;H(C)). If � is a piecewise Liapunov curve, then the problem (4.1) has a
unique solution.

Proof The introduction of the new desired function � equating � in �+ and �G0 in
�− reduces the problem to the case considered in the previous theorem. ��
Remark 4.1 The uniqueness of a solution in all these theorems means that we treat
the case of the null Gakhov index [14].

Remark 4.2 At the level of Ahlfors–David-regular curves we conjecture that the scope
of our results obtained on Hölder spaces may be extended to the much larger class
of Lebesgue p-integrable functions in order to solve the Riemann boundary value
problem with L p data.

Then we consider the case of a non-rectifiable curve �. In this situation we cannot
use a curvilinear integral along �. But the main ideas of the paper [25] keep their
validity. Let � be a non-rectifiable closed curve, g ∈ C0,ν(�;H(C)). We consider
a function F : C �→ H(C) to be a quasi-solution of the jump problem (4.2) if it is
continuously differentiable inC\�, and it has limit values on� from both sides related
by the equality F+ − F− = g, its support is compact, and its first partial derivatives
are integrable. Now, let us consider the function

�(x, y) := F(x, y) − Tα[∂α F](x, y).
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This function is hyperholomorphic in C \ �. If ∂α F ∈ L p, p > 2, then Tα[∂α F]
is continuous in R

2, and � is a solution of the problem (4.2). Thus, the problem is
solvable if it has a quasi-solution F with derivative ∂α F integrable with a degree
p > 2.

In the paper [4] a quasi-solution is built in the form F = g̃χ+, where g̃ is the
Whitney extension of g (see, for instance, [46]), and χ+ is a characteristic function of
domain �+. As a result, there were proved that the jump problem for hyperholomor-
phic functions on non-rectifiable curve is solvable if

ν >
1

2
dm(�). (4.6)

Here dm(�) stands for the upper Minkowski dimension of the curve � (see, for
instance, [48]). It is just the same condition which ensures solvability of the jump
problem for holomorphic functions (see [25,26]).

RecentlyD.B.Katz introduced anewmetric characteristic for non-rectifiable curves
(see [27,28]). It is called Marcinkiewicz exponents.

Definition 1 Let B±(t, r) := �± ∩ {z : |z − t | ≤ r}, t ∈ �, I ±
p (�, t, r) :=

∫
B±(t,r)

dxdy
dist p(z,E)

. We put m±(�; t) := sup{p : limr→0 I ±
p (�, t, r) < ∞}, and

m∗(�) := inf{max{m+(�; t),m−(�; t)} : t ∈ �}. The values m±(�; t) and m∗(�)

are called Marcinkiewicz exponents.

D. B. Kats built a quasi-solution F of the jump problem for holomorphic functions
such that ∂ F ∈ L p, p > 2, under the assumption

ν > 1 − 1

2
m∗(�), (4.7)

and wemust remark that this assumption is weaker than (4.6). Analogous construction
gives for the hyperholomorphic jump problem a quasi-solution F such that ∂α F ∈ L p,
p > 2. Thus, the following result is valid

Theorem 12 The jump problem (4.2) for hyperholomorphic function is solvable if
g ∈ C0,ν(�;H(C)) and the Hölder exponent ν is related with Marcinkiewicz exponent
by relation (4.7).

This theorem sharpens the mentioned result of [4]. Clearly, it implies an analog result
to Theorem 9 for non-rectifiable curves.

Remark 4.3 The uniqueness of solution of the RBVP on non-rectifiable curves is
more complicated. As shown by E. P.Dolzhenko [12], the non-rectifiable analog of
the Painleve theorem fulfills for holomorphic function f only under the additional
assumption f ± ∈ C0,ν(�;H(C)) for sufficiently large ν. The analog of this result for
Clifford analysis is proved in [2]. We have evidence to support a conjecture that the
Dolzhenko theorem is valid for hyperholomorphic functions as well.
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