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Abstract—In this work, the boundary value problem for the Helmholtz equation in a half-band,
corresponding to the physical problem of diffraction of TE-polarized electromagnetic wave on the
wall of a resonator with a hole in a semi-infinite waveguide, is solved by the finite element method.
The obtained solution is compared with the solution obtained earlier by the method of partial
domains. Good correspondence between the solutions obtained by two different methods is shown.
The absolute difference between the solutions was calculated. The dependence of the absolute
difference on the triangulation parameter in the finite element method is given for a fixed ISLAE
truncation parameter in the partial domain method.
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1. INTRODUCTION

In the most general formulation, the diffraction problem consists in finding solutions of Maxwell
equations that satisfy certain boundary conditions. For the uniqueness of the solution, these conditions
are usually supplemented with the Sommerfeld radiation conditions and conditions that take into
account the behavior of the electromagnetic field in the vicinity of sharp edges.

Assume that the desired field does not depend on one of the coordinates. In this case, the system of
Maxwell equations splits into two independent subsystems, which give two types of partial solutions.
These solutions are called TE and TM polarized and satisfy the first and second boundary value
problems for the two-dimensional Helmholtz equation, respectively. Thus, boundary value problems
and conjugation problems for the system of Maxwell equations are reduced to boundary value problems
and conjugation problems for the Helmholtz equation. Statements of various boundary value problems
for equations of elliptic type, including the Helmholtz equation, are considered in [1].

Various methods are used for the exact and numerical solving boundary value problems. For example,
in the book [2] to solve diffraction problems in waveguide structures, the geometries of which are
obtained by various modifications of a branched waveguide, the methods of partial domains and Wiener–
Hopf are successfully applied. In the first case, the solution of the problem is sought in the form of an
expansion in a Fourier series in terms of the orthonormal set of eigenfunctions of the corresponding
Sturm–Liouville problem with unknown coefficients. Further, from the conditions for matching fields at
common interfaces between media, it is easy to obtain series equations. By projecting these functional
equations onto the corresponding orthogonal sets of functions, one can reduce the original problem
to an infinite set of linear algebraic equations (LSAE) with respect to unknown coefficients. For the
problem with a branched waveguide, the ISLAE solution can be found explicitly by the direct matrix
inversion method. The asymptotics of the found coefficients is shown, which ensures the fulfillment of
the conditions on the sharp edge for the potential function.
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Fig. 1. Semi-infinite waveguide with diaphragm.

Note that different ways of projecting onto orthogonal sets of functions lead to different ISLAEs. For
example, as it is shown in [3], direct projection of series equations leads to ISLAEs with the properties
of convolution-type equations, which significantly limits the possibility of using simple methods such
as the reduction method to solve them. Therefore, when developing numerical methods for solving the
problem, as well as when proving existence and uniqueness theorems for solutions, it is advisable to
carry out regularization. This can be done by various methods, for example, [4] uses the method of
integral-series identities to regularize the summation equations and reduce them to ISLAE, and [5] and
[6] use the semi-inversion and Riemann–Hilbert methods, which are reduced to the selection of the main
singular part in the summation equation and its analytical inversion.

The study of diffraction boundary value problems in a rigorous mathematical formulation and
eigenvalue problems is given in [7].

In the papers [8–11], the problems of diffraction in infinite and semi-infinite waveguide structures
with various inhomogeneities generating resonant phenomena are studied.

In this work, the [12–14] finite element method is used to solve and study the boundary value problem
for the Helmholtz equation in a half-band, which corresponds to the physical problem of electromagnetic
wave diffraction in a semi-infinite waveguide with a diaphragm located in front of the plug. A comparison
is made with the solution obtained earlier in [15] using the partial domain method.

2. THE DIFFRACTION PROBLEM

Consider a semi-infinite rectangular waveguide with a diaphragm located in front of the plug in
the cross-sectional plane z = 0 (Fig. 1), and separating the waveguide into regions I(z < 0) and
II(0 < z < c). Assume that the medium is homogeneous and isotropic everywhere. The vectors of
TE-polarized electromagnetic field can be represented as

E = (0, 0, u(x1, x2)), H =

(
∂u(x1, x2)

∂x2
,
∂u(x1, x2)

∂x1
, 0

)
.

The functions u0(x2) = u(0, x2) and u1(x2) = (∂u/∂x2)(0, x2) will be called the zero and the first traces
of the function u(x).

We will look for a solution of the Helmholtz equations

Δui + κ2ui = 0, ui = ui(x), x = (x1, x2) ∈ Ω1 ∪ Ω2 (1)

with boundary conditions on metal

ui
∣∣
Γi

= 0, Γi = ∂Ωi\N (2)

and interface conditions on the hole

[u]|N = 0, (3)

[
∂u

∂x1

]∣∣∣∣
N

= 0. (4)

Square brackets [·] denote the difference between traces to the left and to the right of N
[u]|N = u1(0, x2)− u2(0, x2) = 0. (5)
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We will seek the solution (1) in the region Ω1 in the form of the sum of the incident u+(x) and reflected
u−(x) waves

u1(x) = u+(x) + u−(x).

Thus, the conditions (2)–(4) can be rewritten as: x ∈ M
u+0 + u−0 = 0, (6)

u20 = 0, (7)

x ∈ N
u+0 + u−0 = u20, (8)

u+1 + u−1 = u21. (9)

We will look for the oncoming wave u+(x) as a wave coming from “infinity” in the form u+(x) =

sl(x2)e
iγlx1 , where sl(x) =

√
2
a sin

πnx2
a . The reflected wave, according to Steklov’s theorem, will be

sought as an expansion in terms of eigenfunctions of the Sturm–Liouville problem for the Laplace
operator in the form

u−(x) =
∞∑
n=1

ansn(x2)e
−iγnx1

and the transmitted wave in the form

u2(x) =

∞∑
n=1

bnsn(x2)
(
eiγnx1 − eiγnc e−iγn(x1−c)

)
.

Note that the traces of a positively oriented wave are related by the relation

u1(x2) =

b∫
0

u0(t)K(t, x2) dt

but negatively oriented

u1(x2) = −
b∫

0

u0(t)K(t, x2) dt,

where

K(t, x2) =

+∞∑
n=1

iγnsn(t)sn(x2)

Lemma 1. @The zero and first traces of an non-oriented wave u2(x) on the hole N are related by the
relation

u21(x2) = 2u+1 (x2)−
∫
N

u2(x1, t)K(t, x2)dt, x ∈ N . (10)

From (9) follows

u21(x2) = −
∫
N

u−0 (t)K(t, x2)dt−
∫
M

u−0 (t)K(t, x2)dt+ u+1 (x2)

taking into account (8) and (6) we get (10).
In addition, using the method of integral series identities, we can prove the following theorem
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Theorem 1. @The two-dimensional problem of diffraction of TE-polarized electromagnetic wave by
the diaphragm in a semi-infinite waveguide is reduced to ISLAE

γkbk −
∞∑
n=1

bn
(
1− e2iγnc

) ∞∑
m=1

(
γm

1− e2iγmc

)
JnmImk = γlIlk, k = 1, 2, ... (11)

@where Imk =
∫
M sn(t)sm(t) dt, Jnm =

∫
N sn(t)sm(t) dt.

3. VARIATIONAL STATEMENT OF THE PROBLEM

Here and below, we will assume that u(x) = u2(x) and Ω = Ω2. Potential function u(x) we will seek
as a solution to the boundary value problem for the Helmholtz equation

Δu+ κ2u = 0, x = (x1, x2) ∈ Ω (12)

with boundary conditions on ∂Ω = M∪N as

u(x) = 0, x ∈ M = ∂Ω\N , (13)

∇u · n = 2u0 −
∫
N

u(x1, t)K(t, x2)dt, x ∈ N , (14)

where K(t, x2) =
∑M

m=1 γmsm(t)sm(x2). Let us pass to the variational formulation of the problem.
Let’s multiply (12) on the v(x) and integrate over the region Ω∫

Ω

(
vΔu+ κ2vu

)
dx = 0. (15)

Applying the Ostrogradsky–Gauss formula to the first integrand (15), we obtain∫
Ω

(
∇u · ∇v − κ2uv

)
dx−

∫
N

v∇u · n dx = 0, (16)

or ∫
Ω

(
∇u · ∇v − κ2uv

)
dx+

M∑
m=1

γm

∫
N

v(0, x2)sm(x2) dx2

∫
N

u(0, t)sm(t) dt

= 2γl

∫
N

v(0, x2)sl(x2)dx2. (17)

Function

u ∈ V 0 =
{
u ∈ H1 (Ω) : u(x) = 0, x ∈ M

}
, (18)

where H1 (Ω) is Sobolev space, will be called an approximate solution of the (12)–(14) problem if it
satisfies the integral identity (17) for any function v ∈ V 0.

The solution (17) will be sought in the form

u(x) =

n∑
i=1

uiϕi(x) =
∑
i∈in

uiϕi(x) +
∑
i∈id

uiϕi(x), (19)

where ui are the desired expansion coefficients. We substitute (19) into (17) and obtain a system of linear
algebraic equations with respect to the required coefficients ui∑

i∈in
aijui = φj, j ∈ in, (20)
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Fig. 2. Triangulation of Ω region using P1 grid.

where

aij =

∫
Ω

(
∇ϕi · ∇ϕj − κ2ϕiϕj

)
dx+

M∑
m=1

γm

∫
N

ϕj(0, x2)sm(x2) dx2

∫
N

ϕi(0, t)sm(t) dt,

φj = 2γl

∫
N

ϕj(0, x2)sl(x2) dx2. (21)

For the numerical implementation of the finite element method of the (21) system, we will use a
triangular P1 grid and the method of conformal linear triangular elements. We choose the basis functions
of the reference triangle with vertices at the bars â1 = (0, 0), â2 = (1, 0), â3 = (0, 1) in the form

ϕ̂1(x̂) = 1− x̂1 − x̂2, ϕ̂2(x̂) = x̂1, ϕ̂3(x̂) = x̂2.

Note that the basis functions are chosen so that the condition

ϕ̂i(âj) = δij , i, j = 1, 2, 3.

An example of triangulation of the region Ω using the P1 grid is shown in Fig. 2, where the punctured
(white) points show the set id, for which the Dirichlet condition (13) is satisfied, and the black ones show
the set of points in for which the condition (14) is satisfied

4. COMPUTATIONAL EXPERIMENT

Consider a truncated (reduced) system of linear algebraic equations obtained from the system (11)
by replacing infinite sums by finite ones

γkbk −
N∑

n=1

bn
(
1− e2iγnc

) N∑
m=1

(
γm

1− e2iγmc

)
JnmImk = γlIlk, k = 1, 2, ..., N, (22)

where N is the truncation parameter. Integrals Jnm and Inm, which are related by the relation
Inm = δnm − Jnm, we will calculate explicitly by the formulas

Jnm =

{
sin(n−m)πa1−sin(n−m)πa0

(n−m)π − sin(n+m)πa1−sin(n+m)πa0
(n+m)π , n �= m,

a1 − a0 − sin(n+m)πa1−sin(n+m)πa0
(n+m)π , n = m.

All further calculations will be carried out at the resonant frequency k11 of a square resonator with
the size a = b = 1. As is known, these resonant frequencies coincide with the eigenvalues κnm =√

(πn)2 + (πm)2. We choose the hole in the form N = (0.3, 0.7).

Solving the truncated system (22) we find the unknown coefficients {bn}Nn=1 of the potential function

uN (x) =

N∑
n=1

bnsn(x2)
(
eiγnx1 − eiγnc e−iγn(x1−a)

)
. (23)

The absolute difference between the solutions u20(x) and u25(x) calculated by the formula ε(x) =
|u25(x)− u20(x)| less than 10−16. Thus, it is enough to restrict ourselves to the truncation parameter
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Fig. 3. a) Solution uN (x) of the boundary value problem (1)–(4) by the partial domain method for N = 20 b) solution
uh(x) of the boundary value problem (12)–(14) by the finite element method for h = 1/20.
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Fig. 4. Dependence of the absolute difference on a sharp edge on the partition diameter in the finite element method.

N = 20. Such a good result, in particular, is confirmed in [2], where in the problem of diffraction in a
branched waveguide, the relative error due to reduction (N = 20) and calculated by the formula

δN =

∣∣∣∣u∞ − uN
uN

∣∣∣∣
does not exceed 1%.

The solution of the boundary value problem (12)–(14) will be denoted by uh(x), where h− is the
triangulation parameter (triangle size) in the finite element method.

Fig. 3 shows solutions uN (x) and uh(x) of problems (1)–(4) and (1)–(14) respectively. As you can
see by eye, these solutions are quite similar, but for a more accurate comparison, let us set the absolute
difference in the form

ε(h, x) = |u20(x)− uh(x)| , x ∈ Ω̄. (24)

The Fig. 4 shows the dependence ε(h, x) on the sharp edges of the diaphragm for various h. As can
be seen, with a decrease in h, i.e., a refinement of the partition diameter, the absolute difference also
decreases, which indicates the reliability of the solutions obtained.

Graphs of ε(h, x) for some h are shown in the Fig. 5.

Note that in order to achieve the required accuracy of the solution in the required regions (for example,
near sharp edges), hmust be reduced, which, in turn, leads to an exponential increase in the computation
time. In such cases, it is advisable to solve the problem on a grid with refinement in the required area.

An example of such a grid is shown in Fig. 6 a), where the partition diameter h(x) is given as
h(x) = 0.01 + 0.2

√
(x1 − 0.5)2 + x22. The corresponding solution to the problem is shown in Fig. 6 b).
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Fig. 5. Absolute difference of solutions ε(x): a) h = 1/30, b) h = 1/60, c) h = 1/100, d) h = 1/150.
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Fig. 6. a) P1 mesh with mesh refinement in the area of the hole b) solution u(x) of the problem on a condensed mesh.

5. CONCLUSION

In this work, the boundary value problem for the Helmholtz equation in a half-band is solved
by the finite element method, which corresponds to the physical problem of diffraction TE-polarized
electromagnetic wave on the wall of a resonator with a hole in front of the plug in a semi-infinite
waveguide.

The obtained solution is compared with the solution obtained earlier by the method of partial regions.
The absolute difference of the solutions obtained by the two methods is calculated, on the basis of which
the good consistency of the given solutions is shown. The decrease in the absolute difference during
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mesh refinement in the finite element method with a fixed ISLAE truncation parameter in the partial
domain method is empirically shown. The solution of the problem with a fine mesh, in the region of
sharp edges, is given.
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