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Предисловие

В данном пособии, отражающем опыт преподавания в институте
вычислительной математики и информационных технологий Казан-
ского федерального университета, рассматриваются численные ме-
тоды решения разнообразных задач, которые традиционно относят
к задачам линейной алгебры. Это — вопросы решения систем ли-
нейных алгебраических уравнений, обращения матриц, вычисление
определителей, нахождения собственных чисел и собственных векто-
ров матриц.

Предполагается, что читатель знаком с основными разделами ли-
нейной алгебры, например, в объеме книги [5]. Зачастую мы исполь-
зуем обозначения и результаты из [5] без дополнительных оговорок.

Для большинства вычислительных задач, встречающихся на
практике, характерным является большой порядок матрицы. В свя-
зи с эти, там где это возможно, указываются оценки трудоемкости
описываемых алгоритмов. Эти оценки имеют существенное значение
для сравнительного анализа численных методов решения задач ли-
нейной алгебры.

Надо иметь в виду, что, как правило, исходные данные, напри-
мер, матрица и правая часть системы линейных уравнений, оказы-
вается известными лишь приближенно, с некоторой погрешностью.
Погрешности округления, неизбежные при вычислениях, зачастую
также удается интерпретировать как погрешности задания исходных
данных. Поэтому важными оказывается исследование устойчивости
задач линейной алгебры по отношению к возмущениям исходных дан-
ных. Этим вопросам в пособии посвящена отдельная глава.

Особое место в книге занимает заключительная глава. Она содер-
жит набор практических, вычислительных, заданий, относящихся к
большинству изучаемых в пособии методов. Выполняя эти задания,
студенты более детально знакомятся с алгоритмами решения типич-
ных задач линейной алгебры, а также получают навыки их программ-
ной реализации.

В процессе работы над книгой авторы пользовались неизменной
поддержкой и консультациями сотрудников кафедр вычислительной
и прикладной математики КФУ. Мы выражаем им нашу искрен-
нюю благодарность.



Глава 1
Примеры задач, приводящих к системам

линейных алгебраических уравнений

Многие задачи практики приводят к необходимости решать си-
стемы линейных уравнений. При конструировании инженерных со-
оружений, приборов, обработке результатов измерений, решении за-
дач планирования производственного процесса и многих других за-
дач техники, экономики, научного эксперимента приходится решать
системы линейных уравнений.

Исследование ряда научно-технических и экономических проблем
приводит к математическим моделям непосредственно в форме си-
стем линейных алгебраических уравнений. Однако гораздо чаще си-
стемы линейных уравнений появляются в процессе математического
моделирования как промежуточный этап при решении более слож-
ной задачи, например, после дискретизации или линеаризации инте-
гральных, дифференциальных, интегро-дифференциальных уравне-
ний или систем уравнений такого сорта.

В данной главе приводится далеко неполный набор задач, при ре-
шении которых возникает необходимость в решении систем линейных
алгебраических уравнений.

1. Системы нелинейных уравнений

Пусть требуется найти общий корень x = (x1, x2, . . . , xn) задан-
ных n функций fi(x1, x2, . . . , xn), т. е. решение следующей системы
нелинейных алгебраических уравнений

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

. . .

fn(x1, x2, . . . , xn) = 0.

Компактно эту систему запишем в виде

F (x) = 0, (1.1)

где x ∈ Rn или x ∈ Cn в зависимости от вида F ; F есть вектор
функция, i-я компонента которого равна fi(x1, x2, . . . , xn).
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Как правило, нельзя указать формулы, которые позволили бы
найти x за конечное число арифметических операций. Поэтому для
решения (1.1) обычно используются приближенные, итерационные,
методы.

Немалое число итерационных методов определяется следующим
образом: начиная с заданного начального приближения x0 к решению,
строится последовательность приближений xk по формулам

Ak(x
k − xk−1) + F (xk−1) = 0, k = 1, 2, . . . , (1.2)

где Ak — некоторая квадратная матрица порядка n. Способ ее зада-
ния определяет конкретный итерационный метод. Например, широко
известный метод Ньютона определяется выбором Ak = F ′(xk−1), где
F ′(xk−1) есть матрица Якоби отображения F в точке xk−1, т. е. мат-
рица {∂fi(xk−1)/∂xj}ni,j=1.

Положим △k = xk−xk−1, bk = −F (xk−1). Тогда для отыскания xk

согласно (1.2) необходимо выполнить следующие операции: a) вычис-
лить Ak и bk; b) решить систему линейных уравнений Ak△k = bk;
c) найти xk = xk−1 +△k.

Таким образом, для реализации методов типа (1.2) надо уметь ре-
шать системы линейных алгебраических уравнений. Так обстоит дело
с большинством известных итерационных методов решения нелиней-
ных систем уравнений.

2. Приближение функций

Рассмотрим два метода приближения функций одной переменной.
1. Интерполяция функций. Пусть на отрезке [a, b] задана ве-

щественная функция f , значения которой известны в точках x0 <
x1 < . . . < xn этого отрезка. Требуется найти функцию yn из некото-
рого заданного множества функций Fn, такую, что

yn(xi) = fi, i = 0, 1, . . . , n, (2.1)

где fi = f(xi). Задача построения такой функции называется задачей
интерполяции, а точки x0, x1, . . . , xn — узлами интерполяции. Гово-
рят, что задача интерполяции поставлена корректно, если при любых
значениях fi, i = 0, 1, . . . , n, существует единственное решение зада-
чи (2.1).

Линейный метод интерполяции заключается в том, что Fn опре-
деляется как множество всех линейных комбинаций заданных и до-
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статочно простых для вычисления функций {φi}ni=0. В этом случае

yn(x) =
n∑

j=0

cjφj(x).

Функцию такого вида часто называют обобщенным полиномом сте-
пени n. Его неизвестные коэффициенты cj находятся из условия ин-
терполяции (2.1), которое принимает следующий вид:

n∑
j=0

φj(xi) cj = fi, i = 0, 1, . . . , n.

Эту систему линейных уравнений можно записать в матричной фор-
ме Anc = bn, где c есть вектор коэффициентов; квадратная матри-
ца An имеет элементы aij = φj(xi), bn = (f0, f1, . . . , fn)

T . Решая эту
систему, находим вектор коэффициентов, а следовательно и интерпо-
лирующую функцию yn(x).

Известно, что линейный метод интерполяции при произвольном
наборе узлов является корректным тогда и только тогда, когда лю-
бая функция yn ∈ Fn, отличная от нулевой, имеет на [a, b] не более,
чем n различных корней (систему {φi(x)}ni=0 при этом называют си-
стемой Чебышева). При выполнении этого условия в Fn обязательно
найдется система функций {li}ni=0, удовлетворяющая условиям

li(xj) = δij =

{
1, i = j,

0 i ̸= j,
, i, j = 0, 1, . . . , n.

Верно и обратное утверждение. Систему {li}ni=0 принято называть ба-
зисом Лагранжа в Fn, поскольку, как нетрудно видеть, любая функ-
ция yn ∈ Fn может быть однозначно представлена в виде

yn(x) =
n∑

j=0

yn(xj)lj(x). (2.2)

Из (2.2) и (2.1) следует явная формула для интерполирующей f(x)
функции yn(x):

yn(x) =
n∑

j=0

f(xj)lj(x).

Предполагается при этом, что мы можем построить базис Лагранжа
в явном виде.
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В общем случае для определения базиса Лагранжа приходится
решать n + 1 систему алгебраических уравнений с одной и той же
матрицей An, но с разными правыми частями для определения коэф-
фициентов разложения базисных функций по системе {φi(x)}ni=0. Лег-
ко видеть, что коэффициенты разложения lj(x) образуют j-й столбец
матрицы A−1

n .
Пример 1. Если элементами Fn являются алгебраические поли-

номы степени не выше n (в этом случае φj(x) = xj), то говорят об
алгебраической интерполяции, а функцию yn(x) называют интерпо-
ляционным полиномом. Легко проверяется, что базисные функции
Лагранжа имеют вид

lj(x) =
n∏

k=0, k ̸=j

x− xk
xj − xk

=
ωn(x)

(x− xj)ω′
n(xj)

, j = 0, 1, . . . , n. (2.3)

Здесь ωn(x) =
n∏

k=0

(x − xk). Таким образом для интерполяционного

полинома верна формула

yn(x) =
n∑

j=0

f(xj)
ωn(x)

(x− xj)ω′
n(xj)

, (2.4)

известная как формула Лагранжа. Для практических вычислений бо-
лее полезной является формула

yn(x) =
( n∑

i=0

βi f(xi)

x− xi

)/( n∑
i=0

βi
x− xi

)
, βi =

C

ω′
n(xi)

, (2.5)

где нормирующая постоянная C может быть выбрана произвольно.
Формула (2.5) называется барицентрической.

Пример 2. Пусть Fn есть множество непрерывных функций
на [a, b], линейных на отрезках [xi, xi+1], i = 0, 1, . . . , n − 1. В этом
случае говорят о кусочно-линейной интерполяции. Легко видеть, что
интерполирующая функция yn(x) на [xi, xi+1] определяется формулой

yn(x) =
xi+1 − x

xi+1 − xi
f(xi) +

x− xi
xi+1 − xi

f(xi+1). (2.6)

2. Метод наименьших квадратов. Пусть отрезке [a, b] задана
функция f , значения которой известны в точках x1 < x2 < . . . < xN
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этого отрезка. Требуется найти коэффициенты обобщенного полино-

ма yn(x) =
n∑

j=0

cjφj(x) степени n ≪ N так, чтобы минимизировать

среднеквадратичное отклонение функции yn(x) от f(x) на множестве
узлов {xi}Ni=0. Под этим понимается, что коэффициенты {cj}nj=0 на-
ходятся как решение задачи

min
c0,c1,...,cn

[ 1
N

N∑
i=1

(
f(xi)−

n∑
j=0

cjφj(xi)
)2]1/2

. (2.7)

Такая задача часто встречается при обработке разнообразных экспе-
риментальных данных.

Задача (2.7) есть задача на минимум функции n + 1 перемен-
ной. Ее решение легко находится и совпадает с решением линейной
системы алгебраических уравнений Anc = bn размера n + 1, где
An = ΦT

nΦn, bn = ΦT
nFN , а Φn есть прямоугольная матрица с эле-

ментами ϕij = φj(xi), i = 1, . . . , N , j = 0, . . . , n; вектор FN име-
ет компоненты f(xi), i = 1, . . . , N . Матрица An является симмет-
ричной. Нетрудно доказать, что она положительно определена, если
{φi(x)}ni=0 является системой Чебышева на [a, b]. При этом следует
учесть, что прямоугольная матрица Φn размера N × (n + 1) имеет
полный столбцевой ранг (равный n+ 1).

Выбирая те или иные системы функций {φi(x)}ni=0 (например, по-
лагая φi(x) = xi), получаем конкретный метод наименьших квадра-
тов.

3. Задача Коши для дифференциальных уравнений

Рассмотрим для примера задачу Коши для системы линейных
обыкновенных дифференциальных уравнений первого порядка.

Пусть задан конечный отрезок [a, b] и вектор ua длины n > 1.
Пусть также для каждого x ∈ [a, b] заданы квадратная матрица A(x)
и вектор f(x) размера n. Элементы A(x) и f(x) обозначим через
aij(x) и fi(x) соответственно. Требуется найти n неизвестных функ-
ций u1(x), . . . , un(x), удовлетворяющих для всех x ∈ (a, b] уравнениям

u′i(x) +
n∑

j=1

aij(x)uj(x) = fi(x), i = 1, . . . , n, (3.1)

а также дополнительным условиям

ui(a) = ua,i, i = 1, . . . , n. (3.2)
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Такая задача называется задачей Коши.
Определим вектор функцию u(x) = (u1(x), . . . , un(x))

T . Тогда со-
отношениям (3.1), (3.2) можно придать более компактный вид:

u′(x) + A(x)u(x) = f(x), u(a) = ua. (3.3)

Напомним, что по определению u′(x) = (u′1(x), . . . , u
′
n(x))

T . Из тео-
рии обыкновенных дифференциальных уравнений известно, что за-
дача (3.3) имеет единственное решение при произвольно заданном ua,
если все функции aij и fi непрерывны на [a, b]. Эти условия в даль-
нейшем считаем выполненными.

Вообще говоря, для решения задач вида (3.3) используются при-
ближенные методы, позволяющие найти решение с требуемой точ-
ностью. Опишем один такой метод, который относится к сеточным
методам.

В сеточных методах неизвестные функции ui(x) определяются
лишь на некотором дискретном множестве точек, называемом сет-
кой узлов или просто сеткой. Например, на равномерной сетке ωh =
{xi = a + ih, i = 0, 1, . . . , N}. Здесь величина h = (b − a)/N — шаг
сетки, определяет расстояние между соседними узлами. Зная реше-
ние ui(x) в точках xi, i = 0, 1, . . . , N , решение в произвольной точке
x ∈ (a, b) можно вычислить, используя, например, кусочно-линейную
интерполяцию.

При построени сеточного метода нам понадобятся формулы для
приближенного вычисления производной функции. Пусть задана ска-
лярная функция f(x) и мы хотим приближенно вычислить f ′(x), ис-
пользуя при этом лишь значения функции f(x). По определению

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

Следовательно, разностное отношение

fx(x) =
f(x+ h)− f(x)

h
(3.4)

при малом h позволяет приближенно вычислить f ′(x). Сказанное
остается справедливым и для разностного отношения

fx̄(x) =
f(x)− f(x− h)

h
. (3.5)

Эти отношения являются простейшими формулами численного диф-
ференцирования. Из формулы Тейлора f(x ± h) = f(x) ± h f ′(x) +
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h2/2f ′′(ξ(x)), где ξ(x) ∈ [a, b], следует, что погрешности этих фор-
мул имеют порядок малости O(h), если f(x) дважды дифференци-
руема на [a, b]. Аппроксимируя каждую компоненту u′i(x) вектор-
функции u′(x) одной из указанных выше формул, получим соответ-
ствующую формулу приближенного вычисления u′(x).

Неявный метод Эйлера (также говорят неявная схема) для при-
ближенного решения задачи Коши определяется следующим обра-
зом. Рассмотрим уравнение (3.3) в узле сетки xi и заменим производ-
ную u′(xi) разностным отношением согласно (3.5). Вводя обозначе-
ние yi для приближения к вектору u(xi), придем к формулам

yi − yi−1

h
+ A(xi)y

i = f(xi), i = 1, 2, . . . , N, y0 = ua.

Определим матрицы A(i) = I + hA(xi) и векторы b(i) = yi + h f(xi).
Тогда формулировка неявного метода Эйлера будет выглядеть следу-
ющим образом: начиная с y0 = u0, для i = 1, 2, . . . , N , найти yi, решая
систему алгебраических уравнений A(i)yi = b(i). Отметим, что в об-
щем случае обратимости матриц A(i) можно добиться, если h выбрать
достаточно малым. В этом случае все yi определяются однозначно.

Вектор ei = u(xi)− yi есть погрешность приближенного решения
в узле сетки xi. Определим его среднеквадратичную норму

∥ei∥ =
(1
n

n∑
j=1

|eij|2
)1/2

.

Тогда величина E = max
i=1,...,N

∥ei∥ — это максимальная погрешность

приближенного решения. Для нее известна оценка E 6 C h, где по-
стоянная C не зависит от h. Следовательно, уменьшая шаг сетки h
(т. е. увеличивая число точек сетки N), мы можем добиться сколь
угодно малой погрешности приближенного решения.

В зависимости от решаемой задачи целые n (число диффренци-
альных уравнений) и N (число точек сетки) могут быть большими
числами. Это означает, что в этом случае решение задачи Коши неяв-
ным методом Эйлера (как и любым другим неявным методом), сво-
дится решению большого числа линейных алгебраических уравнений
большой размерности. Отметим также частный случай, когда мат-
ричная функция A(x) не зависит от x, т. е. все A(x) равны некоторой
матрице A. В этом случае мы приходим к необходимости решения N
уравнений (E + hA)yi = bi с одной и той же матрицей, но с разными
правыми частями.
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Неявную схему можно использовать и для решения задачи Коши
для нелинейных систем диффренциальных уравнений первого поряд-
ка вида

u′(x) = f(x, u(x)), u(a) = ua,

где f есть заданная вектор-функция. Расчетные формулы будут та-
кими

yi − yi−1

h
= f(xi, y

i), i = 1, 2, . . . , N, y0 = ua.

Следовательно, yi является решением нелинейной системы уравнений
вида F i(y) = 0 при F i(y) = y−yi−1−h f(xi, y), которое можно найти,
например, методом Ньютона; при этом вектор yi−1 является хорошим
начальным приближением к решению этой системы.

4. Интегральные уравнения

Рассмотрим для примера линейное одномерное интегральное
уравнение уравнение Фредгольма второго рода. Требуется найти
функцию u(x), определенную на отрезке [a, b], и такую, что

u(x)− λ

∫ b

a

K(x, s)u(s) ds = f(x) ∀x ∈ [a, b]. (4.1)

Здесь число λ, а также непрерывные функции K(x, s) и f(x), счита-
ются заданными. Функция K(x, s) называется ядром интегрального
уравнения.

Предполагая, что исходные данные таковы, что существует един-
ственное решение этой задачи, рассмотрим один сеточный метод ее
приближенного решения, известный как метод квадратур.

Пусть требуется вычислить определенный интеграл

I(f) =

∫ b

a

f(x)dx .

Квадратурной формулой (или просто квадратурой) называется фор-
мула для приближенного вычисления I(f) вида

Sn(f) =
n∑

i=1

cif(xi).

Числа ci, как правило положительные, называются коэффициентами
квадратуры, а xi — узлами квадратуры.
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Примеры. На [a, b] введем равномерную сетку xi = a+ (i− 1)h,
i = 1, . . . , n, с шагом h = (b−a)/(n−1), а также непрерывную на [a, b]
функцию yn(x), имеющее представление (2.6) на каждом отрезке
[xi, xi+1]. Приближение к I(f) определим формулой Sn(f) = I(yn).
Интеграл I(yn) легко вычислить и получить, что

Sn(f) = h(0.5f(x1) + f(x2) + . . .+ f(xn−1) + 0.5f(xn)).

Эта формула называется составной квадратурной формулой трапе-
ций. Ясно, что ее коэффициенты задаются формулами c1 = cn = h/2,
c2 = . . . = cn−1 = h.

Аналогично определяется составная квадратурная формула цен-
тральных прямоугольников. Она имеет вид

Sn(f) = h(f(x3/2) + f(x5/2) + . . .+ f(xn−1/2)),

где xi+1/2 = (xi + xi+1)/2 — средние точки отрезка [xi, xi+1] длины h.
Определим метод квадратур для решения уравнения (4). Пусть

выбрана некоторая квадратура Sn. Рассмотрим уравнение (4) в узлах
квадратурной формулы. Получим равенства

u(xi)− λ

∫ b

a

K(xi, s)u(s) ds = f(xi), i = 1, . . . , n.

Для вычисления интеграла используем квадратурную формулу. По-
лучим приближенные равенства

u(xi)− λ
n∑

j=1

cjK(xi, xj)u(xj) ≈ f(xi), i = 1, . . . , n. (4.2)

Здесь u(xi) есть значение точного решения задачи в точке сетки xi.
Для определения приближения yi к u(xi) из (4.2) получим уравнения

yi − λ
n∑

j=1

cjK(xi, xj) yj = f(xi), i = 1, . . . , n. (4.3)

Определим матрицу An с элементами aij = δij − λ cjK(xi, xj) и век-
тор bn = (f1, f2, . . . , fn)

T . Тогда система уравнений (4.3) примет вид
Any = bn. Решая эту систему уравнений найдем вектор y, i-тая ком-
понента yi которого является приближением к u(xi). Отметим, что
матрица An является симметричной, если ядро симметрично, т. е.
K(x, s) = K(s, x) для всех x, s ∈ [a, b].
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Применяя ту или иную квадратурную формулу, мы получим кон-
кретный метод решения интегрального уравнения (4). Размер реша-
емой при этом системы Any = bn зависит от необходимой точности
приближенного решения; чем точность выше, тем размер системы
уравнений будет больше.

Метод квадратур применяется и для решения нелинейных инте-
гральных уравнений

u(x) +

∫ b

a

K(x, s, u(s)) ds = f(x) ∀x ∈ [a, b].

В этом случае необходимо уметь решать нелинейные системы урав-
нений вида

yi +
n∑

j=1

cjK(xi, xj, yj)− f(xi) = 0, i = 1, . . . , n.

5. Краевые задачи для обыкновенных дифференциальных
уравнений

Рассмотрим два сеточных метода для решения одномерной кра-
евой задачи для линейного дифференциального уравнения второго
порядка. Для заданных непрерывных функций q(x), f(x) и чисел ua
и ub требуется найти решение задачи

−u′′(x) + q(x)u(x) = f(x), x ∈ (a, b), (5.1)
u(a) = ua, u(b) = ub. (5.2)

В отличие от задачи Коши дополнительные условия заданы в двух
граничных точках отрезка интегрирования, поэтому задача называ-
ется граничной или чаще — краевой. Условия q(x) > 0, x ∈ [a, b],
достаточно для существования ее единственного решения.

1. Конечно-разностная схема. Определим равномерную сетку
ωh = {xi = a+ih, i = 0, 1, . . . , n} на отрезке [a, b] с шагом h = (b−a)/n
и рассмотрим уравнение (5.1) только во внутренних точках сетки.
Получим

−u′′(xi) + q(xi)u(xi) = f(xi), i = 1, . . . , n− 1.

Определим формулу для приближенного вычисления u′′(xi) как ком-
бинацию разностных отношений (3.4) и (3.5):

ux̄ x(x) = (ux̄)x(x) =
u(x− h)− 2u(x) + u(x+ h)

h2
. (5.3)
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Разложением в ряд Тейлора показывается, что u′′(x) − ux̄ x(x) =
O(h2), если u(x) достаточно гладкая функция. Используя форму-
лу (5.3) для аппроксимации u′′(xi), придем к приближенным равен-
ствам

−ux̄ x(xi) + q(xi)u(xi) ≈ f(xi), i = 1, . . . , n− 1.

Приближение yi к u(xi) будем искать из равенств

−yi−1 − 2yi + yi+1

h2
+ q(xi)yi = f(xi), i = 1, . . . , n− 1.

Умножим обе части этих соотношений на h2 и приведем подобные
члены. Присоединяя к ним краевые условия y0 = ua, yn = ub, придем
к дискретной задаче, которая называется конечно-разностной схемой:
найти y = (y0, y1, . . . , yn)

T из системы алгебраических уравнений

y0 = ua,

−yi−1 +
(
2 + h2q(xi)

)
yi − yi+1 = h2f(xi), i = 1, . . . , n− 1, (5.4)

yn = ub.

Матрица An этой системы имеет специальный вид: ее ненулевые эле-
менты расположены лишь на трех диагоналях. Такие матрицы на-
зываются трехдиагональными. Известно, что An есть положительно
определенная матрица, если q(x) > 0 на [a, b]. В этом случае систе-
ма (5.4) однозначно разрешима.

Величина E = maxi=0,...,N |u(xi) − yi| определяет максимальную
погрешность приближенного решения задачи. Для достаточно глад-
ких данных q(x) и f(x) для нее известна оценка E 6 C h2, где по-
стоянная C не зависит от h. Следовательно, уменьшая шаг сетки h
(т.е. увеличивая число точек сетки n и размерность решаемой систе-
мы уравнений) мы можем добиться сколь угодно малой погрешности
приближенного решения.

Зная приближенное решение y(x) в точках xi, i = 0, 1, . . . , N ,
решение в произвольной точке x ∈ (a, b) можно вычислить, используя
кусочно-линейную интерполяцию.

2. Метод коллокаций. На отрезке [a, b] введем неравномерную
сетку узлов1)

xi =
a+ b

2
− b− a

2
cos
(iπ
n

)
, i = 0, . . . , n. (5.5)

1)Такой выбор узлов коллокаций позволяет, в частности, сохранить для аппроксимирующей
системы уравнений основные свойства исходной задачи.
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Отметим, что x0 = a, xn = b, а с ростом n узлы заметно сгущают-
ся к этим граничным точкам. Отметим также, что узлы сетки яв-
ляются экстремумами полинома Чебышева Tn(z) = cos(n arccos(z)),
z ∈ [−1, 1], сдвинутыми на отрезок [a, b].

Будем искать приближенное решение исходной задачи (5.1), (5.2)
в виде интерполяционного полинома yn(x). Положим yi = yn(xi), i =
0, 1, . . . , n. Согласно формуле Лагранжа

yn(x) =
n∑

j=0

yj lj(x) , lj(x) =
ωn(x)

(x− xj)ω′
n(xj)

, (5.6)

где ωn(x) =
∏n

k=0(x−xk). Потребуем, чтобы yn(x) удовлетворял кра-
евым условиям, а также дифференциальному уравнению, но не во
всех точках (a, b) (это невозможно), а только во внутренних точках
сетки. Таким образом придем к уравнениям

−
n∑

j=0

l′′j (xi) yj + q(xi)yi = f(xi), i = 1, . . . , n− 1, (5.7)

y0 = ua, yn = ub. (5.8)

Укажем способ вычисления матрицы этой системы. Определим квад-
ратные матрицы D(k) = {l(k)j (xi)}ni,j=0 размера n + 1 (матрицы диф-
ференцирования). Из (5.6) следует, что

d
(1)
ij = l′j(xi) =

ω′
n(xi)

(xi − xj)ω′
n(xj)

=
βj/βi

(xi − xj)
, i ̸= j, (5.9)

где βi = C/ω′
n(xi) — барицентрические веса. В силу специального вы-

бора сетки оказывается, что C можно выбрать так, что βi = (−1)iγi,
где γ0 = γn = 1/2, γi = 1 при i = 1, . . . , n− 1.

Поскольку
∑n

k=0 lk(x) = 1 для любого x, то дифференцированием
находим диагональные элементы

d
(1)
ii = −

n∑
k=0, k ̸=i

d
(1)
ik . (5.10)

Элементы D(2) вычисляются по формулам

d
(2)
ij =

{
2 d

(1)
ij

(
d
(1)
ii − 1/(xi − xj)

)
, i ̸= j

−
∑n

k=0, k ̸=i d
(2)
ik , i = j.

(5.11)
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Отметим, что из формулы l′j(x) = −
∑n

k=0 l
′
k(xj)lk(x), x ∈ [a, b], сле-

дует, что D(2) =
(
D(1)

)2.
Система (5.7), (5.8) в матричном виде принимает вид Any = bn,

где y = (y0, y1, . . . , yn)
T , bn = (ua, f(x1), . . . , f(xn−1), ub)

T , первая и
последняя строки An равны (1, 0, . . . , 0) и (0, . . . , 0, 1) соответственно,
а остальные элементы матрицы An имеют вид −d

(2)
ij + q(xi)δij, при

i = 1, . . . , n− 1, j = 0, . . . , n.
Из системы уравнений Any = bn очевидным образом можно ис-

ключить y0 и yn и получить систему размера n− 1 для определения
y1, . . . , yn−1. Оказывается, что матрица новой системы является сим-
метричной и положительно определенной, если q(x) > 0. После ре-
шения системы приближенное решение yn(x) в любой точке x ∈ (a, b)
можно вычислить по барицентрической формуле

yn(x) =
( n∑

i=0

βi yi
x− xi

)
/
( n∑

i=0

βi
x− xi

)
. (5.12)

Для максимальной погрешности приближенного решения спра-
ведлива оценка E = max

x∈[a,b]
|u(x) − yn(x)| 6 c n−s, где постоянная c не

зависит от n, а s = min(n,m), где m — число непрерывных произ-
водных, которыми обладают функции q и f на отрезке [a, b]. Поэтому
при гладких исходных данных этот метод имеет высокую точность
уже при небольших значениях n.

Рассмотренные выше сеточные методы применимы и для решения
нелинейной задачи вида

−u′′(x) + q(x, u(x)) = f(x), x ∈ (a, b),

u(a) = ua, u(b) = ub.

В этом случае необходимо уметь решать нелинейные системы алгеб-
раических уравнений, получающихся из (5.4) или (5.7), заменой сла-
гаемого q(xi)yi на q(xi, yi).

6. Краевые задачи для дифференциальных уравнений в
частных производных

Рассмотрим метод конечных разностей для приближенного реше-
ния следующей задачи Дирихле для модельного уравнения эллипти-
ческого типа в прямоугольной области Ω = (0, L)× (0, L):

−∂2u(x)

∂x21
− ∂2u(x)

∂x22
+ q(x)u(x) = f(x), x ∈ Ω, (6.1)
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u(x) = 0, x ∈ ∂Ω. (6.2)

Здесь x = (x1, x2); ∂Ω обозначает множество граничных точек Ω;
q(x), f(x) заданные непрерывные функции. Условие q(x) > 0, x ∈ Ω,
является достаточным для существования и единственности решения
задачи.

На области Ω зададим дискретное множество точек, в которых
будем определять приближенное решение задачи (определим сетку).
Для этого отрезки [0, L] на осях x1 и x2 разобьем на n равных частей;
пусть h = L/n. Через точки деления проведем прямые, параллель-
ные соответствующим осям. В результате пересечения этих прямых
получатся узлы, которые и образуют сетку. Те узлы (ih, jh), которые
лежат внутри Ω, назовем внутренними. Их совокупность обозначим

ωh = {(ih, jh) : i, j = 1, 2, . . . , n− 1}.

Множество узлов сетки, принадлежащих ∂Ω, назовем граничными и
обозначим через γh.

Дискретный аналог задачи (6.1), (6.2) построим как и в одномер-
ном случае: уравнения рассмотрим в точках сетки, и аппроксимируем
вторые производные разностными отношениями (5.3). Придем к се-
точным уравнениям

− y(x1 − h, x2)− 2y(x1, x2) + y(x1 + h, x2)

h2
−

− y(x1, x2 − h)− 2y(x1, x2) + y(x1, x2 + h)

h2
+

+ q(x1, x2)y(x1, x2) = f(x1, x2), (x1, x2) ∈ ωh, (6.3)

y(x1, x2) = 0, (x1, x2) ∈ γh. (6.4)
Систему линейных алгебраических уравнений (6.3), (6.4) называют
разностной схемой, а ее решение y(x) — приближенным решением
задачи (6.1), (6.2).

Запишем систему уравнений (6.3), (6.4) в матричном виде. Яс-
но, что неизвестными являются лишь значения y(x) в точках ωh; по-
скольку значения y(x) в точках γ известны и равны нулю, то их нет
необходимости включать в вектор неизвестных. Учитывая сказанное,
уравнения (6.3) запишем в виде

− y(x1, x2 − h)− y(x1 − h, x2) + (4 + h2q(x1, x2))y(x1, x2)−
− y(x1 + h, x2)− y(x1, x2 + h) = h2f(x1, x2), (x1, x2) ∈ ωh, (6.5)
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считая, что слагаемое вида y(x1, x2±h) или y(x1±h, x2) в этом равен-
стве опущено, если соответствующий ему узел сетки (x1, x2 ± h) или
(x1 ± h, x2) принадлежит γh. Отметим, что такой коррекции требуют
лишь уравнения, соответствующие приграничным узлам (т. е. узлам
(ih, jh) при i или j равным 1 или n− 1).

Чтобы определить вектор неизвестных, необходимо пронумеро-
вать узлы сетки ωh. Ясно, что это можно сделать многими способа-
ми. Выберем следующий способ: узлы ωh пронумеруем слева-напрво и
снизу-вверх, начиная с узла с координатой (h, h). А именно, примем,
что узел (ih, jh) имеет номер l (т. е. xl = (ih, jh)), если

l = (j − 1)(n− 1) + i, i, j = 1, . . . , n− 1.

В такой нумерации уравнения (6.5) запишутся в виде

−yl−n+1 − yl−1 + dl yl − yl+1 − yl+n−1 = h2fl, l = 1, 2, . . . , N, (6.6)

где N = (n− 1)2, dl = 4+ h2ql, ql = q(xl), fl = f(xl). Уравнения (6.6)
нужно скорректировать, опуская соответствующие слагаемые, если
узел xl является приграничным.

Уравнения (6.6) в матричном виде примут вид ANy = FN , где
l-тая компонента y равна yl, l-тая компонента FN равна h2fl, а мат-
рица AN размера N имеет следующий блочно-трехдиагональный вид:

AN =


T1 −I
−I T2 −I

. . . . . . . . .
−I Tn−2 −I

−I Tn−1

 ,

где I есть единичная матрица размера n−1, Tk есть трехдиагональная
матрица размера n− 1 вида

Tk =


dnk+1 −1
−1 dnk+2 −1

. . . . . . . . .
−1 dnk+n−2 −1

−1 dnk+n−1

 ,

nk = (k − 1)(n− 1).
Матрица AN является симметричной и разреженной (подавляю-

щее число ее элементов — нули, ненулевые элементы расположены
лишь на пяти диагоналях). Если q есть неотрицательная функция,
то доказывается, что она положительно определена. Отметим, что
система уравнений может иметь большую размерность. Например,
при n ≈ 100 получаем N ≈ 104.
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алгебраических уравнений

Метод решения системы линейных уравнений называется прямым
(точным), если он позволяет найти ее точное решение за конечное чис-
ло арифметических операций. Предполагается, что арифметические
операции выполняются точно, а под одной арифметической опера-
цией, кратко 1 flops (floating point operation), понимается любая из
арифметических операций +,−, ∗, /. Количество требуемых для ре-
ализации метода арифметических операций называется трудоемко-
стью метода. Например, метод Гаусса, который мы опишем в даль-
нейшем, относится к прямым методам и имеет трудоемкость поряд-
ка 2n3/3 flops.

Все рассматриваемые в этой и в последующих главах векторы
и матрицы предполагаются, вообще говоря, комплексными. Однако,
при вещественных исходных данных излагаемые далее методы поз-
воляют проводить все вычисления только с вещественными числами.
В необходимых случаях даются соответствующие пояснения.

7. Трудоемкость базовых операций линейной алгебры

Рассмотрим предварительно трудоемкость простейших операций
линейной алгебры.

1. Вычисление суммы векторов. Пусть требуется вычис-
лить сумму z двух векторов x и y размера n. По определению компо-
ненты вектора z вычисляются по формулам

zi = xi + yi, i = 1, . . . , n.

Ясно, что трудоемкость метода составляет n flops.

2. Вычисление произведения матрицы и вектора. Пусть
заданы матрица A размера n и вектор x. Рассмотрим задачу вычис-
ления вектора b = Ax. По определению

b1 = a11x1 + a12x2 + . . . + a1nxn,

b2 = a21x1 + a22x2 + . . . + a2nxn,
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
bn = an1x1 + an2x2 + . . . + annxn,

или короче,

bi =
n∑

j=1

aij xj, i = 1, 2, . . . , n. (7.1)

Будем говорить, что эта формула определяет метод умножения мат-
рицы A на заданный вектор. Заметим, что формула (7.1) ориентиро-
вана на работу со строками матрицы и определяет bi как скалярное
произведение i-той строки A на вектор-строку x.

Непосредственная реализация формул (7.1) в MATLAB приводит
к следующей функции:
f unc t i on b=Axrow(A, x )
n=numel ( x ) ;
b=ze ro s ( s i z e ( x ) ) ;
f o r i =1:n

f o r j =1:n
b( i )=b( i )+A( i , j )*x ( j ) ;

end
end

В этой функции компоненты вектора b вычисляются последовательно
друг за другом накоплением. Здесь и далее цикл по i означает цикл по
строкам, а цикл по j — цикл по столбцам матрицы. Нетрудно видеть,
что трудоемкость этой функции равна 2n2 flops.

Алгоритм вычисления, реализованный в функции Axrow, принято
называть строчно-ориентированным: в нем цикл по i предшествует
циклу по j и в нем обрабатываются в цикле по j строки матрицы.
Поменяв порядок циклов придем к другой реализации формул (7.1)
(столбцово-ориентированной). В нем цикл по j предшествует циклу
по i:
f unc t i on b=Axcol (A, x )
n=numel ( x ) ;
b=ze ro s ( s i z e ( x ) ) ;
f o r j =1:n

f o r i =1:n
b( i )=b( i )+A( i , j )*x ( j ) ;

end
end

В функции Axcol накоплением вычисляются вклады произведе-
ния Ax сразу во все компоненты вектора b и ее трудоемкость также
равна 2n2 flops. В этой функции непосредственно реализован способ
вычисления b, основанный на эквивалентной (7.1) формуле и ориен-
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тированной на столбцы матрицы. Он имеет следующий вид:

b =


b1
b2
...
bm

 =


a11
a21
...

an1

 x1 +


a12
a22
...

an2

 x2 +


a1n
a2n
...

ann

 xn.

Вместо языка MATLAB можно взять другой язык программиро-
вания (например, СИ, Паскаль, Фортран, . . . ) и написать аналоги
функций Axrow и Axcol на этом языке. Практический интерес пред-
ставляет ответ на следующий вопроc: какая из полученных функций
будет быстрее, т. е. будет требовать меньшего времени для выпол-
нения? На первый взгляд время работы функций не должно разли-
чаться. Однако это не так. Ответ на этот важный с практической
точки зрения вопрос зависит от языка программирования и связан,
главным образом, со способом хранения матриц (способом адресации
элементов матриц). Из-за наличия в современных компьютерах мно-
гоуровнего кэша последовательное извлечение из оперативной памя-
ти и сохранение чисел, расположенных в соседних ячейках памяти,
производится намного быстрее, чем последовательное выполнение тех
же операций с элементами, расположенными в памяти далеко друг от
друга. В связи с этим, если элементы матрицы в памяти ЭВМ хра-
нятся по строкам (как, например, в C, Паскаль, Python), то быстрее
будет выполняться строчно-ориентированная функция Axrow. И на-
оборот, если элементы матрицы в памяти ЭВМ хранятся по столб-
цам (Fortran, MATLAB, OpenGL), то быстрее будет выполняться
столбцово-ориентированная функция Axcol.

Будем говорить, что функции Axrow и Axcol реализуют алгоритм
умножения матрицы A на заданный вектор. Эти функции демонстри-
руют разницу между методом и алгоритмом. В дальнейшем мы огра-
ничимся указанием лишь метода решения задачи.

3. Вычисление произведения двух матриц. Пусть требу-
ется вычислить произведения C = AB двух заданных матриц разме-
ра n. По определению j-й столбец C есть произведение матрицы A и
j-го столбца B, т. е.

cij =
n∑

k=1

aikbkj, i, j = 1, . . . , n.

Вычисление cij накоплением требует 2n flops, поэтому трудоемкость
вычисления C равна 2n3 flops.
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8. Простые системы уравнений

Приведем примеры систем уравнений, которые легко решаются.

1. Системы с диагональной матрицей. Пусть D есть диа-
гональная матрица с ненулевыми элементами di на диагонали, т. е.
D = diag(d1, d2, . . . , dn)). Тогда система уравнений Dx = b элементар-
но решается за n flops, и вектор x находится по формулам xi = bi/di,
i = 1, . . . , n.

2. Системы с треугольной матрицей. Матрица A называет-
ся нижней треугольной (также левой треугольной), если aij = 0 при
всех j > i. Аналогично, матрица A называется верхней треугольной
(также правой треугольной), если aij = 0 при всех i > j. Как пра-
вило, нижние треугольные матрицы обозначаются буквой L (Lower,
Left), а верхние треугольные — буквой U (Upper) или R (Right). Та-
ким образом,

L =


l11 0 . . . 0
l21 l22 . . . 0
... ... ...
ln1 ln2 . . . lnn

 , U =


u11 u12 . . . u1n
0 u22 . . . u2n
... ... ...
0 0 . . . unn

 .

Матрица называется треугольной, если она является либо нижней
треугольной, либо верхней треугольной.

Поскольку определитель L равен |L| = l11l22 · · · lnn, и аналогич-
но |U | = u11u22 · · ·unn, то квадратные треугольные матрицы невы-
рождены тогда и только тогда, когда все их диагональные элементы
отличны от нуля.

Система уравнений Lx = b в индексной форме имеет вид

l11x1 = b1,

l21x1 + l22x2 = b2, (8.1)
· · · · · · · · · · · · · · · · · ·
ln1x1 + ln2x2 + . . . + lnnxn = bn.

Решение этой системы находится последовательно: из первого урав-
нения определяется x1 = b1/l11, из второго x2 = (b2 − l21x1)/l22 и т. д.
Таким образом,

xi =
(
bi −

i−1∑
j=1

lij xj

)
/lii, i = 1, 2, . . . , n. (8.2)
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При i = 1 в (8.2) возникает сумма
0∑

j=1

(
. . .
)
. Подобные суммы здесь

и далее считаются равными нулю.
Метод (8.2) решения системы Lx = b называется прямой подста-

новкой. Определим трудоемкость этого алгоритма: при фиксирован-
ном i требуется 2(i − 1) flops для вычисления суммы и 2 flops для
вычисления xi. Общее число операций равно

Q = 1 + 2
n∑

i=2

i = n2 + n− 1 = n2 +O(n) flops .

Аналогично решается система Ux = b. Отличие в том, что сначала
определяется xn = bn/unn, затем xn−1 = (bn−1 − un−1,nxn)/un−1,n−1 и
т. д. Таким образом,

xi =
(
bi −

n∑
j=i+1

uij xj

)
/uii, i = n, n− 1, . . . , 1. (8.3)

Метод (8.3) решения системы Ux = b называется обратной подста-
новкой. Его трудоемкость также равна n2 +O(n) flops.

Обратим внимание, что суммарная трудоемкость прямого и об-
ратного хода, т. е. трудоемкость последовательного решения двух тре-
угольных систем Ly = b и Ux = y равна 2n2+O(n) flops, и при боль-
ших значениях n примерно равна трудоемкости вычисления b = Ax
при заданном x.

Отметим также замкнутость множества L всех обратимых ниж-
них треугольных матриц (множества U всех обратимых верхних тре-
угольных матриц). В самом деле, пусть L,L1, L2 ∈ L. Тогда L1+L2 ∈
L (что очевидно), L1L2 ∈ L (непосредственно проверяется) и L−1 ∈ L
(см. ниже упражнение 8.6). По определению нулевая матрица и еди-
ничная матрица являются элементами как L, так и U . Кроме того,
L1 + L2 = L2 + L1, но, вообще говоря, L1L2 ̸= L2L1, т. е. L (как и U)
есть коммутативная группа по сложению, и некоммутативная группа
по умножению.

Квадратная матрица

Lk =


1 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . .
0 · · · lk,k 0 · · · 0
0 · · · lk+1,k 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . .
0 · · · ln,k 0 · · · 1

 (8.4)
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называется элементарной нижней треугольной; она отличается от
единичной матрицы лишь элементами k-го столбца. Важное свойство
этой матрицы отмечено далее в упражнении 8.5.

3. Системы с унитарной матрицей. Матрица Q называется
унитарной, если Q∗Q = QQ∗ = I, где Q∗ = (Q̄)T ; как обычно, черта
означает комплексное сопряжение, T — транспонирование, I — еди-
ничная матрица. Равенство Q∗Q = I (QQ∗ = I) означает, что столбцы
(строки) Q образуют ортоноримированную систему из n векторов в
пространстве Cn. Вещественная унитарная матрица называется орто-
гональной.

Пусть требуется решить систему Qx = b. Умножая обе части это-
го равенства на Q∗, получим x = Q∗b. Трудоемкость такого метода
решения есть 2n2 flops, если Q есть матрица общего вида.

Простейшим примером ортогональной матрицы является элемен-
тарная матрица перестановок (транспозиция). Матрица Pik называ-
ется элементарной матрицей перестановок, если она получена из
единичной матрицы перестановкой строк с номерами i и k. Напри-
мер, матрицами перестановок третьего порядка являются матрицы

P12 =

0 1 0
1 0 0
0 0 1

 , P13 =

0 0 1
0 1 0
1 0 0

 , P23 =

1 0 0
0 0 1
0 1 0

 .

Упражнения.

8.1. Пусть Pik — матрица перестановки.Показать, что вектор Pikx получается из
вектора x перестановкой элементов с номерами i, k.

8.2. Как следствие показать, что матрица PikA получается из матрицы A переста-
новкой строк с номерами i, k.

8.3. Пусть Pik — матрица перестановки. Показать, что P−1
ik = P T

ik = Pik.
8.4. Показать, что нижняя треугольная матрица L (с элементами lij) равна

произведению элементарных нижних треугольных матриц Lk (см. (8.4)), т. е. L =
L1L2 · · ·Ln−1Ln.

Указание. Проведите вычисления в соответствии со следующей расстановкой ско-
бок: L = L1(L2 · · · (Ln−2(Ln−1Ln) · · · ), т. е. сначала перемножьте Ln−1Ln, результат
умножьте слева на Ln−2 и т. д.

8.5. Пусть Lk есть элементарная нижняя треугольная матрица и lkk ̸= 0. Показать,
что

L−1
k =


1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 1/lk,k 0 . . . 0
0 . . . −lk+1,k/lk,k 1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 . . . −ln,k/lk,k 0 . . . 1

 .

8.6. Пусть L — нижняя треугольная матрица, у которой все элементы главной
диагонали отличны от нуля. Показать, что матрица L−1 существует и является нижней
треугольной матрицей. Показать, что аналогичное верно и для верхней треугольной
матрицы.
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9. Метод исключения Гаусса

В основе метода Гаусса, как, впрочем, и многих других методов
решения систем линейных алгебраических уравнений

Ax = b, (9.1)

лежит следующее утверждение. Пусть матрица B невырождена. То-
гда система уравнений

BAx = Bb (9.2)
эквивалентна системе (9.1), т. е. решение системы (9.2) — решение
системы (9.1) и, наоборот, решение системы (9.1) — решение систе-
мы (9.2). Действительно, пусть x — решение системы (9.2). Тогда

B(Ax− b) = 0,

но матрица B невырождена, следовательно, Ax − b = 0. Обратное
утверждение очевидно.

Матрица B выбирается так, чтобы матрица BA была проще мат-
рицы A и решение системы (9.2) находилось легче, чем решение си-
стемы (9.1). В методе Гаусса матрица B конструируется при помощи
элементарных нижних треугольных матриц так, чтобы матрица BA
была верхней треугольной. Тогда решение системы (9.2) становится
тривиальной задачей.

Приведем традиционное описание этого метода, ориентированное
на операциях со строками A.

1. Расчетные формулы. Для удобства изложения положим
A(1) = A, b(1) = b и запишем исходную систему в индексной форме:

a
(1)
11 x1 + a

(1)
12 x2 + . . . + a

(1)
1nxn = b

(1)
1 ,

a
(1)
21 x1 + a

(1)
22 x2 + . . . + a

(1)
2nxn = b

(1)
2 , (9.3)

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
a
(1)
n1x1 + a

(1)
n2x2 + . . . + a(1)nnxn = b(1)n .

Предположим, что a
(1)
11 ̸= 0 и введем множители

li1 = a
(1)
i1 /a

(1)
11 , i = 2, . . . , n. (9.4)

Для каждого i = 2, . . . , n, умножим обе части первого уравнения
в (9.3) на li1 и вычтем полученное равенство из i-го уравнения. При-
дем к новой (эквивалентной) системе A(2)x = b(2) вида

a
(1)
11 x1+a

(1)
12 x2 + . . . + a

(1)
1nxn = b

(1)
1 ,
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a
(2)
22 x2 + . . . + a

(2)
2nxn = b

(2)
2 , (9.5)

· · · · · · · · · · · · · · · · · · · · · · · ·
a
(2)
n2x2 + . . . + a(2)nnxn = b(2)n .

Согласно описанию, данному выше, новые элементы матрицы и пра-
вой части вычисляются по формулам

a
(2)
ij = a

(1)
ij − li1a

(1)
1j , i, j = 2, . . . , n, (9.6)

b
(2)
i = b

(1)
i − li1b

(1)
1 , i = 2, . . . , n.

Говорят, что в системе (9.5) неизвестная x1 исключена из уравнений
со второго по n-е или, что матрица системы приведена к верхней тре-
угольной форме в первом столбце. На этом заканчивается описание
первого шага метода Гаусса.

На втором шаге проделаем аналогичные вычисления с подсисте-
мой (9.5), включающей уравнения с номерами 2, 3, . . . , n, и приведем
матрицу системы к верхней треугольной форме во втором столбце.
Это можно сделать, если a

(2)
22 ̸= 0. Повторяя вычисления, получим n

эквивалентных систем

A(k)x = b(k), k = 1, 2, . . . , n, (9.7)

с матрицами вида

A(k) =



a
(1)
11 a

(1)
12 . . . a

(1)
1k . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2k . . . a

(2)
2n... . . . ...

0 . . . 0 a
(k)
kk . . . a

(k)
kn... ... ... ...

0 . . . 0 a
(k)
nk . . . a

(k)
nn


, k > 1. (9.8)

Ясно, что при k = n (после n− 1 шага) получим систему A(n)x = b(n)

с верхней треугольной матрицей
a
(1)
11 a

(1)
12 . . . a

(1)
1n

0 a
(2)
22 . . . a

(2)
2n... . . . ...

0 a
(n)
nn



x1
x2
...
xn

 =


b
(1)
1

b
(2)
2...
b
(n)
n

 , (9.9)

решая которую получим решение первоначальной системы. Переход
от исходной системы (9.3) к системе (9.9) называется прямым ходом
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метода Гаусса. Решение системы (9.9) обратной подстановкой — об-
ратным ходом. Элементы a

(i)
ii , i = 1, . . . , n, называются ведущими

(главными) элементами метода Гаусса и только на них произво-
дится деление в ходе вычислений. Для осуществимости метода они
должны быть отличны от нуля.

Суммируя сказанное, приходим к следующим расчетным форму-
лам. Для всех k = 1, 2, . . . , n− 1 сначала вычисляются множители

lik = a
(k)
ik /a

(k)
kk , i = k + 1, . . . , n. (9.10)

Затем вычисляются новые элементы матрицы A(k+1) и вектора b(k+1):

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj , i, j = k + 1, . . . , n, (9.11)

b
(k+1)
i = b

(k)
i − likb

(k)
k , i = k + 1, . . . , n.

Можно заметить, что при программной реализации этих формул,
элементы a

(k+1)
ij можно хранить на месте элемента aij исходной мат-

рицы, также как lik — на месте элемента aik, b
(k+1)
i — на месте bi.

2. Трудоемкость метода Гаусса. Ясно, что трудоемкость ме-
тода Гаусса вычисляется по формуле

Q =
n−1∑
k=1

(qmk + qak + qbk) + n2 + n− 1,

где qmk, qak, qbk есть число операций, необходимых для вычисления
множителей на шаге k, новых элементов матрицы A(k+1) и вектора
b(k+1) по формулам (9.10), (9.11) соответственно, а n2 + n − 1 есть
трудоемкость обратной подстановки.

Используем хорошо известные формулы:

1 + 2 + · · ·+m =
m(m+ 1)

2
,

1 + 22 + · · ·+m2 =
m(m+ 1)(2m+ 1)

6
.

Ясно, что

qm =
n−1∑
k=1

(n− k) =
n−1∑
k=1

k = (n− 1)n/2.
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Для вычисления b(k+1) требуется в два раза больше операций, т. е.
qb = (n− 1)n. Наконец,

qa =
n−1∑
k=1

2(n− k)2 = 2
n−1∑
k=1

k2 = (n− 1)n(2n− 1)/3.

Суммарно, Q = 2n3/3 + 3n2/2− n/6− 1 = 2n3/3 +O(n2) flops.

3. Матричная формулировка метода Гаусса. LU разло-
жение матрицы. Для k = 1, 2, . . . , n−1, определим элементарную
треугольную матрицу Lk:

Lk =


1 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 1 0 · · · 0
0 · · · −lk+1,k 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 · · · −ln,k 0 · · · 1

 . (9.12)

Матрица Lk отличается от единичной только поддиагональными эле-
ментами k-го столбца.

Непосредственными вычислениями легко проверить (убедитесь!),
что система уравнений после первого шага метода Гаусса равносиль-
на системе L1Ax = L1b, т. е. A(2) = L1A, b(2) = L1b (см. форму-
лы (9.6)). Система уравнений после k-го шага равносильна системе
LkA

(k)x = Lkb
(k), т.е. A(k+1) = LkA

(k), b(k+1) = Lkb
(k) (см. форму-

лы (9.11)). Обозначим A(n) через U . Тогда

U = Ln−1Ln−2 . . . L1A, b(n) = Ln−1Ln−2 . . . L1b.

Отсюда находим
A = LU, (9.13)

где L = L−1
1 L−1

2 · · ·L−1
n−1. Нетрудно видеть (см. упражнение 8.5), что

L−1
k =


1 · · · 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . .
0 · · · 1 0 · · · 0
0 · · · lk+1,k 1 · · · 0
. . . . . . . . . . . . . . . . . . . . . .
0 · · · ln,k 0 · · · 1

 ,

а матрица L является нижней треугольной с единичной главной диа-
гональю и поддиагональными элементами равными lij (см. упражне-
ние 8.4). Если поддиагональные элементы матрицы L и элементы U
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хранить на месте соответствующих элементов A, то приходим к сле-
дующему алгоритму LU разложения матрицы A (см. формулы (9.10),
(9.11)):
f o r k = 1 : n−1

f o r i = k+1:n
a ( i , k ) = a ( i , k )/ a (k , k ) ;
f o r j = k+1:n

a ( i , j ) = a ( i , j ) − a ( i , k)*a (k , j ) ;
end

end
end

Этот алгоритм назовем kij – алгоритмом; kji – алгоритм получается
перестановкой циклов по i и j. Он имеет вид
f o r k=1:n−1

f o r i=k+1:n
a ( i , k)=a ( i , k )/ a (k , k ) ;

end
f o r j=k+1:n ,

f o r i=k+1:n
a ( i , j )=a ( i , j )−a ( i , k)*a (k , j ) ;

end
end

end

4. Условия применимости метода Гаусса. Описанный вы-
ше метод может быть реализован лишь в том случае, когда все веду-
щие элементы метода Гаусса отличны от нуля. Для этого невырож-
денности матрицы недостаточно. Cледующий пример демонстрирует
это:

A = A(1) =

1 1 0
1 1 1
0 1 1

 , detA = −1, A(2) =

1 1 0
0 0 1
0 1 1

 .

Выделим класс матриц, для которых метод Гаусса осуществим. Пусть

A1 = a11, A2 =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ , . . . , An =

∣∣∣∣∣∣∣
a11 a22 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann

∣∣∣∣∣∣∣
есть главные миноры матрицы A.

Теорема 1. Для того, чтобы все ведущие элементы метода
Гаусса были отличны от нуля необходимо и достаточно, чтобы все
главные миноры матрицы A были ненулевыми.

Доказательство. Напомним, что a
(1)
ij = aij, i, j = 1, . . . , n.

Пусть Ai ̸= 0, i = 1, . . . , n. Покажем по индукции, что тогда a
(k)
kk ̸= 0
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для всех k = 1, . . . , n. Имеем, a(1)11 = a11 = A1 ̸= 0. Пусть уже доказа-
но, что a

(1)
11 , a

(2)
22 , . . . , a

(k−1)
k−1,k−1 не равны нулю. Тогда, приводя минор Ak

к треугольному виду при помощи преобразований прямого хода ме-
тода Гаусса, получим

Ak =

∣∣∣∣∣∣∣∣∣
a
(1)
11 a

(1)
22 . . . a

(1)
1k

0 a
(2)
22 . . . a

(2)
2k

. . . . . . . . . . . .

0 0 . . . a
(k)
kk

∣∣∣∣∣∣∣∣∣ = a
(1)
11 a

(2)
22 . . . a

(k)
kk , (9.14)

следовательно, a
(k)
kk ̸= 0, что завершает шаг индукции. Обратное

утверждение теоремы есть следствие соотношения (9.14). �1)

Следствием теоремы (1) и формулы (9.13) является
Теорема 2. Пусть все главные миноры матрицы A отличны

от нуля. Тогда справедиво единственное представление A = LU ,
где L нижняя треугольная матрица с единичной главной диагона-
лью, U — верхняя треугольная матрица.

Доказательство. Доказательства требует лишь единствен-
ность разложения. Предположим, что имеются два разложения A =
L1U1 и A = L2U2, т. е. L1U1 = L2U2. Следовательно, L−1

2 L1 = U2U
−1
1 ,

причем левая часть этого равенства представляет собой нижнюю
треугольную матрицу с единичной диагональю, а правая часть —
верхнюю треугольную матрицу. Это возможно только тогда, когда
L−1
2 L1 = E, U2U

−1
1 = E, т. е. при L1 = L2 и U1 = U2. �

Приведем часто встречающиеся в приложениях примеры матриц,
для которых метод Гаусса применим и, соответственно, справедлива
теорема 2.

i) Эрмитовы положительно определенные матрицы. Напомним,
что матрица A = {aij}ni,j=1 называется эрмитовой, если A = A∗. Мат-
рица A называется положительно определенной, если

n∑
i,j=1

aijxjx̄i > 0 ∀ x ̸= 0.

В соответствии с критерием Сильвестра эрмитова матрица положи-
тельно определена тогда, и только тогда, когда все ее главные миноры
положительны.

1)Значком � отмечаем конец доказательства.
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ii) Матрицы с диагональным преобладанием. Матрица, элементы
которой удовлетворяют условию:

n∑
j=1, j ̸=i

|aij| < |aii|, i = 1, 2, . . . , n. (9.15)

называется матрицей с диагональным преобладанием по строкам.
Аналогично, матрицы, элементы которой удовлетворяют условию:

n∑
i=1, i̸=j

|aij| < |ajj|, j = 1, 2, . . . , n.

называются матрицей с диагональным преобладанием по столбцам.
Говорят, что A есть матрица диагональным преобладанием, если она
имеет диагональное преобладание либо по строкам, либо по столбцам.

Ясно, что если A есть матрица с диагональным преобладанием по
строкам, то AT — матрица с диагональным преобладанием по столб-
цам.

Теорема 3. Пусть A есть матрица с диагональным преобла-
данием. Тогда все ее главные миноры отличны от нуля.

Доказательство. Достаточно считать, что A имеет диагональ-
ное преобладание по строкам. Рассмотрим главный минор Ak, k > 1.
Достаточно убедиться, что однородная система линейных уравнений

a11x1 + a12x2 + . . . + a1kxk = 0,

a21x1 + a22x2 + . . . + a2kxk = 0, (9.16)
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ak1x1 + ak2x2 + . . . + akkxk = 0

с матрицей, составленной из элементов минора Ak, имеет только три-
виальное решение. Предположим противное и пусть max

16j6k
|xj| = |xi|.

Ясно, что xi ̸= 0. Поскольку i 6 k, то i-е уравнение системы (9.16)
можно записать в виде

aiixi = −
k∑

j=1, j ̸=i

aijxj.

Следовательно,

|aii||xi| 6
k∑

j=1, j ̸=i

|aij| |xj| 6 |xi|
n∑

j=1, j ̸=i

|aij|.
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Отсюда следует, что |aii| 6
∑n

j=1, j ̸=i |aij|, а это противоречит усло-
вию (9.15). �

5. Компактная схема LU разложения матрицы. Посмот-
рим на разложение A = LU как на уравнение LU = A для определе-
ния элементов матриц L и U . Тогда получим n2 уравнений

n∑
k=1

likukj = aij, i, j = 1, . . . , n. (9.17)

Поскольку lii = 1, lik = 0, если k > i, и ukj = 0, если k > j, то
равенства (9.17) можно записать в виде

min(i,j)∑
k=1

likukj = aij , i, j = 1, . . . , n.

Из этих равенств следуют соотношения

j−1∑
k=1

likukj + lijujj = aij , i > j ,

i−1∑
k=1

likukj + uii = aij , i 6 j ,

из которых вытекают формулы

lij = (aij −
j−1∑
k=1

likukj)/ujj , i > j , (9.18)

uij = aij −
i−1∑
k=1

likukj , i 6 j . (9.19)

Из формул (9.18), (9.19) можно получить различные алгоритмы вы-
числения элементов L и U , если определить порядок их вычисления.

Например, следующий ijk-алгоритм позволяет вычислять эле-
менты L и U построчно: для всех i = 1, 2, . . . , n, сначала вычисля-
ются lij по формулам (9.18) для всех j = 1, . . . , i − 1, а затем uij по
формулам (9.19) для всех j = i, . . . , n.

В jik-алгоритме элементы L и U вычисляются по столбцам: для
всех j = 1, 2, . . . , n, сначала вычисляются uij по формулам (9.19)
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для всех i = 1, . . . , j, а затем lij по формулам (9.18) для всех i =
j + 1, . . . , n.

Легко проверить, что трудоемкость этих алгоритмов одна и та же
и равна (2/3)n3 + O(n2) flops. Отметим также, что как и в рассмот-
ренном первоначально алгоритме LU разложения, элементы L и U
в ходе вычисления можно располагать в соответствующих позициях
матрицы A.

6. Метод Гаусса с выбором ведущего элемента по столб-
цу. Опишем модификацию изученного выше метода Гаусса, кото-
рый применим для решения систем уравнений c любой невырожден-
ной матрицей.

Выберем среди элементов первого столбца матрицы A максималь-
ный по модулю. Пусть это есть элемент ai1,1. Он не может оказаться
равным нулю, так как тогда все элементы первого столбца матрицы
A — нули и, значит, |A| = 0, что противоречит условию |A| ̸= 0.

Умножим обе части уравнения на матрицу перестановки Pi1,1.
В дальнейшем будем обозначать эту матрицу через P1 (заметим, что
она равна единичной, если максимальный по модулю элемент первого
столбца матрицы A есть a11). Получим

A(1)x = b(1), (9.20)

где A(1) = P1A, b(1) = P1b. Поясним, что матрица A(1) получает-
ся из матрицы A перестановкой первой и i1-й строк, вектор-столбец
b(1) получается из столбца b перестановкой первого и i1-го элементов.
Элементы матрицы A(1) обозначим через a(1)kl , элементы столбца b(1) —
через b

(1)
k . По построению a

(1)
11 ̸= 0.

Теперь можем осуществить первый шаг рассмотренного ранее ме-
тода Гаусса и привести матрицу A(1) к верней треугольной форме в
первом столбце. Это равносильно умножению обеих частей уравне-
ния (9.20) на элементарную нижнюю треугольную матрицу L1 ви-
да (9.12), элементы которой определяются по формулам (9.4). В ре-
зультате, придем к системе уравнений

A(2)x = b(2), (9.21)

где A(2) = L1A
(1) = L1P1A, b(2) = L1b

(1) = L1P1b. На этом заканчива-
ется первый шаг исключения неизвестных.

На втором шаге среди элементов a
(2)
22 , a(2)32 , . . . , a(2)n2 найдем мак-

симальный по модулю. Пусть этот элемент есть a
(2)
i2,2

. Он не может
равняться нулю. Действительно, если он равен нулю, то все числа
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a
(2)
22 , a(2)32 , . . . , a(2)n2 — нули и тогда, вычисляя |A(2)| разложением по

первому столбцу, получим, что |A(2)| = 0. С другой стороны, посколь-
ку |L1| = 1, а |P1| ̸= 0, то |A(2)| = |L1| |P1| |A| ̸= 0, что приводит к
противоречию.

Умножим обе части уравнения (9.21) на матрицу P2 = Pi2,2, т. е.
поменяем местами вторую и i2-ю строки матрицы A(2). Получим

Ã(2)x = P2L1P1b. (9.22)

По определению элемент ã
(2)
22 ̸= 0. Это позволяет осуществить второй

шаг рассмотренного ранее метода Гаусса и привести матрицу Ã(2)

к верней треугольной форме и во втором столбце. Это равносильно
умножению обеих частей уравнения (9.23) на элементарную нижнюю
треугольную матрицу L2. В результате второго шага получим систему
уравнений

A(3)x = L2P2L1P1b, (9.23)
где A(3) = L2P2L1P1A.

Продолжая этот процесс, после n−1 шага получим систему урав-
нений с верхней треугольной матрицей U = A(n),

Ux = f (9.24)

(очевидно, эквивалентную исходной), где

U = Ln−1Pn−1 · · ·L1P1A, (9.25)

f = Ln−1Pn−1 · · ·L1P1b.

Решение системы (9.24) не вызывает затруднений.

Замечание 1. Выбор максимального по модулю элемента
столбца при выполнении прямого хода метода Гаусса минимизирует
влияние ошибок округления. Если не заботиться об ошибках округ-
ления, то на очередном шаге прямого хода метода Гаусса можно вы-
бирать любой ненулевой элемент столбца.

Теорема 4. Пусть |A| ̸= 0. Тогда справедливо разложение
PA = LU , где L — нижняя треугольная матрица с единич-
ной главной диагональю, U — верхняя треугольная матрица, P =
Pin−1,n−1Pin−2,n−2 · · ·Pi1,1 — матрица перестановок, ik > k, k =
1, . . . , n− 1.

Доказательство. Согласно формуле (9.25)

A = P1L
−1
1 · · ·Pn−2L

−1
n−2Pn−1L

−1
n−1U. (9.26)
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Здесь мы учли, что произведение PkPk есть единичная матрица. Это
также позволяет эквивалентно преобразовать (9.26) к виду

Pn−1Pn−2 · · ·P1A =
(
Pn−1Pn−2 · · ·P2L

−1
1 P2P3 · · ·Pn−1

)
(
Pn−1 · · ·P3L

−1
2 P3 · · ·Pn−1

)
· · ·
(
Pn−1L

−1
n−2Pn−1

)
L−1
n−1U =

=
(
L̃−1
1 L̃−1

2 · · · L̃−1
n−2L

−1
n−1

)
U.

Отсюда следует утверждение теоремы. Действительно, каждая из
матриц L̃−1

k представляет собой элементарную нижнюю треуголь-
ную матрицу с единичной диагональю, отличающуюся от L−1

k лишь
перестановкой поддиагональных элементов в k-м столбце, а матри-
ца L = L̃−1

1 L̃−1
2 . . . L̃−1

n−2L
−1
n−1 есть нижняя треугольная с единичной

диагональю. �
Программная реализации LU разложения матрицы методом Гаус-

са с выбором ведущего элемента по столбцу осуществляется также,
как и описанное ранее LU разложение. Необходимо лишь внести из-
менения, связанные с перестановкой строк матрицы и запоминанием
этих перестановок. Например, kij алгоритм примет вид:
f unc t i on [A, p ] = l u k i j (A)
n = s i z e (A, 1 ) ;
p = 1 : n ;
f o r k = 1 : n−1

[∼ , I ] = max( abs (A(k : n , k ) ) ) ;
row = I+k−1;
a ( [ k , row ] , : ) = a ( [ row , k ] , : ) ;
p ( [ k , row ] ) = p ( [ row , k ] ) ;
f o r i = k+1:n

a ( i , k ) = a ( i , k )/ a (k , k ) ;
f o r j = k+1:n

a ( i , j ) = a ( i , j ) − a ( i , k)*a (k , j ) ;
end

end
end

В результате выполнения этой функции, матрицы L и U сохраняются
на месте матрицы A.

Пусть [LU, p ] = lukij(A). Тогда команды L = tril(LU,−1) +
eye(n); U = triu(LU) позволяют при необходимости получить L и U .
Вектор перестановок p таков, что A(p, :) = LU .

Упражнение 9.1. Пусть диагональные элементы L и U равны единице. Получить
формулы для элементов L−1 и U−1. Оценить трудоемкость.
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10. Метод Холесского.

Если матрица системы линейных уравнений эрмитова и положи-
тельно определена, можно добиться существенного сокращения числа
операций и памяти, необходимых для разложения ее на треугольные
множители. В основе соответствующего метода лежит

Теорема 1. Пусть матрица A эрмитова и положительно
определена. Тогда существует нижняя треугольная матрица L с
положительными элементами на диагонали такая, что A = LL∗.

Доказательство. Используем индукцию по порядку матрицы.
Для матрицы первого порядка имеем тривиальное равенство a11 =√
a11

√
a11. Пусть утверждение теоремы верно для матриц порядка

k > 1. Покажем, что тогда оно верно и для матриц порядка k + 1.
Запишем матрицу A порядка k + 1 как блочную:

A =

[
Ak ak
a∗k ak+1,k+1

]
.

Здесь Ak — матрица порядка k. Очевидно, она эрмитова и положи-
тельно определена. В силу предположения индукции Ak = LkL

∗
k, где

Lk — нижняя треугольная матрица с положительными элементами
на диагонали. Будем искать разложение матрицы A на треугольные
множители в виде

A = LL∗ =

[
Lk 0
l∗k lk+1,k+1

] [
L∗
k lk
0 lk+1,k+1

]
. (10.1)

Выполняя умножение в правой части последнего равенства и срав-
нивая поблочно результат с матрицей A, получим систему линейных
уравнений

Lklk = ak (10.2)
для определения вектора lk и уравнение l∗klk + l2k+1,k+1 = ak+1,k+1 для
элемента lk+1,k+1. Можно считать, что lk+1,k+1 > 0, так как вслед-
ствие (10.1) имеем: |A| = |Ak| l2k+1,k+1, причем |Ak|, |A| > 0, так
как по условию матрицы Ak, A положительно определены. Таким
образом, для построения матрицы L нужно решить систему урав-
нений (10.2) с треугольной матрицей, а затем вычислить lk+1,k+1 по
формуле lk+1,k+1 =

√
ak+1,k+1 − l∗klk. �

Доказательство теоремы 1, фактически, описывает алгоритм раз-
ложения на треугольные множители произвольной эрмитовой поло-
жительно определенной матрицы. Нетрудно видеть, что его реализа-
ция по затратам памяти и объему вычислений оказывается примерно
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в два раза более экономичной, чем разложение на треугольные мно-
жители произвольной невырожденной матрицы.

После того, как матрица L построена, решение системы уравне-
ний Ax = b сводится к последовательному решению систем уравне-
ний Ly = b, L∗x = y с треугольными матрицами.

Упражнения.

10.1. Покажите, что трудоемкость метода Холесского равна n3/3 +O(n2) flops..
10.2. Докажите, что при выполнении условий теоремы 1 нижняя треугольная мат-

рица L в разложении A = LL∗ определяется однозначно.

11. Унитарная триангуляция матриц.

В этом параграфе будет доказана
Теорема 1. Пусть A — произвольная квадратная матрица. То-

гда существует унитарная матрица Q такая, что

A = QR, (11.1)

где R — верхняя треугольная матрица.
Если разложение (11.1) получено, то решение системы уравне-

ний Ax = b с невырожденной матрицей A сводится к вычислению
вектора f = Q∗b и решению системы уравнений Rx = f с треуголь-
ной невырожденной матрицей.

При построении разложения (11.1) используются специальные
унитарные матрицы, позволяющие решить следующую задачу.

Даны ненулевой вектор a ∈ Cn и вектор i1 = (1, 0, . . . , 0)T . Тре-
буется построить унитарную матрицу V такую, что V a = µ i1,
где µ — число (ясно, что |µ| = |a|, поскольку матрица V унитарна).

1. Матрицы вращения. Матрица

Gkl = {gij}ni,j=1, 1 6 k < l 6 n,

называется матрицей вращения, если gii = 1 при i ̸= k, l, gkk = c,
gll = c̄, gkl = −s, glk = s̄, все остальные элементы матрицы Gkl

равны нулю, причем |c|2 + |s|2 = 1. Нетрудно видеть, что G = Gkl —
унитарная матрица.

Если числа c, s вещественны, то матрица G ортогональна. При
этом порождаемое ей преобразование евклидова пространства Rn со
стандартным скалярным произведением представляет собой поворот
на угол φ = arctg(s/c) в двумерном подпространстве (плоскости),
натянутом на векторы ik, il естественного базиса пространства Rn.
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Матрица GT , обратная к G, выполняет поворот в той же плоскости в
обратном направлении.

Пусть a — произвольный вектор пространства Cn. Ясно, что
(Ga)i = ai при i ̸= k, l,

(Ga)k = c ak − s al,

(Ga)l = s̄ ak + c̄ al.

Положим ρ = (|ak|2 + |al|2)1/2. Пусть c = 1, s = 0, если ρ = 0, и
c = āk/ρ, s = −āl/ρ, если ρ > 0. Тогда (Ga)k = ρ, (Ga)l = 0.

Теперь совершенно ясно, что если a — произвольный ненуле-
вой вектор пространства Cn, то выбирая последовательно числа
cn, sn, cn−1, sn−1, . . . , c2, s2, можно построить матрицы вращения G1,n,
G1,n−1, . . . , G1,2 такие, что Gx = |a| i1. Здесь G = G1,2 · · ·G1,n−1G1,n.

Таким образом, любой ненулевой вектор при помощи ортогональ-
ной матрицы можно преобразовать в вектор, совпадающий по направ-
лению с вектором i1 естественного базиса.

Замечание 1. Если вектор a принадлежит Rn, то все матрицы
G1,n, G1,n−1, . . . , G1,2, а следовательно, и матрица G — вещественные
(ортогональные) матрицы.

Пусть теперь a, e — два произвольных ненулевых вектора про-
странства Cn. Как только что было показано, существуют унитарные
матрицы G(a) и G(e) такие, что G(a)a = |a| i1, G(e)e = |e| i1. Отсю-
да вытекает, что Ga = µ e, где µ = |a|/|e|, G = G∗(e)G(a), т. е. для
любой пары ненулевых векторов найдется унитарная матрица, пре-
образующая первый вектор в вектор, совпадающий по направлению
со вторым.

2. Матрицы отражения. Пусть произвольно задан вектор
w = (w1, w2, . . . , wn}T ∈ Cn единичной длины (матрица n × 1). Мат-
рица

H = H(w) = I − 2ww∗ = {δij − 2wiw̄j}ni,j=1 (11.2)
называется матрицей отражения. Отметим ряд ее свойств.

1. Матрица H эрмитова. Кроме того, она унитарна. Действитель-
но,

H∗H = H2 = I − 4ww∗ + 4w(w∗w)w∗ = I,

так как w∗w = |w|2 = 1. Таким образом, H = H∗ = H−1.
2. Пусть En−1 = {z ∈ Cn : w∗z = (z, w) = 0} — гиперплоскость

размерности n− 1, нормальная к вектору w. Заметим, что

Hw = w − 2ww∗w = −w, Hz = z − 2ww∗z = z, z ∈ En−1. (11.3)
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Следовательно, H имеет однократное собственное значение рав-
ное −1, которому соответствует собственный вектор w, и собственное
значение +1 кратности n − 1, которому соответствует собственное
подпространство En−1. Отсюда следует, что |H| = −1.

3. Пусть x — произвольный вектор, a z его проекция на гиперплос-
кость En−1. Ясно, что векторы x, z и w лежат в двумерной плоскости,
нормальной к En−1, и x однозначно представим в виде x = αw+z, где
α некоторое число. Из равенств (11.3) вытекает, что Rx = −αw + z
(сделайте рисунок!). Можно сказать, таким образом, что отображе-
ние, порождаемое матрицей H, выполняет отражение вектора x отно-
сительно гиперплоскости En−1, ортогональной вектору w. Это свой-
ство матрицы H и позволяет называть ее матрицей отражения.

4. Пусть заданы векторы a, e ∈ Cn, |a| ̸= 0, |e| = 1 и φ есть ар-
гумент (a, e), если (a, e) ̸= 01). Рассмотрим задачу построения такой
матрицы отражения H = H(w), что Ha = µe, где |µ| = |a|. Из гео-
метрических соображений ясно, что эта задача имеет два решения2).
Положим

w = (a− µe)/ν, ν = |a− µe| . (11.4)
Имеем

ν2 = (a− µe, a− µe) = 2Re (a, a− µe) , (11.5)

H(w)a = a− 2(a, a− µe)

ν2
(a− µe). (11.6)

Из формул (11.5), (11.6) следует, что H(w)a = µe, если (a, a−µe) есть
вещественное число, т. е. Im (a, µe) = Im [µ̄ (a, e)] = 0. Это условие
выполнено, если (a, e) = 0 и µ = ±|a|; в противном случчае, оно
выполнено, если положить µ = ±ei φ |a|.

Чаще всего в приложениях приходится рассматривать случай, ко-
гда e = i1 = (1, 0, . . . , 0)T . В этом случае (a, µe) = µ̄a1, поэтому
следует положить µ = ±|a|a1/|a1|. Считается, конечно, что a1 ̸= 0. В
противном случае полагаем µ = ±|a|. Следовательно, решение задачи
H(w)a = µi1 определяется формулой (11.2) при

v = (a1 − µ, a2, . . . , an)
T , w =

v

|v|
, µ = ±

{
|a|, a1 = 0,
|a| a1
|a1| , a1 ̸= 0.

(11.7)

1)Напомним, что соотношение z = ei φ |z| задает тригонометрическое представление z ∈ C, а
φ называется аргументом z.

2)Проиллюстрируйте построение вектора w рисунком в двумерном вещественном случае.
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Конкретное решение (т. е. знак µ) выбирается из дополнительных
соображений, например, с целью получить более устойчивый к по-
грешностям округления алгоритм при вычислениях на ЭВМ.

5. Экономное вычисление w по формулам (11.7) требует 3n flops.
Матрицу отражения в памяти ЭВМ можно не хранить; достаточно
хранить только вектор w. Произведение y = H(w)a при заданном a
в этом случае вычисляется по формуле

y = (I − 2ww∗)a = a− λw, λ = 2w∗a, (11.8)

а его трудоемкость равна 4n flops.

3. Доказательство теоремы 1. Доказательство является
конструктивным и дает метод построения матриц Q,R, называемый
методом отражения. Он состоит из n−1 шага и на k-м шаге матри-
ца A преобразуется к матрице, имеющей верхнюю треугольную фор-
му в k-м столбце. Обозначим через In единичную матрицу длины n.

Пусть aj есть j-й столбец A. Если a1 = 0, то перейдем ко второму
шагу, полагая H(1) = In, A(1) = A. Иначе, выберем H(1) = H1(w1)
как такую матрицу отражения, что H(1)a1 = µ1 i

1 и вычислим A(1) =
H(1)A. По определению

A(1) = [H(1)a1, H
(1)a2, . . . , H

(1)an] .

На этом заканчивается первый шаг, после которого матрица A(1) име-
ет верхнюю треугольную форму в первом столбце и в блочном виде
имеет представление

A(1) =

[
µ1 c1
0 A1

]
,

где µ1 = ±|a1|a11/|a11|, если a11 ̸= 0, в противном случае µ1 = ±|a1|,
A1 — некоторая квадратная матрица размера n− 1.

Подсчитаем трудоемкость этого шага. На вычисление w1 требует-
ся 3n flops. Вычисление произведений H1(w1)a2, . . . , H1(w1)an требу-
ет 4n(n− 1) flops. Таким образом, трудоемкость первого шага равна
4n2 − n flops, если a1 ̸= 0.

Аналогично осуществляется второй шаг с той лишь разницей,
что вычисления производятся с матрицей A1. А именно, если пер-
вый столбец A1 равен нулю, положим H(2) = In, A(2) = A(1). Иначе,
определим A(2) = H(2)A(1), где матрица H(2) имеет вид

H(2) =

[
1 0
0 H2(w2)

]
.
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В этом случае

A(2) =

[
1 0
0 H2(w2)

] [
µ1 c1
0 A1

]
=

[
µ1 c1
0 H2(w2)A1

]
.

Как и на первом шаге, выберем матрицу H2(w2) как такую матри-
цу отражения, что H2(w2)A1 имеет верхнюю треугольную форму в
первом столбце. Размерность этой задачи на единицу меньше, чем на
первом шаге, и равна n − 1. Соответственно, трудоемкость второго
шага равна 4(n− 1)2 − (n− 1) flops, если первый столбец A1 отличен
от нуля. Легко видеть, что матрица H(2) является унитарной.

Повторяя построения на k шаге определим унитарную матрицу

H(k) =

[
Ik−1 0
0 Hk(wk)

]
,

если матрица A(k−1) не имеет верхней треугольной формы в k-м
столбце, в противном случае полагаем H(k) = In, а также матрицу
A(k) = H(k)A(k−1). Матрица Hk(wk) размера n − k + 1 строится как
соответствующая матрица отражения.

После n − 1 шага получим унитарные матрицы H(1), H(2), . . . ,
H(n−1) такие, что H(n−1)H(n−2) · · ·H(1)A = A(n−1) = R, где R —
верхняя треугольная матрица. Следовательно, A = QR, где Q =
H(1)H(2) · · ·H(n−1) суть унитарная матрица.

Трудоемкость метода равна
n∑

k=2

(
4k2 − k

)
=

4

3
n3 +O(n2),

что при больших значениях n в два раз больше, чем требуется для
разложения PA = LU методом Гаусса. �

Важным положительным качеством описанного метода являет-
ся возможность его непосредственного применения для произвольной
невырожденной матрицы без какой-либо перенумерации ее строк, а
также его устойчивость к ошибкам округления. Последнее объясня-
ется тем, что при унитарном преобразовании длина вектора не меня-
ется.

Замечание 2. Без ограничения общности можно считать что
все диагональные элементы матрицы R неотрицательны. В самом де-
ле, если, например, на первом этапе описываемого в доказательстве
теоремы 1 алгоритма получаем, что µ1 = ± ρeiφ, то матрицу H(1)
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нужно заменить на матрицу ± e−iφH(1), которая тоже, очевидно, уни-
тарна. Аналогичное замечание относится и к последующим этапам
построения матрицы R.

Замечание 3. Совершенно аналогично можно получить пред-
ставление произвольной квадратной матрицы A в виде A = QL, где
Q — унитарная матрица, а L — нижняя треугольная матрица, а также
RQ и LQ разложения.

Упражнения.
11.1. Постройте алгоритм, аналогичный описанному при доказательстве теоремы

1 и основанный на использовании матриц вращения.
11.2. Докажите, что если матрица A невырождена, а диагональные элементы мат-

рицы R считаются положительными, то матрицы Q, R в разложении (11.1) определя-
ются однозначно.

11.3. Укажите метод построения разложений A = QL, A = RQ и A = LQ.

12. Построение обратной матрицы

Задача построения обратной матрицы сводится к решению n си-
стем линейных уравнений с одной и той же матрицей A и различными
правыми частями. Действительно, обозначим матрицу A−1 через X.
Тогда AX = E. Осталось записать это равенство подробнее:

Axk = ik, k = 1, 2, . . . , n. (12.1)

Здесь xk — k-й столбец матрицы X,

ik = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

)T .

Рассмотрим два способа вычисления обратной матрицы.
1. Методом Гаусса с выбором ведущего элемента по столбцу вы-

числим матрицу перестановок P и треугольные матрицы L и R та-
кие, что PA = LU. Это потребует 2/3n3 + O(n2) flops. Тогда X есть
решение уравнения LUX = P , или LUxk = pk, где pk есть k-й стол-
бец P . Нахождение xk требует решения систем Ly = pk, Uxk = y.
Их суммарная трудоемкость равна 2n2 + O(n) flops. Следовательно,
матрица A−1 этим методом вычисляется за (2 + 2/3)n3 +O(n2) flops.

2. Методом отражения найдем разложение A = QR, затратив
4/3n3+O(n2) flops. Тогда RX = Q∗. Определение X из этого уравне-
ния потребует n3+O(n2) flops. Суммарно, матрица A−1 этим методом
вычисляется за (1 + 4/3)n3 + O(n2) flops, что на n3/3 flops меньше,
чем в первом методе при больших n.
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13. Метод прогонки для систем с трехдиагональными
матрицами.

В приложениях довольно часто возникают системы уравнений с
матрицами, большинство элементов которых — нули. Это так назы-
ваемые разреженные матрицы. Процесс исключения неизвестных в
таких системах (или разложение матриц на треугольные множители)
во многих практически важных ситуациях удается организовать так,
чтобы существенно сократить затраты памяти и объем необходимых
вычислений.

Рассмотрим наиболее простой случай, а именно системы с матри-
цами, ненулевые элементы которых лежат лишь на главной и двух
соседних с ней диагоналях. Системы такого вида часто возникают
при приближенном решении задач математической физики. Соответ-
ствующие матрицы принято называть трехдиагональными.

Произвольную систему с трехдиагональной матрицей можно за-
писать в следующем виде:

b1x1 + c1x2 = f1,

a2x1 + b2x2 + c2x3 = f2,

. . . . . . . . . . . . . . . . . . . . .

aixi−1 + bixi + cixi+1 = fi, (13.1)
. . . . . . . . . . . . . . . . . . . . .

anxn−1 + bnxn = fn.

Разрешим первое уравнение системы относительно x1. Получим:

x1 = α2x2 + β2, (13.2)

где

α2 = − c1
b1
, β2 =

f1
b1
. (13.3)

Используя соотношение (13.2) и второе уравнение системы (13.1), по-
лучим аналогичное выражение для x2. Вообще, если xi−1 = αixi+ βi,
то из i-го уравнения системы (13.1) получим

xi = αi+1xi+1 + βi+1, i = 1, 2, . . . , n− 1, (13.4)

где

αi+1 = − ci
bi + aiαi

, βi+1 =
fi − aiβi
bi + aiαi

. (13.5)
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Это означает, что формулы (13.4) справедливы для i = 1, 2, . . . , n−1,
формулы (13.5) — для i = 2, 3, . . . , n − 1. Используя (13.3) и (13.5),
можно найти все αi, βi, i = 2, . . . , n.

Записывая теперь соотношение (13.4) при i = n−1 и последнее
уравнение системы (13.1), получим

xn−1 = αnxn + βn,

anxn−1 + bnxn = fn,

откуда находим, что xn = (fn−anβn)/(bn+anαn), и, наконец, исполь-
зуя формулы (13.4) для i = n− 1, n− 2, . . . , 1, найдем все остальные
компоненты вектора x.

Описанный алгоритм носит название метода прогонки. Понятно,
что — это метод Гаусса, записанный применительно к случаю трех-
диагональной системы уравнений, причем процесс вычислений αi, βi
(прямой ход метода прогонки) соответствует прямому ходу метода
Гаусса, а вычисления по формулам (13.4) (обратный ход метода про-
гонки) соответствуют обратному ходу метода Гаусса.

Нетрудно подсчитать необходимые затраты: требуется пример-
но 8n flops и не более 6n ячеек памяти.

Метод может быть реализован, когда все знаменатели в формулах
(13.3), (13.5) отличны от нуля. Учитывая связь метода прогонки с ме-
тодом Гаусса, можно сказать, что данное условие выполнено, напри-
мер, когда матрица системы (13.1) — матрица с диагональным преоб-
ладанием, т. е. |c1| < |b1|, |an| < |bn|, |ai|+ |ci| < |bi|, i = 2, . . . , n− 1.



Глава 3
Вспомогательные сведения из теории операторов.

Системы уравнений общего вида

14. Дефект и ранг линейного оператора.

Пусть A — линейный оператор, действующий из линейного про-
странства X в линейное пространство Y.

Множество всех векторов y из пространства Y таких, что y =Ax
для некоторого x ∈ X, называется областью значений или образом
оператора и обозначается через Im(A).

Множество всех векторов x ∈ X таких, что Ax = 0, называется
ядром оператора A и обозначается через Ker(A).

Теорема 1. Множество Im(A) — линейное подпространство
пространства Y.

Доказательство. Пусть y1, y2 ∈ Im(A). Тогда существу-
ют x1, x2 ∈ X такие, что y1 = Ax1, y2 = Ax2. Для любых α, β ∈ C от-
сюда получаем, что αy1+βy2 = αAx1+βAx2. Оператор A линеен, сле-
довательно, αy1+ βy2 = A(αx1+ βx2), потому αy1+ βy2 ∈ Im(A). �

Упражнение 14.1. Покажите, что Ker(A) — линейное подпространство простран-
ства X.

В дальнейшем полагаем, что пространства X = Xn, Y = Ym

конечномерны (нижний индекс означает размерность). Размерность
подпространства Im(A) ⊂ Ym называется рангом оператора A и обо-
значается через rank(A).

Размерность ядра оператора A называется дефектом операто-
ра A и обозначается через def(A).

Теорема 2. Для любого линейного оператора A : Xn → Ym

rank(A) + def(A) = n. (14.1)

Доказательство. Обозначим через M подпространство про-
странства Xn такое, что Xn = Ker(A) u M . По теореме 1, с. 147,
[5], имеем n = def(A)+dim(M). Теперь1) достаточно установить, что
пространства M и Im(A) изоморфны. Для произвольного x ∈ Xn

1)См. теорему 3, с. 159, [5],
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имеем x = x0 + x1, где x0 ∈ Ker(A), x1 ∈ M , следовательно,
Ax = Ax1. Таким образом, всякий элемент из Im(A) — образ неко-
торого элемента из M . Осталось доказать, что если Ax′ = Ax′′ для
x′, x′′ ∈ M , то x′ = x′′, т. е. оператор A осуществляет взаимноодно-
значное отображение M на Im(A). Равенство A(x′−x′′) = 0 означает,
что x′ − x′′ ∈ Ker(A). С другой стороны, M — подпространство, по-
этому x′ − x′′ ∈ M . По теореме 7.2, с. 146, [5], отсюда получаем, что
x′ − x′′ = 0. �

15. Ранг матрицы.

1. Пусть A(m,n) — произвольная прямоугольная матрица. Бу-
дем трактовать ее столбцы как систему векторов пространства Cm.
Ранг этой системы векторов (см. §5 с. 121, [5]) назовем рангом мат-
рицы A(m,n). Ранг матрицы A будем обозначать через rank(A).

Теорема 1. Пусть A : Xn → Ym, Aeq — матрица операто-
ра A относительно произвольным образом фиксированных базисов
{ek}nk=1 ⊂ Xn, {qk}mk=1 ⊂ Ym. Тогда rank(Aeq) = rank(A).

Доказательство. Пусть x = Enξ ∈ Xn. Тогда Ax = Qmη,
где η = Aeqξ (см. п. 2, с. 162, [5]). Понятно, что вектор η принадлежит
подпространству пространства Cm, натянутому на столбцы матри-
цы Aeq и, следовательно, имеющему размерность, равную rank(Aeq).
Поскольку линейный оператор Q обратим, то, очевидно, указанное
подпространство изоморфно ImA, следовательно, в силу теоремы 4,
с. 160, [5], размерность Im(A) равна rank(Aeq). �

Таким образом, ранг матрицы оператора инвариантен по отно-
шению к выбору базисов, выбираемых при ее построении, и можно
было бы дать эквивалентное определение ранга оператора как ранга
его матрицы.

2. Матрицу A(m,n) можно трактовать и как систему строк из
пространства Cn. Ранг этой системы строк обозначим через rs.

Справедлива (см., например, [5]) следующая, на первый взгляд,
неожиданная

Теорема 2. Для любой матрицы A(m,n) выполнено равенство
rs = rank(A(m,n)).
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16. Системы линейных алгебраических уравнений.
Условия разрешимости

1. Пусть A линейный оператор, действующий из конечномерно-
го линейного пространства Xn в конечномерное линейное простран-
ство Ym. Рассматривается уравнение

Ax = y, (16.1)
где y — заданный элемент пространства Ym. При фактическом по-
строении решений уравнения (16.1) вводят некоторые базисы En =
{ek}nk=1, Qm = {qk}mk=1 в пространствах Xn, Ym и переходят к системе
линейных алгебраических уравнений относительно коэффициентов ξ
разложения вектора x по базису En, считая известными коэффициен-
ты η разложения вектора y по базису Qm. В результате (см. п. 2, с.
162, [5]), получают

Aeqξ = η, (16.2)
где Aeq — матрица оператора A.

Более подробная запись уравнения (16.2) дает
n∑

j=1

a
(eq)
ij ξj = ηi, i = 1, 2, . . . ,m. (16.3)

Подчеркнем, что коэффициенты a
(eq)
ij этой системы уравнений (эле-

менты матрицы оператора A) и столбец правой части η1, η2, . . . , ηm
предполагаются известными, а числа ξ1, ξ2, . . . , ξn требуется найти.

В отличие от рассматривавшихся ранее систем линейных алгебра-
ических уравнений у системы уравнений (16.3) количество уравнений
и число неизвестных, вообще говоря, различны.

Задачи (16.1), (16.2) эквивалентны в том смысле, что если ξ —
решение уравнения (16.2), то x = Enξ — решение уравнения (16.1)
при y = Qmη, и наоборот, если x — решение уравнения (16.1), то ко-
эффициенты разложения векторов x, y по соответствующим базисам
связаны соотношением (16.2).

2. Получим необходимые и достаточные условия разрешимости
системы линейных алгебраических уравнений

Ax = b, (16.4)
где A = A(m,n) — заданная прямоугольная матрица с комплексны-
ми, вообще говоря, элементами, b — заданный вектор из Cm.

Обозначим через (A, b) матрицу размера m× (n+1), получающу-
юся присоединением к матрице A столбца b. Матрицу (A, b) принято
называть расширенной матрицей системы (16.4).
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Теорема 1 (Теорема Кронекера — Капелли1)). Для того,
чтобы система уравнений (16.4) имела решение, необходимо и до-
статочно, чтобы ранги матриц A и (A, b) совпадали.

Доказательство. Добавление столбца не уменьшает ранга
матрицы, и, очевидно, что ранг сохраняется тогда и только тогда,
когда b есть линейная комбинация столбцов матрицы A. Последнее
эквивалентно тому, что существует вектор x ∈ Cn, являющийся ре-
шением системы (16.4). �

Теорема 2 (матричная теорема Фредгольма2)). Для того,
чтобы система линейных уравнений (16.4) имела решение, необхо-
димо и достаточно, чтобы для любого решения однородной системы
уравнений zA = 0 выполнялось равенство zb = 0.

Поясним, что здесь b интерпретируется как вектор-столбец, а z —
как вектор-строка.

Доказательство. Д о с т а т о ч н о с т ь. Пусть r = rank(A).
Не ограничивая общности рассуждений, можно считать, что первые r
строк матрицы A линейно независимы, Понятно, что тогда и пер-
вые r строк матрицы (A, b) линейно независимы. Если k-я строка
матрицы A линейно выражается через ее первые r строк, то суще-
ствует ненулевой вектор z такой, что zA = 0. Тогда по условию тео-
ремы zb = 0, но это означает, что k-я строка матрицы (A, b) линейно
выражается через ее первые r строк. Таким образом, ранги матриц
A и (A, b) совпадают, и по теореме Кронекера — Капелли система
(16.4) имеет решение. Н е о б х о д и м о с т ь. Пусть система уравне-
ний (16.4) имеет решение, т. е. существует вектор x ∈ Cn такой, что
Ax = b. Тогда для любого z ∈ Cm справедливо равенство zAx = zb.
Очевидно, что если zA = 0, то zb = 0. �

17. Линейные уравнения в евклидовом пространстве

Теорема 1. Пусть Xn,Ym — евклидовы пространства. Для лю-
бого линейного оператора A : Xn → Ym пространство Ym допуска-
ет следующее ортогональное разложение:

Ym = Ker(A∗)⊕ Im(A). (17.1)

Здесь A∗ : Ym → Xn — оператор сопряженный к A.
1)Альфредо Капелли (Alfredo Capelli; 1858 — 1916) — итальянский математик.
2)Эрик Ивар Фредгольм (Erik Ivar Fredholm; 1866 — 1927) — шведский математик.
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Доказательство. Пусть y ∈ Im(A), y1 ∈ Ker(A∗). Тогда суще-
ствует x ∈ Xn такой, что y = Ax, следовательно,

(y, y1) = (Ax, y1) = (x,A∗y1) = 0,

т. е. y ортогонален Ker(A∗). Если же вектор y ∈ Ym ортогона-
лен Im(A), то (y,Ax) = 0 для любого x ∈ Xn, и тогда (A∗y, x) = 0
для любого x ∈ Xn, поэтому A∗y = 0, т. е. y ∈ Ker(A∗). Эти рассуж-
дения показывают, что Im(A) — ортогональное дополнение Ker(A∗),
следовательно, по теореме 2, с. 153, [5], равенство (17.1) выполнено. �

Очевидно, что имеет место и следующее представление:

Xn = Ker(A)⊕ Im(A∗). (17.2)

Теорема 2. Пусть оператор A действует из конечномерного
евклидова пространства Xn в конечномерное евклидово простран-
ство Ym. Тогда

rank(A) = rank(A∗). (17.3)

Доказательство. Оператор A осуществляет изоморфизм про-
странств Im(A∗) и Im(A). Действительно, вследствие (17.2) для лю-
бого x ∈ Xn имеем Ax = Ax1, где x1 ∈ Im(A∗), т. е. любой эле-
мент Im(A) — образ некоторого элемента из Im(A∗). Предполагая,
что Ax′ = Ax′′ для несовпадающих x′, x′′ из Im(A∗), получим,
что A(x′ − x′′) = 0, следовательно, (x′ − x′′) ∈ Ker(A). Посколь-
ку Im(A∗) — линейное подпространство, то (x′−x′′) ∈ Im(A∗). Вновь
используя (17.2), получаем, что x′ − x′′ = 0. Таким образом, конеч-
номерные пространства Im(A) и Im(A∗) изоморфны, поэтому (см.
теорему 3, с. 159, [5]) их размерности совпадают. �

Непосредственным следствием теоремы 1 является
Теорема 3 (Теорема Фредгольма). Пусть Xn, Ym — евкли-

довы пространства, A : Xn → Ym — линейный оператор. Для того,
чтобы уравнение

Ax = y (17.4)
имело решение, необходимо и достаточно, чтобы его правая часть
была ортогональна любому решению однородного уравнения A∗z = 0.

Упражнения.

17.1. Опираясь на теорему 2, докажите что rank(A) = rank(AT ) для любой матри-
цы A.
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17.2. Опираясь на представление (17.2), покажите, что если уравнение (17.4) разре-
шимо, то множество всех его решений содержит единственный элемент x0 наименьшей
длины. Этот элемент называется нормальным решением уравнения (17.4). Покажите,
что x0 ∈ Im(A∗).

18. Псевдорешение. Метод регуляризации Тихонова

1. Пусть оператор A действует из евклидова пространства Xn в
евклидово пространство Ym, y — фиксированный вектор из Ym, x —
произвольный вектор из Xn. Вектор Ax − y называется невязкой,
соответствующей уравнению

Ax = y. (18.1)

Вещественная функция

F (x) = |Ax− y|2,

определенная на пространстве Xn, называется функцией (функцио-
налом) невязки. Если Ax ̸= y, т. е. вектор x не является решением
уравнения (18.1), то F (x) > 0. Естественно попытаться найти век-
тор x, который доставляет минимальное значение функции невязки.

Вектор x ∈ Xn, минимизирующий функцию невязки, называют
псевдорешением уравнения (18.1). Если уравнение (18.1) разрешимо,
то любое его решение является псевдорешением.

2. Псевдорешение существует при любой правой части уравне-
ния (18.1). В самом деле, в соответствии с разложением (17.1), с. 49,
представим вектор y в виде y = y1+y0, где y1 ∈ Im(A), y0 ∈ Ker(A∗).
Тогда для любого x ∈ Xn вектор Ax − y1 принадлежит Im(A), и,
следовательно,

F (x) = |Ax− y1|2 + |y0|2.
Очевидно, что минимальное значение функции F равно |y0|2 и дости-
гается на векторе x, являющемся решением уравнения

Ax = y1. (18.2)

Поскольку y1 ∈ Im(A), уравнение (18.2) разрешимо. Нормальное ре-
шение x0 уравнения (18.2) называют нормальным псевдорешением
уравнения (18.1).
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3. Нетрудно убедиться, что Ax0 = Py, где P — оператор ор-
тогонального проектирования Ym на Im(A). В ходе локазательства
теоремы 2 было показано, что оператор A осуществляет изомор-
физм между Im(A∗) и Im(A), поэтому существует линейный опера-
тор A+ : Ym → Xn такой, что для любого y ∈ Ym справедливо
равенство x0 = A+y, где x0 — нормальное псевдорешение уравнения
Ax = y. Оператор A+ называется псевдообратным по отношению
к оператору A. Нетрудно проверить, что если оператор A обратим,
то A+ = A−1.

4. При любом y ∈ Ym уравнение

A∗Ax = A∗y (18.3)

разрешимо. Всякое его решение — псевдорешение уравнения (18.1).
Действительно, так как A∗y0 = 0, то уравнение (18.3) эквивалентно
уравнению

A∗(Ax− y1) = 0. (18.4)
Уравнение (18.4) разрешимо, так как каждое решение уравне-
ния (18.2) есть решение уравнения (18.4). Обратно, если x — ре-
шение уравнения (18.4), то вектор Ax − y1 ∈ Ker(A∗) и, следова-
тельно (см. (17.1), с. 49), ортогонален Im(A), но, с другой стороны,
Ax − y1 ∈ Im(A), значит Ax − y1 = 0, т. е. x — решение уравне-
ния (18.2).

Уравнение (18.3) называется трансформацией Гаусса уравне-
ния (18.1). Трансформация Гаусса любого линейного уравнения при-
водит к разрешимому уравнению.

5. При фактическом построении нормального псевдорешения
можно использовать метод регуляризации Тихонова. Рассмотрим
наряду с функционалом невязки так называемый регуляризующий
функционал (функционал Тихонова)

Fα(x) = F (x) + α|x|2 = |Ax− y|2 + α|x|2. (18.5)

Здесь α — положительное число, называемое параметром регуляри-
зации.

Теорема 1. При любом положительном α существует един-
ственный вектор xα, доставляющий минимальное значение функ-
ционалу Fα на пространстве Xn, предел xα при α → 0 существует
и равен x0.

Доказательство. Введем в рассмотрение уравнение

A∗Ax+ αx = A∗y. (18.6)
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Это уравнение имеет единственное решение xα при любом y ∈ Xn.
В самом деле, если x — решение соответствующего однородного урав-
нения, то умножая обе части этого уравнения скалярно на x, получим
|Ax|2 + α|x|2 = 0, откуда вследствие положительности α, получаем,
что x=0. Выполняя теперь элементарные выкладки, с учетом равен-
ства A∗y = A∗Axα + αxα получим

Fα(x) = (Bα(x− xα), x− xα) + (y, y)− (Bαxα, xα),

где Bα = A∗A + αI. Поскольку (Bα(x − xα), x − xα) > 0 при любом
x ̸= xα, то xα — единственная точка минимума функционала Fα.
Таким образом,

F (xα) = |Axα−y1|2+|y0|2+α|xα|2 6 |Ax−y1|2+|y0|2+α|x|2 ∀x ∈ Xn.

Полагая здесь x = x0, получим

|Axα − y1|2 + α|xα|2 6 α|x0|2, (18.7)

поэтому |xα| 6 |x0| и по теореме Больцано — Вейерштрасса можно
указать такую последовательность αk → 0 и такой вектор x∗ ∈ Xn

что xαk
→ x∗ при αk → 0. Из (18.7) вытекает, что Ax∗ = y1, при-

чем |x∗| 6 |x0|. Поскольку нормальное псевдорешение единственно,
то x∗ = x0. Вновь используя единственность нормального псевдоре-
шения, получаем, что xα → x0 при любом способе стремления α к
нулю. �

19. Сингулярное разложение оператора

1. Сингулярные базисы и сингулярные числа оператора. В этом
параграфе будет показано, что для любого оператора A, действую-
щего из евклидова пространства Xn в евклидово пространство Ym,
можно указать такие ортонормированные базисы {ek}nk=1 ⊂ Xn и
{qk}mk=1 ⊂ Ym, что

Aek =

{
ρkq

k, k 6 r,

0 , k > r,
(19.1)

где ρk > 0, k = 1, 2, . . . , r. Числа ρk называют сингулярными числа-
ми оператора A1). Базисы {ek}nk=1, {qk}mk=1, обеспечивающие выпол-
нение соотношений (19.1), называются сингулярными базисами опе-
ратора A.

1)Иногда в это множество удобно включать также min(m,n)− r нулей.
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Как показывают соотношения (19.1), ненулевыми элементами
матрицы Aeq оператора A относительно сингулярных базисов явля-
ются только числа ρ1, ρ2, . . . , ρr, расположенные на диагонали глав-
ного (базисного) минора матрицы Aeq.

2. Построим сингулярные базисы оператора A. Оператор A∗A
самосопряжен и неотрицателен (см. упражнение 2 на с. 223, [5]), сле-
довательно (см. теорему 9, с. 226, и п. 3 с. 231, [5]), существуют орто-
нормированные собственные векторы {ek}nk=1 оператора A∗A, все его
собственные числа неотрицательны. Таким образом,

A∗Aek = ρ2ke
k, k = 1, 2, . . . , n. (19.2)

Здесь ρ2k > 0 — собственные числа оператора A∗A. Будем нумеро-
вать их так, чтобы ρ1 > ρ2 > · · · > ρr > 0, ρr+1 = · · · = ρn = 0.
Положим zk = Aek для k = 1, . . . , r и заметим, что

(zp, zq) = (Aep,Aeq) = (A∗Aep, eq) = ρ2p(e
p, eq).

Поэтому

(zp, zq) =

{
0, p ̸= q,

ρ2p, p = q,
(19.3)

следовательно, векторы

qk = ρ−1
k Aek, k = 1, 2, . . . , r, (19.4)

образуют ортонормированную систему в пространстве Ym. Если ока-
жется, что r < m, дополним ее произвольно векторами qk, k = r + 1,
r + 2, . . . ,m, до ортонормированного базиса пространства Ym. Из
определения векторов {ek}nk=1, {qk}mk=1 сразу же вытекает справедли-
вость (19.1).

3. Из (19.1) получаем, что векторы {qk}rk=1 образуют базис
в Im(A), но тогда из теоремы 1, с. 49, вытекает, что векторы {qk}mk=r+1
образуют базис в Ker(A∗), следовательно,

A∗qk = 0 для k = r + 1, . . . ,m. (19.5)

Для k = 1, 2, . . . , r из (19.4), (19.2) получаем

A∗qk = ρ−1
k A∗Aek = ρke

k. (19.6)
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4. Сопоставляя (19.6), (19.4), (19.5), будем иметь, что

AA∗qk = ρ2kq
k, k = 1, 2, . . . , r, AA∗qk = 0, k = r+1, . . . ,m. (19.7)

Из (19.2), (19.7) вытекает, что ненулевые собственные числа опера-
торов A∗A и AA∗ совпадают, т. е. спектры этих операторов могут
отличаться лишь кратностью нулевого собственного числа1).

5. Из предыдущих рассуждений также следуют равенства

rank(A) = rank(A∗A) = rank(AA∗),

def(A∗A) = n− rank(A), def(AA∗) = m− rank(A).

6. Понятно, что ранг r оператора A равен количеству ненулевых
сингулярных чисел оператора A. Это наблюдение открывает реаль-
ную возможность вычисления ранга оператора A: нужно решить за-
дачу на собственные значения для самосопряженного неотрицатель-
ного оператора A∗A и определить количество ненулевых собственных
чисел. Именно таким способом обычно пользуются в вычислительной
практике. Ясно также, что собственные векторы {ei}ni=r+1 операто-
ра A∗A образуют ортонормированный базис ядра оператора A.

7. Если сингулярные числа и сингулярные базисы оператора A
найдены, то построение псевдорешения (см. п. 18, с. 51) уравнения

Ax = y (19.8)

не вызывает затруднений. В самом деле, как было показано в п. 4,
с. 52, любое решение уравнения

A∗Ax = A∗y (19.9)

есть псевдорешение уравнения (19.8). Представляя векторы x и y в ви-

де разложений по сингулярным базисам, x =
n∑

k=1

ξke
k, y =

m∑
k=1

ηkq
k, и

используя затем соотношения (19.2), (19.5), (19.6), получим как след-
ствие уравнения (19.9), что

r∑
k=1

(ρ2kξk − ρkηk)e
k = 0, (19.10)

1)См. соответствующие определения в [5].
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откуда вытекает, что ξk = ηk/ρk для k = 1, 2, . . . , r. Таким образом,
любой вектор

x =
r∑

k=1

(ηk/ρk)e
k +

n∑
k=r+1

ξke
k, (19.11)

где ξr+1, . . . , ξn — произвольные числа, есть псевдорешение уравне-
ния (19.8).

Если y ∈ Im(A), т. е. уравнение (19.8) разрешимо, то форму-
ла (19.11) дает общее решение (см. § 1, гл. 10, [5]) уравнения (19.8).

Действительно, в этом случае вектор x0 =
r∑

k=1

(ηk/ρk)e
k есть частное

решение уравнения (19.8), а
n∑

k=r+1

ξke
k — общее решение соответству-

ющего однородного уравнения.

8. Для любого псевдорешения x уравнения (19.8) имеем

|x|2 =
r∑

k=1

(ηk/ρk)
2 +

n∑
k=r+1

ξ2k.

Полагая ξr+1, . . . , ξn = 0, получим псевдорешение с минимальной
длиной, т. е. нормальное псевдорешение. Оно ортогонально ядру опе-
ратора A.

Упражнения.

19.1. Покажите, что модуль определителя любого оператора, действующего в ко-
нечномерном пространстве, равен произведению всех сингулярных чисел этого опера-
тора.

19.2. Пусть A ∈ Mm,n — матрица ранга r. Покажите, что существуют унитарные
матрицы U ∈ Mm, V ∈ Mn такие, что

A = UDV, (19.12)

где

D =

(
R O1,2

O2,1 O2,2

)
∈ Mm,n

есть блочная 2 × 2 матрица, R = diag(ρ1, ρ2, . . . , ρr), все элементы диагонали R поло-
жительны, все элементы матриц O1,2, O2,1, O2,2 — нули.

Формула (19.12) определяет так называемое сингулярное разложение прямоуголь-
ной матрицы. Числа ρ1, ρ2, . . . , ρr — сингулярные числа матрицы A.

19.3. Покажите, что сингулярные числа матриц A и UAV , где U, V — произволь-
ные унитарные матрицы соответствующих размеров, совпадают (говорят поэтому, что
сингулярные числа матрицы инвариантны по отношению к унитарным преобразовани-
ям).

19.4. Пусть A ∈ Mm,n — произвольная матрица, ρ1, ρ2, . . . , ρr — ее сингулярные
числа. Докажите, что

max
16k6r

ρk 6

 m,n∑
i,j=1

|aij |2
1/2

. (19.13)
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9. Сингулярные числа оператора характеризуют чувствитель-
ность решения линейного уравнения по отношению к изменению его
правой части. Пусть A — невырожденный оператор, действующий в
евклидовом пространстве Xn. Рассмотрим наряду с уравнением

Ax = y (19.14)

уравнение
Ax = ỹ. (19.15)

Поскольку оператор A невырожден, оба уравнения однозначно раз-
решимы. Пусть x — решение уравнения (19.14), x̃ — решение уравне-
ния (19.15). Величину δx = |x − x̃|/|x| называют величиной относи-
тельного изменения решения при изменении правой части. Выясним,
как она зависит от δy = |y − ỹ|/|y| — величины относительного из-
менения правой части. Представим векторы y, ỹ в виде разложений

по сингулярному базису: y =
n∑

k=1

ηkq
k, ỹ =

n∑
k=1

η̃kq
k. Тогда вслед-

ствие (19.1) получим x = A−1y =
n∑

k=1

ηk
ρk

ek, x̃ = A−1ỹ =
n∑

k=1

η̃k
ρk

ek,

поэтому, используя неравенства ρ1 > ρ2 > · · · > ρn > 0, будем иметь,
что

δ2x =

n∑
k=1

|ηk − η̃k|2

ρ2k
n∑

k=1

|ηk|2

ρ2k

6 ρ21
ρ2n

n∑
k=1

|ηk − η̃k|2

n∑
k=1

|ηk|2
=

ρ21
ρ2n

δ2y. (19.16)

Таким образом,
δx 6

ρ1
ρn

δy. (19.17)

Величина ρ1/ρn, характеризующая устойчивость решения уравне-
ния (19.14) по отношению к изменению его правой части, называется
числом обусловленности оператора A и обозначается через cond(A).
Очевидно, cond(A) > 1 для любого оператора A.

Упражнения.

19.5. Покажите, что при определенном выборе y и ỹ неравенство (19.17) превра-
щается в равенство, и в этом смысле оценка (19.17) неулучшаема.

19.6. Приведите примеры операторов, для которых число обусловленности равно
единице.
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20. Основные неравенства

Вещественная функция f вещественной переменной называется
выпуклой на интервале (a, b), если для любых точек x1, x2 из этого
интервала и для любого t ∈ [0, 1] выполнено неравенство

f(tx1 + (1− t)x2) 6 tf(x1) + (1− t)f(x2). (20.1)

Геометрически это означает, что любая точка графика функции f
на отрезке [x1, x2] лежит ниже хорды, стягивающей точки (x1, f(x1)),
(x2, f(x2)), или на этой же хорде.

Теорема 1. Пусть функция f дифференцируема на интерва-
ле (a, b), и ее производная не убывает на интервале (a, b). Тогда f —
выпуклая функция на интервале (a, b).

Доказательство. Достаточно установить, что при любых
x1, x2 ∈ (a, b), x1 < x2, функция φ вещественной переменной t, за-
даваемая равенством

φ(t) = f((1− t)x1 + tx2)− (1− t)f(x1)− tf(x2)

неположительна для всех t из отрезка [0, 1]. Нетрудно видеть, что
φ(0) = 0, φ(1) = 0, а φ′(t) не убывает на отрезке [0, 1]. Пусть
t — произвольным образом фиксированная точка из интервала (0, 1).
Используя формулу конечных приращений Лагранжа, получим, что
φ(t) = φ(t) − φ(0) = tφ′(t1), где t1 — некоторая точка из интервала
(0, t). Аналогично получаем, что φ(t) = (t − 1)φ′(t2), где t2 — точка
из интервала (t, 1). Отсюда следует, что

φ(t) = t(t− 1)(φ′(t2)− φ′(t1)) 6 0. �

При помощи теоремы 1 легко доказывается, что функция − ln(x)
выпукла на интервале (0,∞). Поэтому для любых положительных
чисел a, b и любых p, q > 1 и таких, что 1/p+ 1/q = 1,

ln(ap/p+ bq/q) > ln(ap)/p+ ln(bq)/q = ln(ab),



20. Основные неравенства 59

следовательно, ab 6 ap/p+bq/q. Очевидно, что последнее неравенство
верно и при ab = 0. Далее, поскольку |ab| 6 |a||b|, то

|ab| 6 |a|p/p+ |b|q/q (20.2)

для любых, вообще говоря, комплексных чисел a, b. Неравенство
(20.2) называют неравенством Юнга1).

Теорема 2 (неравенство Гёльдера). Пусть x, y ∈ Cn, p > 1,
1/p+ 1/q = 1. Тогда∣∣∣∣∣

n∑
k=1

xkyk

∣∣∣∣∣ 6
(

n∑
k=1

|xk|p
)1/p( n∑

k=1

|yk|q
)1/q

. (20.3)

Доказательство. Доказываемое неравенство выполнено, если
хотя бы один из векторов x, y равен нулю. Для ненулевых x, y, ис-
пользуя неравенство Юнга, получим при l = 1, 2, . . . , n

|xl|(
n∑

k=1

|xk|p
)1/p

|yl|(
n∑

k=1

|yk|q
)1/q

6 |xl|p

p
n∑

k=1

|xk|p
+

|yl|q

q
n∑

k=1

|yk|q
.

Суммируя все эти неравенства, будем иметь

n∑
k=1

|xk||yk| 6
(

n∑
k=1

|xk|p
)1/p( n∑

k=1

|yk|q
)1/q

,

откуда, очевидно, следует (20.3). �
При p = 2 неравенство (20.3) называют неравенством Коши.
Теорема 3 (неравенство Минковского). Пусть x, y ∈ Cn,

p > 1. Тогда(
n∑

k=1

|xk + yk|p
)1/p

6
(

n∑
k=1

|xk|p
)1/p

+

(
n∑

k=1

|yk|p
)1/p

. (20.4)

Доказательство. Будем считать x, y такими, что левая часть
неравенства (20.4) положительна, так как в противном случае нера-
венство (20.4) выполняется очевидным образом. Ясно, что

1)Уильям Генри Юнг (William Henry Young; 1863 — 1942) — английский математик.
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n∑
k=1

|xk + yk|p =
n∑

k=1

|xk + yk|p−1|xk + yk| 6

6
n∑

k=1

|xk + yk|p−1|xk|+
n∑

k=1

|xk + yk|p−1|yk|. (20.5)

Оценим суммы в правой части последнего неравенства, используя
неравенство Гёльдера:

n∑
k=1

|xk + yk|p−1|xk| 6
(

n∑
k=1

|xk + yk|(p−1)q

)1/q( n∑
k=1

|xk|p
)1/p

, (20.6)

n∑
k=1

|xk + yk|p−1|yk| 6
(

n∑
k=1

|xk + yk|(p−1)q

)1/q( n∑
k=1

|yk|p
)1/p

, (20.7)

где 1/p + 1/q = 1 и, следовательно, (p − 1)q = p. Поэтому из (20.5)–
(20.7) вытекает, что

n∑
k=1

|xk + yk|p 6

6
(

n∑
k=1

|xk + yk|p
)1/q

( n∑
k=1

|xk|p
)1/p

+

(
n∑

k=1

|yk|p
)1/p

 ,

откуда, учитывая равенство 1− 1/q = 1/p, получим (20.4). �

21. Нормы на пространстве Cn

1. Наряду с введенным выше понятием длины (или модуля) век-
тора x ∈ Cn во многих случаях оказывается удобным использовать
более общее понятие, а именно, понятие нормы вектора.

Будем говорить, что на пространстве Cn введена норма, если каж-
дому вектору x ∈ Cn однозначно поставлено в соответствие веще-
ственное число ∥x∥ (читается: норма x). При этом должны быть вы-
полнены следующие условия (аксиомы нормы):

1) ∥x∥ > 0 для любого x ∈ Cn, равенства ∥x∥=0 и x=0 эквива-
лентны;

2) ∥αx∥ = |α|∥x∥ для любых x ∈ Cn, α ∈ C;
3) ∥x+ y∥ 6 ∥x∥+ ∥y∥ для любых x, y ∈ Cn.
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Условие 3) обычно называют неравенством треугольника.
Отметим неравенство
4)
∣∣∥x∥ − ∥y∥

∣∣ 6 ∥x− y∥ ∀ x, y ∈ Cn,
которое вытекает из аксиомы 3). В самом деле,

∥x∥ = ∥x− y + y∥ 6 ∥x− y∥+ ∥y∥.

Аналогично,
∥y∥ 6 ∥x− y∥+ ∥x∥.

Неравенство 4) есть просто более краткая запись этих неравенств.

2. Приведем примеры норм на пространстве Cn.

1) Пусть p > 1. Равенство ∥x∥p =
( n∑

k=1

|xk|p
)1/p

определяет

норму. Действительно, аксиомы 1), 2) выполнены очевидным об-
разом, а неравенство 3) при p = 1 непосредственно вытекает из
свойств модуля, а при p > 1 совпадает с неравенством Минковско-
го (20.4).Отметим, что ∥x∥22 = |x|2 = (x, x), для любого x ∈ Cn, здесь
и далее в этой главе (·, ·) — стандартное скалярное произведение на
пространстве Cn.

2) Положим ∥x∥∞ = max
16k6n

|xk|. Элементарно проверяется, что это
равенство определяет норму.

3) Пусть A — эрмитова положительно определенная матри-
ца. Функция ∥x∥A = (Ax, x)1/2 есть норма на пространстве Cn.
Для обоснования этого факта достаточно вспомнить, что соотноше-
ние (x, y)A = (Ax, y) определяет скалярное произведение на про-
странстве Cn (см. упражнение 1, с. 223, а также п. 2, с. 128, [5]).

3. Любая норма непрерывна на всем пространства Cn. В самом
деле, пусть x, y — произвольные точки Cn. Представим их в виде

разложений по естественному базису пространства Cn: x =
n∑

k=1

xki
k,

y =
n∑

k=1

yki
k. Используя теперь неравенство треугольника, получим

∥x − y∥ 6
n∑

k=1

∥ik∥|xk − yk|, откуда, очевидно, вытекает, что если x

стремится к y, то ∥x− y∥ стремится к нулю.



62 Глава 4. Нормы векторов и матриц

4. Будем говорить, что последовательность {xk} ⊂ Cn сходится
к вектору x ∈ Cn по норме, если lim

k→∞
∥x − xk∥ = 0. В п. 3, фак-

тически, показано, что если последовательность векторов сходится
покомпонентно, то она сходится и по любой норме, введенной на про-
странстве Cn. Ниже будет установлено, что справедливо и обратное
утверждение.

5. Говорят, что нормы ∥ · ∥(1) и ∥ · ∥(2) эквивалентны если суще-
ствуют положительные постоянные c1 и c2 такие, что

c1∥x∥(1) 6 ∥x∥(2) 6 c2∥x∥(1) ∀x ∈ Cn. (21.1)

Теорема 1. Любые две нормы на пространстве Cn эквивалент-
ны.

Доказательство. Отношение эквивалентности норм, очевид-
но, транзитивно. Поэтому достаточно показать, что любая норма ∥ ·∥
эквивалентна норме ∥ · ∥2 = | · |, т. е. показать, что существуют поло-
жительные постоянные c1, c2 такие, что

c1|x| 6 ∥x∥ 6 c2|x| ∀x ∈ Cn. (21.2)

Пусть S1(0) — множество всех векторов из пространства Cn, удовле-
творяющих условию |x| = 1 (S1(0) — сфера единичного радиуса с
центром в нуле). Это множество ограничено и замкнуто в простран-
стве Cn. Функция φ(x1, x2 . . . , xn) = ∥x∥, как показано в п. 3, непре-
рывна на Cn. Поэтому по теореме Вейерштрасса (см. курс математи-
ческого анализа) существуют точки x1, x2, принадлежащие S1(0), и
такие, что ∥x1∥ = min

x∈S1(0)
∥x∥, ∥x2∥ = max

x∈S1(0)
∥x∥. Положим c1 = ∥x1∥,

c2 = ∥x2∥. Ясно, что 0 6 c1 6 c2. Причем c1 не может равняться нулю,
так как в противном случае x1 = 0, но, с другой стороны, x1 ∈ S1(0),
поэтому |x1| = 1, и, стало быть, x1 ̸= 0. Итак, для любого x ∈ S1(0)
выполнены неравенства 0 < c1 6 ∥x∥ 6 c2. Пусть теперь x —
произвольный вектор из Cn, не равный нулю. Тогда, очевидно, век-
тор (1/|x|)x принадлежит S1(0), следовательно, c1 6 ∥(1/|x|)x∥ 6 c2,
откуда вытекает, что для вектора x выполнены неравенства (21.2). Ес-
ли x = 0, то неравенства (21.2) выполняются очевидным образом. �

6. Из теоремы 1 вытекает, что всякая норма на пространстве Cn

эквивалентна норме ∥·∥2, поэтому из сходимости последовательности
векторов по любой норме вытекает ее покомпонентная сходимость.
Важно иметь в виду, что постоянные c1, c2, вообще говоря, зависят



21. Нормы на пространстве Cn 63

от n, т. е. от размерности пространства Cn. Приведем, например, сле-
дующие оценки:

∥x∥∞ 6 ∥x∥p ∀ x ∈ Cn при любом p > 1; (21.3)

∥x∥p 6 ∥x∥q ∀x ∈ Cn, если p > q > 1; (21.4)

∥x∥p 6 n1/p−1/q∥x∥q ∀x ∈ Cn, если q > p > 1; (21.5)

∥x∥p 6 n1/p∥x∥∞ ∀x ∈ Cn при любом p > 1. (21.6)
Прежде чем доказывать эти неравенства заметим, что они явля-

ются точными, т. е. для каждого из них можно указать такой нену-
левой вектор x, на котором неравенство превращается в равенство.
Именно, первые два неравенства обращаются в равенства, например,
при x = (1, 0, . . . , 0), а последние два — при x = (1, 1, . . . , 1).

Приведем теперь соответствующие доказательства.
1) Пусть ∥x∥∞ ≡ max

16k6n
|xk| = |xi|. Очевидно, что

|xi| = (|xi|p)1/p 6
(

n∑
k=1

|xk|p
)1/p

= ∥x∥p.

2) Выполнив очевидные выкладки, получим

∥x∥p =

(
n∑

k=1

|xk|q|xk|p−q

)1/p

6 ∥x∥(p−q)/p
∞ ∥x∥q/pq ,

откуда, используя (21.3), приходим к (21.4).
3) Представим |xk|p в виде |xk|p · 1 и используем для оценки ∥x∥p

неравенство Гёльдера с показателями t = q/p > 1 и r = t/(t− 1) =
= q/(q − p). Получим, что ∥x∥p =

=

(
n∑

k=1

|xk|p
)1/p

6
(

n∑
k=1

|xk|q
)1/q( n∑

k=1

1

)(q−p)/(pq)

= n1/p−1/q∥x∥q.

Доказательство неравенства (21.6) читатель легко выполнит са-
мостоятельно.

Упражнение 21.1. Показать, что для любого x ∈ Cn выполнено предельное со-
отношение ∥x∥∞ = lim

p→∞
∥x∥p.
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7. Норма вектора называется абсолютной, если она зависит
только от модулей компонент вектора. Например, норма ∥ · ∥p при
p > 1 абсолютна, норма на пространстве C2, определяемая равен-
ством

∥x∥ = (|x1|2 + |x2|2 − Re(x1x2))
1/2,

не абсолютна.
Пусть D = diag(d1, d2, . . . , dn), 0 6 di 6 1, i = 1, 2, . . . , n,

x ∈ Cn. Тогда для любой абсолютной нормы ∥Dx∥ 6 ∥x∥. Очевидно,
достаточно убедиться в этом, когда D = diag(1, . . . , 1, dk, 1, . . . , 1),
dk ∈ [0, 1]. Имеем

Dx =
1

2
(1− dk)(x1, x2, . . . ,−xk, . . . , xn) +

1

2
(1− dk)x+ dkx,

следовательно, ∥Dx∥ 6 1
2(1− dk)∥x∥+ 1

2(1− dk)∥x∥+ dk∥x∥ = ∥x∥.
Норма на пространстве Cn называется монотонной, если из нера-

венств |xk| 6 |yk|, k = 1, 2, . . . , n, следует, что ∥x∥ 6 ∥y∥. Всякая
монотонная норма является абсолютной. Действительно, если норма
монотонна, то для любого вектора x выполнены неравенства

∥(|x1|, |x2|, . . . , |xn|)∥ 6 ∥(x1, x2, . . . , xn)∥ 6 ∥(|x1|, |x2|, . . . , |xn|)∥.

Обратно, всякая абсолютная норма монотонна. В самом деле, если
для векторов x, y имеем, что |xk| 6 |yk|, k = 1, 2, . . . , n, то суще-
ствует матрица D = diag(d1e

iφ1, d2e
iφ2, . . . , dne

iφn)1), 0 6 dk 6 1,
k = 1, 2, . . . , n, такая, что x = Dy. Используя теперь определение
абсолютной нормы и неравенство, установленное в п. 7, нетрудно убе-
диться, что ∥x∥ 6 ∥y∥.

22. Теорема Хана — Банаха. Дуальные нормы

1. Будем говорить, что на пространстве Cn задан веществен-
ный линейный функционал f , если каждому x ∈ Cn поставлено в
соответствие однозначно вещественное число f(x) и

f(αx+ βy) = αf(x) + βf(y) ∀x, y ∈ Cn, α, β ∈ R. (22.1)

Будем говорить, что на пространстве Cn задан линейный функци-
онал f , если каждому x ∈ Cn поставлено в соответствие однозначно
комплексное число f(x) и это соответствие линейно, т. е.

f(αx+ βy) = αf(x) + βf(y) ∀x, y ∈ Cn, α, β ∈ C. (22.2)
1)Напомним, что по определению eiφ = cosφ+ i sinφ.
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2. Если на пространстве Cn определена некоторая норма ∥ · ∥, то
каждому линейному функционалу f (вещественному или комплекс-
ному) можно поставить в соответствие его норму ∥f∥, полагая

∥f∥ = sup
x∈Cn, x̸=0

|f(x)|
∥x∥

= sup
x∈Cn, ∥x∥=1

|f(x)|. (22.3)

Для каждого линейного функционала

∥f∥ < ∞. (22.4)

Докажем неравенство (22.4) применительно к вещественному случаю.
Для комплексного случая рассуждения аналогичны и несколько про-
ще. Пусть z = (z1, z2, . . . , zn) ∈ Cn, ∥z∥ = 1. Будем считать, что
zk = xk + iyk, xk, yk ∈ R, k = 1, 2, . . . , n. Имеем

f(z) = f(
n∑

k=1

(xk + iyk)ik) =
n∑

k=1

(xkf(ik) + ykf(iik)),

следовательно, |f(z)| 6 max( max
16k6n

|f(ik)|, max
16k6n

|f(iik)|)
n∑

k=1

|zk|. По-

скольку все нормы на пространстве Cn эквивалентны, отсюда вы-
текает, что |f(z)| 6 c∥z∥ = c, где c — постоянная, зависящая только
от n, а это и означает справедливость (22.4).

Теорема 1 (Хан — Банах). Пусть L — подпространство
пространства Cn, f — линейный функционал, определенный на L,

∥f∥ = sup
x∈L, ∥x∥=1

|f(x)|. (22.5)

Существует линейный функционал F , определенный на Cn такой,
что F (x) = f(x) для всех x ∈ L и

∥F∥ = sup
x∈Cn, ∥x∥=1

|F (x)| = ∥f∥1). (22.6)

Доказательство. Предположим сначала, что f — веществен-
ный линейный функционал. Естественно, мы считаем, что f — не
нуль тождественный, поэтому без ограничения общности рассужде-
ний можно положить, что ∥f∥ = 1. Исключим из рассмотрения три-
виальный случай, когда L = Cn, и пусть u /∈ L, а L1 ⊃ L — множество

1)Говорят, что F есть продолжение функционала f на все пространство Cn с сохранением
нормы.
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векторов вида x + tu, где x ∈ L, t ∈ R. Вследствие неравенства тре-
угольника для любых x, y ∈ L имеем

f(x)− f(y) 6 ∥x− y∥ 6 ∥x+ u∥+ ∥y + u∥,

поэтому f(x)−∥x+ u∥ 6 f(y) + ∥y+ u∥, и, значит существует число
a такое. что

sup
x∈L

(f(x)− ∥x+ u∥) 6 a 6 inf
x∈L

(f(x) + ∥x+ u∥). (22.7)

Определим функционал f1 на L1, полагая f1(x + tu) = f(x) − at
(проверьте, что f1 вещественный линейный функционал!). Из (22.7)
следует, что |f(x)− a| 6 ∥x+ u∥ ∀x ∈ L, значит,

|f1(x+ u)| 6 ∥x+ u∥ ∀x ∈ L.

При t ̸= 0 получаем f1(x+ tu) = tf1(t
−1x+ u), поэтому

|f1(x+ tu)| = |t||f1(t−1x+ u)| 6 |t|∥t−1x+ u)∥ = ∥x+ tu∥,

или |f1(x)| 6 ∥x∥ ∀x ∈ L1. Рассуждая точно так же, построим ве-
щественный линейный функционал f2, определенный на множестве
векторов L2 ⊃ L1 вида x+ t(iu), где x ∈ L1, t ∈ R, такой, что

|f2(x)| 6 ∥x∥ ∀x ∈ L2.

Нетрудно видеть, что множество L2 совпадает, с подпространством
пространства Cn, натянутым на базис подпространства L и вектор
u. Таким образом, построено продолжение вещественного линейно-
го функционала f , заданного на L, на более широкое подпростран-
ство. Последовательно увеличивая размерность подпространств, мы
построим вещественный линейный функционал F , определенный на
всем пространстве Cn, такой, что F (x) = f(x) ∀x ∈ L, и

|F (x)| 6 ∥x∥ ∀ x ∈ Cn.

Из последней оценки и определения (22.5) вытекает, что ∥F∥ = ∥f∥.
Пусть теперь f — линейный (комплексный) функционал, опре-

деленный на L. Представим его в виде f(x) = g(x) + ih(x) ∀x ∈ L,
где g, h — линейные вещественные функционалы, определенные на L.
Вследствие линейности f получаем

f(ix) = g(ix) + ih(ix) = if(x) = ig(x)− h(x),
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откуда h(x) = −g(ix), поэтому f(x) = g(x) − ig(ix). По условию
∥f∥ = 1, следовательно, ∥g∥ 6 1. Используя конструкцию, описан-
ную в предыдущей части доказательства, построим линейный веще-
ственный функционал G(x), определенный на всем пространстве Cn,
такой, что G(x) = g(x) ∀x ∈ L, |G(x)| 6 ∥x∥ ∀ x ∈ Cn. Пусть далее
F (x) = G(x) − iG(ix) ∀x ∈ Cn. Ясно, что F (x) = f(x) ∀x ∈ L. По-
кажем, что функционал F линеен. Для этого (в дополнение к преды-
дущему) достаточно установить, что F (ix) = iF (x) ∀x ∈ Cn, а это
непосредственно следует из определения. Действительно,

F (ix) = G(ix) + iG(x) = i(G(x)− iG(ix)).

Осталось убедится в справедливости равенства (22.6). Фиксируем
произвольно x ∈ Cn. Выберем вещественное число θ так, что-
бы F (x)eiθ было неотрицательно. Тогда

|F (x)| = F (eiθx) = G(eiθx) 6 ∥eiθx∥ = ∥x∥.
Вместе с (22.5) это неравенство гарантирует выполнение (22.6). �

Следствие 1. Пусть x0 ∈ Cn. Существует линейный функци-
онал F , определенный на Cn, такой, что F (x0) = ∥x0∥, ∥F∥ = 1.

Доказательство. Ведем в рассмотрение подпространство L
пространства Cn векторов вида αx0, α ∈ C. Определим на этом под-
пространстве линейный функционал f , полагая f(αx0) = α∥x0∥. То-
гда, очевидно, f(x0) = ∥x0∥, ∥f∥ = 1. Осталось, пользуясь теоремой
Хана — Банаха, продолжить функционал f на все пространство Cn с
сохранением нормы. �

3. Пространство Cn можно рассматривать как евклидово, опре-
делив на нем скалярное произведение (например, стандартное). По
теореме Рисса (см. с. 213, [5]) всякому линейному функционалу f
на Cn можно поставить в соответствие один и только один вектор
y ∈ Cn такой что f(x) = (x, y) ∀ x ∈ Cn, и, наоборот, всякий вектор
y ∈ Cn порождает линейный функционал: f(x) = (x, y) ∀x ∈ Cn.
Пусть ∥ · ∥ — некоторая норма на пространстве Cn. Для каждого
y ∈ Cn положим

∥y∥∗ = ∥f∥ = sup
x∈Cn, x̸=0

|(x, y)|
∥x∥

= sup
x∈Cn, ∥x∥=1

|(x, y)|. (22.8)

Элементарно проверяется что соотношение (22.8) определяет норму
на пространстве Cn. Эта норма называется дуальной по отношению
к исходной норме. Следующая теорема показывает, что понятие ду-
альности норм взаимно.
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Теорема 2. Пусть ∥·∥ — произвольная норма пространстве Cn,
∥ · ∥∗ — дуальная по отношению к ней норма. Тогда

∥x∥ = sup
y∈Cn, ∥y∥∗=1

|(x, y)|. (22.9)

Доказательство. Непосредственно из определения дуальной
нормы вытекает, что для любого не равного нулю y ∈ Cn справедли-
во неравенство ∥x∥ > |(x, y)|/∥y∥∗, причем в силу следствия 1 можно
указать такой вектор y, для которого ∥x∥ = |(x, y)|/∥y∥∗. Эти рас-
суждения показывают, что равенство (22.9) выполнено. �

В ходе доказательства теоремы 2 мы установили, что справедливо
Следствие 2. Для любых x, y ∈ Cn выполнено неравенство

|(x, y)| 6 ∥x∥∥y∥∗. (22.10)

Неравенство (22.10) называют обобщенным неравенством Коши
— Буняковского.

Пример. Нормы ∥·∥p, ∥·∥q при p > 1, 1/p+1/q = 1 дуальны, если
под скалярным произведением на Cn понимать стандартное скаляр-
ное произведение. В самом деле, для любых x, y ∈ Cn по неравенству
Гёльдера (см. (20.3)) имеем |(x, y)| 6 ∥x∥p∥y∥q. Пусть xk = ρke

iφk ,
k = 1, 2, . . . , n. Положим yk = ρp−1

k eiφk , k = 1, 2, . . . , n. Элементар-
ные вычисления показывают, что |(x, y)| = ∥x∥p∥y∥q. Следовательно,
∥x∥p = sup

y∈Cn, y ̸=0
|(x, y)|/∥y∥q.

Упражнение 22.1. Докажите, что нормы ∥ · ∥1 и ∥ · ∥∞ дуальны относительно
стандартного скалярного произведения на Cn.

23. Нормы на пространстве матриц

1. Как и ранее, через Mm,n будем обозначать множество всех
прямоугольных матриц с m строками и n столбцами с комплексны-
ми, вообще говоря, элементами. При m = n будем писать Mn. Опре-
делив на множестве Mm,n обычным образом операции сложения двух
матриц и умножения матрицы на число, мы превратим его в ком-
плексное линейное пространство размерности mn. На этом линейном
пространстве введем норму, т. е. поставим в соответствие каждой мат-
рице A ∈ Mm,n число ∥A∥ так, что:

1) ∥A∥ > 0 для любой матрицы A ∈ Mm,n, равенства ∥A∥ = 0
и A = 0 эквивалентны;
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2) ∥αA∥ = |α|∥A∥ для любой матрицы A ∈ Mm,n и любого α ∈ C;
3) ∥A+B∥ 6 ∥A∥+ ∥B∥ для любых матриц A,B ∈ Mm,n.
Говорят в этом случае, что на пространстве матриц Mm,n введе-

на векторная норма. Понятно, что она обладает всеми свойствами,
которые были изучены в предыдущем параграфе применительно к
норме векторов.

Часто используют так называемые согласованные нормы на про-
странстве матриц. При этом дополнительно к 1)–3) должна выпол-
няться аксиома

4) ∥AB∥mp 6 ∥A∥mn∥B∥np для любых матриц A ∈ Mmn, B ∈ Mnp.
Здесь нижними индексами помечены нормы на соответствующих про-
странствах матриц.

Не всякие векторные нормы на пространстве матриц является со-
гласованными. Пусть, например,

∥A∥ = max
16i,j6n

|aij| (23.1)

для A ∈ Mn. Очевидно, это — векторная норма, но она не является
согласованной на Mn. Действительно, если

A =

[
1 1
1 1

]
, то AA =

[
2 2
2 2

]
,

причем ∥A∥ = 1, ∥AA∥ = 2, и неравенство ∥AA∥ 6 ∥A∥∥A∥ не вы-
полнено.

Упражнение 23.1. Пусть ∥ · ∥ — согласованная норма на Mn, S ∈ Mn — произ-
вольная невырожденная матрица. Покажите, что формула ∥A∥(s) = ∥SAS−1∥ ∀A ∈ Mn

определяет согласованная норму на Mn.

2. Приведем важные примеры согласованных матричных норм.

1) Положим ∥A∥l1 =
n∑

i,j=1

|aij| для A ∈ Mn. Очевидно, три первых

аксиомы нормы выполнены. Проверим аксиому 4). По определению
для A,B ∈ Mn имеем

∥AB∥l1 =
n∑

i,j=1

∣∣∣∣∣
n∑

k=1

aikbkj

∣∣∣∣∣ ,
следовательно,

∥AB∥l1 6
n∑

i,j,k=1

|aik||bkj|.
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Добавляя к сумме в правой части последнего неравенства неотрица-
тельные слагаемые, усилим неравенство:

∥AB∥l1 6
n∑

i,j,k,m=1

|aik||bmj|.

Осталось заметить, что
n∑

i,j,k,m=1

|aik||bmj| =
n∑
i,k

|aik|
n∑

j,m=1

|bmj| = ∥A∥l1∥B∥l1.

2) Положим ∥A∥E =

(
m,n∑
i,j=1

|aij|2
)1/2

для A ∈ Mm,n. Эта норма

порождается естественным скалярным произведением на простран-
стве Cmn, поэтому три первых аксиомы для нее выполняются. Нор-
му ∥A∥E обычно называют евклидовой нормой или нормой Фробени-
уса1). Докажем справедливость четвертой аксиомы для этой нормы,
опираясь на неравенство Коши (см. с. 59). Пусть A ∈ Mm,n, B ∈ Mn,p.
Тогда

∥AB∥2E =

m,p∑
i,j=1

∣∣∣∣∣
n∑

k=1

aikbkj

∣∣∣∣∣
2

6
m,p∑
i,j=1

n∑
k=1

|aik|2
n∑

k=1

|bkj|2 =

=

m,n∑
i,k=1

|aik|2
n,p∑

k,j=1

|bkj|2 = ∥A∥2E∥B∥2E.

Упражнение 23.2. Доказать, что норма ∥A∥ = n max
16i,j6n

|aij | является согласован-

ной на пространстве Mn.

3. Пусть A ∈ Mm,n, ∥ · ∥(m), ∥ · ∥(n) — некоторые нормы на про-
странствах Cm, Cn, соответственно. Тогда существует неотрицатель-
ное число NA такое, что

∥Ax∥(m) 6 NA∥x∥(n) ∀x ∈ Cn. (23.2)

В самом деле, поскольку всякая норма ∥ · ∥ на Cn эквивалентна нор-
ме ∥ · ∥∞, то c1∥x∥∞ 6 ∥x∥(n) ∀x ∈ Cn, ∥x∥(m) 6 c2∥x∥∞ ∀x ∈ Cm,
где c1, c2 — положительные не зависящие от x постоянные. Поэтому
справедлива следующая цепочка неравенств:

1)Фердинанд Георг Фробениус (Ferdinand Georg Frobenius; 1849 — 1917) — немецкий матема-
тик.
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∥Ax∥(m) 6 c2∥Ax∥∞ = c2 max
16i6m

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣ 6 c2∥x∥∞ max
16i6m

n∑
j=1

|aij| 6

6 (c2/c1) max
16i6m

n∑
j=1

|aij|∥x∥(n).

Обозначим через ν(A) точную нижнюю грань всех чисел NA, для
которых выполнено (23.2). Очевидно, что можно дать и другое, эк-
вивалентное, определение функции ν на пространстве Mm,n:

ν(A) = sup
x∈Cn, x̸=0

∥Ax∥m
∥x∥n

= sup
x∈Cn, ∥x∥n=1

∥Ax∥m. (23.3)

Понятно, что
∥Ax∥m 6 ν(A)∥x∥n ∀x ∈ Cn.

Упражнение 23.3. Докажите, что для функции ν выполнены все аксиомы согла-
сованной матричной нормы.

Матричную норму, сконструированную указанным способом, на-
зывают подчиненной норме векторов или операторной нормой.

Упражнение 23.4. Докажите, что при любом способе определения норм на про-
странствах Cm, Cn существует вектор x0 ∈ Cn такой, что ∥x0∥n = 1 и

∥Ax0∥m = sup
x∈Cn, ∥x∥n=1

∥Ax∥m,

т. е. в определении (23.3) символ точной верхней грани можно заменить на символ
максимума.

Нетрудно убедиться, что при любом способе задания нормы на Cn

подчиненная норма единичной матрицы (порядка n) равна единице.
Не всякая норма, определенная на Mn, подчинена какой либо нор-

ме векторов. Например, норма Фробениуса не подчинена никакой нор-
ме векторов, так как ∥I∥E =

√
n. Норма (23.1) также не является

операторной, так как она не согласованная норма на Mn

4. Приведем примеры вычисления подчиненных матричных
норм.

1) Пусть норма на пространстве Cn определена, как в п. 2, с. 61,

равенством ∥x∥1 =
n∑

k=1

|xk|. Тогда подчиненная норма матрицы есть

∥A∥1 = max
x∈Cn, ∥x∥1=1

∥Ax∥1.
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Нетрудно видеть, что для любого вектора x ∈ Cn, ∥x∥1 = 1,

∥Ax∥1 =
n∑

i=1

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣ 6
n∑

i=1

n∑
j=1

|aij||xj| =
n∑

j=1

|xj|
n∑

i=1

|aij| 6

6 max
16j6n

n∑
i=1

|aij|
n∑

j=1

|xj| = max
16j6n

n∑
i=1

|aij|.

Предположим, что max
16j6n

n∑
i=1

|aij| =
n∑

i=1

|aik|, и положим, что x̃ есть

вектор естественного базиса пространства Cn такой, что x̃k = 1, а все
остальные координаты вектора x̃ равны нулю. Ясно, что ∥x̃∥1 = 1, а

∥Ax̃∥1 =
n∑

i=1

|aik|. Таким образом, доказано, что

∥A∥1 = max
x∈Cn, ∥x∥1=1

∥Ax∥1 = max
16j6n

n∑
i=1

|aij|.

Поэтому норму ∥A∥1 часто называют столбцовой нормой матрицы A.

2) Определим норму на Cn равенством ∥x∥∞ = max
16k6n

|xk|. Тогда

для любого x ∈ Cn такого, что ∥x∥∞ = 1

∥Ax∥∞ = max
16i6n

∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣ 6 max
16i6n

n∑
j=1

|aij||xj| 6

6 max
16j6n

|xj| max
16i6n

n∑
j=1

|aij| = max
16i6n

n∑
j=1

|aij|.

Положим, что max
16i61

n∑
j=1

|aij| =
n∑

j=1

|akj| и определим вектор x̃ ∈ Cn при

помощи соотношений

x̃j =

{
ākj/|akj|, akj ̸= 0,

1, akj = 0,

где j = 1, 2, . . . , n, черта, как обычно, есть знак комплексного сопря-
жения. Ясно, что ∥x̃∥∞ = 1, причем элементарные выкладки показы-
вают, что для любого i = 1, 2, . . . , n выполнено неравенство∣∣∣∣∣

n∑
j=1

aijx̃j

∣∣∣∣∣ 6
n∑

j=1

|aij| 6
n∑

j=1

|akj|,
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а для i = k ∣∣∣∣∣
n∑

j=1

aijx̃j

∣∣∣∣∣ =
n∑

j=1

|akj|,

т. е. ∥Ax̃∥∞ = max
16i61

n∑
j=1

|aij|. Таким образом,

∥A∥∞ = max
x∈Cn, ∥x∥∞=1

∥Ax∥∞ = max
16i6n

n∑
j=1

|aij|.

Норму ∥A∥∞ часто называют строчной нормой матрицы A.
3) Введем на пространствах Cm, Cn норму, согласованную со стан-

дартным скалярным произведением, т. е. положим ∥x∥2 = |x|. Для
любого x ∈ Cn имеем ∥Ax∥22 = (Ax,Ax) = (A∗Ax, x). Матрица A∗A
эрмитова и неотрицательна. Поэтому существует ортонормирован-
ный базис {ek}nk=1 такой, что A∗Aek = ρ2ke

k, ρk = ρk(A) — неотри-
цательные числа, сингулярные числа матрицы A, k = 1, 2, . . . , n (см.
по этому поводу п. 2, с. 54, и приводимые там ссылки). Представим

вектор x в виде разложения по базису x =
n∑

k=1

ξke
k и предположим,

что ∥x∥2 = 1. Тогда
n∑

k=1

|ξk|2 = 1, ∥Ax∥22 =
n∑

k=1

ρ2k|ξk|2 6 max
16k6n

ρ2k. Пусть

ρj = max
16k6n

ρk. Полагая x̃ = ej, получим ∥Ax̃∥2 = ρ2j . Таким образом,

доказано, что max
x∈Cn, ∥x∥2=1

∥Ax∥2 = max
16k6n

ρk, т. е.

∥A∥2 = max
16k6n

ρk(A). (23.4)

Отметим следующий интересный для многих приложений част-
ный случай. Будем считать, что матрица A ∈ Mn эрмитова, т. е.
A = A∗. Тогда, очевидно ρk(A) = |λk(A)|, k = 1, 2, . . . , n, где через
λk(A) обозначены собственные числа матрицы A. Таким образом, для
любой эрмитовой матрицы

∥A∥2 = max
16k6n

|λk(A)| = max
x∈Cn, x̸=0

|(Ax, x)|
(x, x)

= ρ(A), (23.5)

где ρ(A) — спектральный радиус матрицы A (см. с. 212, [5]). Нор-
му ∥A∥2 в связи с этим часто называют спектральной.

Упражнение 23.5. Докажите, что если матрица A обратима, то

cond(A) = ∥A∥2∥A−1∥2
(см. с. 57).
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Замечание 1. Часто применяют обозначение

cond(A) = cond2(A).

5. Вычисление сингулярных чисел матрицы, вообще говоря, —
довольно сложная задача. Поэтому полезно получить некоторую
оценку величины ∥A∥2, просто выражаемую через элементы матри-
цы A. Докажем, что для любой матрицы A ∈ Mmn справедливо нера-
венство ∥A∥2 6 ∥A∥E. С этой целью заметим, что элементарные вы-

кладки приводят к равенству1) tr(A∗A) =
m,n∑
i,j=1

|aij|2. С другой сторо-

ны, tr(A∗A) =
n∑

k=1

ρ2k(A) > max
16k6n

ρ2k(A), следовательно,

∥A∥2 = max
16k6n

ρk(A) 6
(

m,n∑
i,j=1

|aij|2
)1/2

= ∥A∥E. (23.6)

Упражнение 23.6. Докажите, что для любой матрицы A: 1) нормы ∥A∥2 и ∥A∥E
не меняются при умножении A (слева или справа) на любую унитарную матрицу;
2) ∥A∥2 = ∥A∗∥2.

6. Знание согласованной нормы матрицы оказывается, в частно-
сти, полезным при оценке ее спектрального радиуса, а именно, для
любой квадратной матрицы A справедливо неравенство

ρ(A) 6 ∥A∥, (23.7)

где ∥A∥ — любая согласованая норма матрицы A. В самом деле, пусть
λ, x — собственная пара матрицы A, а X — квадратная матрица,
столбцами (одинаковыми) которой служит вектор x. Тогда, очевид-
но, AX = λX и

|λ|∥X∥ = ∥AX∥ 6 ∥A∥∥X∥
для любой согласованной матричной нормы, причем ∥X∥ ̸= 0, так
как вектор x по определению собственного вектора не равен нулю.
Таким образом, для любого собственного числа λ матрицы A верно
неравенство |λ| 6 ∥A∥, а это эквивалентно (23.7).

Из оценки (23.7) очевидным образом вытекает
Следствие 1. Если некоторая согласованная норма матри-

цы A ∈ Mn меньше единицы, то A — сходящаяся матрица.

1)Здесь след матрицы вычисляется как сумма элементов ее главной диагонали.



Глава 5
Элементы теории возмущений

24. Задача на собственные значения для эрмитовой
матрицы

1. Пусть A, B — эрмитовы матрицы порядка n, λk(A), λk(B),
k = 1, 2, . . . , n, — их собственные числа. Записав очевидное равенство
A = B + (A − B) и воспользовавшись неравенствами (11.1), с. 231,
[5], а затем неравенством (23.7), с. 74, получим, что1)

max
16k6n

|λk(A)− λk(B)| 6 max
16k6n

|λk(A−B)| (24.1)

max
16k6n

|λk(A)− λk(B)| 6 ∥A−B∥, (24.2)

где ∥·∥ — любая согласованная матричная норма. Выбирая в качестве
нормы матрицы норму Фробениуса (см. с. 70), получим, что

max
16k6n

|λk(A)− λk(B)| 6
(

n∑
i,j=1

|aij − bij|2
)1/2

. (24.3)

Неравенства (24.1)–(24.3) обычно называют неравенствами Вейля.
Полагая, что |aij − bij| 6 ε, будем иметь, что

max
16k6n

|λk(A)− λk(B)| 6 nε. (24.4)

Нетрудно убедиться, что если A = I, а все элементы матрицы E
равны ε > 0, то max

16k6n
|λk(A) − λk(A + E)| = nε, т. е. оценка (24.3)

неулучшаема на множестве всех эрмитовых матриц.

2. В следующей теореме рассматриваются специальные возму-
щения эрмитовой матрицы.

1)Собственные числа эрмитовой матрицы будем всегда считать упорядоченными по невоз-
растанию, т. е. λ1 > λ2 > · · · > λn.
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Теорема 1 (≪относительная≫ теорема Вейля). Пусть λk,
k = 1, 2, . . . , n — собственные числа эрмитовой матрицы A, поряд-
ка n, λ̃k, k = 1, 2, . . . , n — собственные числа матрицы X∗AX, где
X — произвольная невырожденная матрица. Тогда

|λ̃i − λi| 6 λi∥I −X∗X∥, i = 1, 2, . . . , n, (24.5)

где ∥ · ∥ — любая согласованная матричная норма.
Доказательство. Фиксируем целое i ∈ [1, n] и запишем оче-

видное равенство X∗(A − λiI)X = H + F , где H = X∗AX − λiI,
F = λi(I − X∗X). Легко проверяется, что i-м собственным числом
матрицы A−λiI будет нуль. Используя теорему 1, с. 261, [5]1), нетруд-
но убедиться, что i-м собственным числом матрицы X∗(A−λiI)X так-
же будет нуль. Матрица H в качестве i-го собственного числа имеет
λ̃i − λi, поэтому, применяя неравенство (24.2), получим (24.5). �

Теорема 1 показывает, что при замене матрицы A на X∗AX c
невырожденной матрицей X нулевые собственные числа сохраняют-
ся, а для ненулевых гарантируется оценка относительной погрешно-
сти.

|λ̃i − λi|
|λi|

6 ∥I −X∗X∥, i = 1, 2, . . . , n.

25. Собственные числа произвольной матрицы

1. Пусть A = {aij}ni,j=1 — произвольная квадратная матрица
Положим

Ri(A) =
∑

16j6n, j ̸=i

|aij|, i = 1, 2, . . . , n,

Cj(A) =
∑

16i6n, i ̸=j

|aij|, j = 1, 2, . . . , n.

Теорема 1 (Гершгорин2)). Все собственные числа произволь-
ной квадратной матрицы A порядка n лежат в объединении кругов

GR
i = {z ∈ C : |z − aii| 6 Ri(A)}, i = 1, 2, . . . , n. (25.1)

1)В [5] упомянутая теорема сформулирована и доказана применительно к симметричным
вещественным матрицам, случай эрмитовых матриц рассматривается точно так же.

2)Семён Аронович Гершгорин (1901–1933) — советский математик.
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Доказательство. Пусть λ, x — собственная пара матрицы A
и пусть xi максимальная по модулю компонента вектора x. Очевид-
но, xi ̸= 0. Из определения собственной пары вытекает равенство

(aii − λ)xi =
∑

16j6n, j ̸=i

aijxj,

следовательно, |aii − λ||xi| 6 Ri(A)|xi|, и |aii − λ| 6 Ri(A). Таким
образом, каждое собственные число матрицы A принадлежит одному
из кругов Gi, i = 1, 2, . . . , n. �

Поскольку все собственные числа матриц A, AT совпадают, то все
они лежат также в объединении кругов

GC
i = {z : |z − aii| 6 Ci(A)}, i = 1, 2, . . . , n. (25.2)

Это есть так называемый столбцовый вариант теоремы Гершгорина.
Теорему 1 можно трактовать как теорему о возмущениях диаго-

нальной матрицы D = diag(a11, a22, . . . , ann). Она показывает, что
если недиагональные элементы матрицы A малы, то ее собственные
числа мало отличаются от собственных чисел матрицы D.

Следующие две теоремы, называемые теоремами Бауэра — Файка
распространяют теорему Гершгорина на более общий класс матриц, а
именно, на матрицы, подобные диагональным, иначе говоря, на мат-
рицы простой структуры (см. § 6, с. 189, [5]).

Теорема 2. Пусть для квадратной матрицы A = {aij}ni,j=1

существует невырожденная матрица V такая, что

V −1AV = Λ = diag(λ1, λ2, . . . , λn), (25.3)

B = {bij}ni,j=1 — произвольная квадратная матрица. Тогда все соб-
ственные числа матрицы A+B лежат в объединении кругов

Gi = {z : |z − λi| 6 ∥B∥∥V ∥∥V −1∥}, i = 1, 2, . . . , n. (25.4)

Под нормой матрицы здесь может пониматься любая норма, под-
чиненная абсолютной норме векторов.

Доказательство. Пусть λ, x есть собственная пара матри-
цы A + B, т. е. (A + B)x = λx. Тогда (λI − Λ)V −1x =
V −1BV V −1x, откуда (см. п. 7, с. 64) получаем min

16i6n
|λ− λi|∥V −1x∥ 6

∥B∥∥V −1∥∥V ∥∥V −1x∥, но V −1x ̸= 0, следовательно, min
16i6n

|λ − λi| 6

∥B∥∥V −1∥∥V ∥, поэтому λ ∈
n∪

i=1

Gi. �
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Теорема 3. Пусть выполнены условия теоремы 2. Тогда все
собственные числа матрицы A+B лежат в объединении кругов

Gi = {z : |z − λi| 6 nsi∥B∥2}, i = 1, 2, . . . , n, (25.5)

где si = ∥ui∥2∥vi∥2/|(ui, vi)|, vi — i-й столбец матрицы V , ui — i-й
столбец матрицы U = (V −1)∗.

Замечание 1. Ясно, что vi, λi, i = 1, 2, . . . , n, — собственные
пары матрицы A, ui, λ̄i, i = 1, 2, . . . , n, — собственные пары матри-
цы A∗. Каждое из чисел si, i = 1, 2, . . . , n, не меньше единицы. Их
называют коэффициентами перекоса соответствующих собственных
векторов матрицы A. Если λ — алгебраически простое собственное
число матрицы A, то, очевидно, λ̄ — алгебраически простое собствен-
ное число матрицы A∗. Отвечающие им собственные подпространства
одномерны и, следовательно, соответствующий коэффициент переко-
са определяется однозначно.

Доказательство теоремы 3. Собственное числа матриц
A + B и Λ + V −1BV = Λ + B̃, где B̃ = U ∗BV , совпадают. Исполь-
зуя столбцовую теорему Гершгорина, получим, что все собственные
числа матрицы Λ + B̃ лежат в объединении кругов

G′
i = {z : |z − λi − b̃ii| 6 Ci(B̃)}, i = 1, 2, . . . , n.

Заметим теперь, что |z−λi− b̃ii| > |z−λi|− |b̃ii|, Ci(B̃)+ |b̃ii| = ∥b̃i∥1,
где, как обычно, b̃i — i-й столбец матрицы B̃. Отсюда вытекает, что
все собственные числа матрицы A+B лежат в объединении кругов

G′′
k = {z : |z − λk| 6 ∥b̃k∥1}, k = 1, 2, . . . , n.

Оценим ∥b̃k∥1. Введем в рассмотрение векторы tk ∈ Cn с компонента-
ми

tkj =

{
b̃kj/|b̃kj |, b̃kj ̸= 0,

0, b̃kj = 0.

Элементарно проверяется равенство ∥b̃k∥1 = (B̃ik, tk), где ik — стол-
бец единичной матрицы. Отсюда, используя неравенство Коши — Бу-
няковского, получаем

∥b̃k∥1 = (BV ik, Utk) 6 ∥B∥2∥U∥2∥vk∥2∥tk∥2. (25.6)

Нетрудно убедиться, что ∥tk∥2 6
√
n. Далее, вследствие (23.6), с. 74,

имеем ∥U∥2 6
(

n∑
k=1

∥uk∥22
)1/2

. Столбцы матрицы U определяются,



26. Возмущения и обратимость матрицы 79

очевидно, с точностью до постоянных ненулевых множителей. Нор-
мируем их так, чтобы ∥uk∥2 = 1 для всех k = 1, 2, . . . , n. Очевид-
но, при этом столбцы матрицы V должны быть нормированы так,
чтобы (vk, uk) = 1 для всех k = 1, 2, . . . , n. При этом будем иметь
∥vk∥2 = ∥vk∥2∥uk∥2/|(uk, vk)| = sk. Таким образом, из (25.6) получа-
ем, что ∥b̃k∥1 6 nsk∥B∥2. �

26. Возмущения и обратимость матрицы

1. Пусть A ∈ Mn — обратимая матрица, т. е. |A| ̸= 0. Пусть,
далее, B ∈ Mn. Возникает вопрос, при каких условиях на B матрица
A+B будет также обратимой? Поскольку A+B = A(I +A−1B), то
для существования матрицы, обратной к A+B, очевидно, необходимо
и достаточно, чтобы спектр матрицы A−1B не содержал −1. Отсю-
да вытекают следующие практически важные достаточные условия
обратимости матрицы A+B:

1) матрица A+B обратима, если ρ(A−1B) < 1;
2) матрица A+B обратима, если ∥A−1B∥ < 1;
3) матрица A+B обратима, если ∥A−1∥∥B∥ < 1.

Здесь и далее в этом пункте под нормой матрицы понимается согла-
сованная матричная норма. Третье условие часто записывают так:

cond(A)(∥B∥/∥A∥) < 1, (26.1)

где cond(A) = ∥A−1∥∥A∥. Это число называют числом обусловлен-
ност матрицы A (ср. с п. 9, с. 57 ). Условие (26.1) можно интерпрети-
ровать следующим образом: матрица A + B обратима, если относи-
тельное возмущение матрицы A, т. е. ∥B∥/∥A∥, мало по сравнению с
ее числом обусловленности.

2. Пример. Пусть A = {aij}ni,j=1 — произвольная квадратная
матрица Напомним, что A — матрица с диагональным преобладанием
по строкам, если1)

|aii| > Ri(A) ∀ i = 1, 2, . . . , n, (26.2)

и A — матрица с диагональным преобладанием по столбцам, если

|aii| > Ci(A) ∀ i = 1, 2, . . . , n. (26.3)

Покажем, что если A — матрица с диагональным преобладанием
по строкам, то она невырождена. Пусть D = diag(a11, a22, . . . , ann).

1)См. обозначения в § 25, с. 76.
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Вследствие условия (26.2) матрица D невырождена. Запишем мат-
рицу A в виде A = D + (A − D). Вновь используя условие (26.2),
получим, что ∥D−1(A − D)∥∞ < 1, значит выполнено условие 2, и
матрица A невырождена. Поскольку определители матриц A и AT

совпадают, то матрица с диагональным преобладанием по столбцам
также невырождена.

Упражнение 26.1. Покажите, что если выполнено условие (26.2), или (26.3), то
все главные миноры матрицы A отличны от нуля.

Теорема 1. Пусть матрицы A и Ã = A+B обратимы. Тогда

∥A−1 − Ã−1∥
∥Ã−1∥

6 ∥A−1B∥. (26.4)

Если ∥A−1B∥ < 1, то

∥Ã−1∥ 6 ∥A−1∥
1− ∥A−1B∥

, (26.5)

∥A−1 − Ã−1∥
∥A−1∥

6 ∥A−1B∥
1− ∥A−1B∥

. (26.6)

Доказательство. По условию теоремы I = (A + B)Ã−1, сле-
довательно, A−1 = (I + A−1B)Ã−1, поэтому A−1 − Ã−1 = A−1BÃ−1.
Отсюда, очевидно, следует (26.7). Далее, Ã−1 = A−1−A−1BÃ−1, зна-
чит, ∥Ã−1∥ 6 ∥A−1∥ + ∥A−1B∥∥Ã−1∥, откуда вытекает (26.5). Нако-
нец, (26.6) — очевидное следствие (26.7), (26.5). �

Из теоремы 1 непосредственно вытекает
Следствие 1. Пусть матрицы A и Ã = A+B обратимы. Тогда

∥A−1 − Ã−1∥
∥Ã−1∥

6 cond(A)(∥B∥/∥A∥). (26.7)

Если cond(A)(∥B∥/∥A∥) < 1, то

∥Ã−1∥ 6 ∥A−1∥
1− cond(A)(∥B∥/∥A∥)

, (26.8)

∥A−1 − Ã−1∥
∥A−1∥

6 cond(A)(∥B∥/∥A∥)
1− cond(A)(∥B∥/∥A∥)|

. (26.9)
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3. Следующая теорема показывает, что ≪расстояние≫ от невы-
рожденной матрицы A до ближайшей вырожденной матрицы харак-
теризуется величиной 1/ cond(A).

Теорема 2. Пусть матрица A обратима, матрица A + B вы-
рождена, тогда

∥B∥/∥A∥ > 1/ cond(A). (26.10)
Если при этом под нормой матрицы понимать норму, подчиненную
некоторой норме векторов, то найдется такая матрица B, что

∥B∥/∥A∥ = 1/ cond(A), (26.11)
а матрица A+B вырождена.

Доказательство. Как было указано выше, если матрица A а
обратима, а матрица A + B вырождена, то спектр матрицы A−1B
содержит число −1, значит ρ(A−1B) > 1, но

ρ(A−1B) 6 ∥A−1B∥ 6 ∥A−1∥∥B∥,
т. е. ∥B∥ > 1/∥A−1∥. Последнее неравенство эквивалентно (26.10).
Переходим к доказательству второй части теоремы. Из определения
подчиненной нормы матрицы следует, что существует вектор x такой,
что ∥x∥ = 1, ∥A−1x∥ = ∥A−1∥. Положим y = ∥A−1∥−1A−1x. Тогда
∥y∥ = 1, Ay = ∥A−1∥−1x. По следствию 1, с. 67, на пространстве Cn

существует линейный функционал f такой, что f(y) = ∥y∥ = 1, и
∥f∥ = sup

v∈Cn, ∥v∥=1

|f(v)| = 1. Определим матрицу B действием ее на

векторы при помощи соотношения
Bv = −(f(v)/∥A−1∥)x ∀ v ∈ Cn.

Ясно, что By = −∥A−1∥−1x, поэтому (A+B)y = 0, значит,
det(A+B) = 0.

Кроме того,
∥B∥ = sup

v∈Cn, ∥v∥=1

∥Bv∥ = ∥A−1∥−1 sup
v∈Cn, ∥v∥=1

|f(v)| = ∥A−1∥−1.

Полученное равенство эквивалентно (26.11). �

27. Устойчивость систем линейных уравнений

1. В этом параграфе норма матриц считается согласованной с
нормой векторов. Следующая теорема устанавливает связь относи-
тельного возмущениям матрицы системы и ее правой части с отно-
сительным возмущением решения. Главную роль в получаемых здесь
оценках играет число обусловленности матрицы системы уравнений.
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Теорема 1. Пусть матрица A обратима, матрица B такова,
что ∥A−1B∥ < 1, вектор x — решение системы уравнений

Ax = y, (27.1)
вектор x̃ — решение системы уравнений

Ãx̃ = y + b, Ã = A+B. (27.2)
Тогда

∥x− x̃∥
∥x∥

6 cond(A)

1− ∥A−1B∥

(
∥b∥
∥y∥

+
∥B∥
∥A∥

)
. (27.3)

Если дополнительно потребовать, чтобы выполнялось условие
∥A−1∥∥B∥ < 1,

то
∥x− x̃∥
∥x∥

6 cond(A)

1− cond(A)(∥B∥/∥A∥)

(
∥b∥
∥y∥

+
∥B∥
∥A∥

)
. (27.4)

Доказательство. По условию теоремы матрицы A−1 и Ã−1

существуют, поэтому x = A−1y, x̃ = Ã−1(y + b), следовательно,
x̃− x = Ã−1b+ (Ã−1 − A−1)y, и

∥x− x̃∥ 6 ∥Ã−1∥∥b∥+ ∥Ã−1 − A−1∥∥y∥,
откуда, используя (26.5), (26.6) и неравенство ∥y∥ 6 ∥A∥∥x∥, после
элементарных преобразований получим (27.3). Оценка (27.4) есть оче-
видное следствие (27.3). �

2. Пусть некоторым способом найден вектор x̃, который мы счи-
таем приближением к решению уравнения (27.1). Наша цель — оце-
нить погрешность ∥x− x̃∥ через норму невязки ∥Ax̃− y∥. Введем ис-
пользуемую в дальнейшем вспомогательную величину. Пусть матри-
ца A обратима, x ̸= 0, Ax = y. Положим η = ∥A∥∥x∥/∥y∥. Очевидно,
что η > 1, и поскольку ∥x∥ 6 ∥A−1∥∥y∥, то η 6 ∥A∥∥A−1∥ = cond(A).
Для x̃ ∈ Cn положим r = Ax̃− y. Тогда x− x̃ = A−1r,

∥x− x̃∥ 6 ∥A−1∥∥r∥.
Поэтому

∥x− x̃∥/∥x∥ 6 (cond(A)/η)∥r∥/∥y∥, (27.5)
и как следствие

∥x− x̃∥/∥x∥ 6 cond(A)∥r∥/∥y∥. (27.6)
Оценка (27.5) показывает, что чем ближе величина η к величине

cond(A), тем лучше относительная погрешность оценивается относи-
тельной невязкой приближенного решения.



Глава 6
Итерационные методы решения систем линейных

уравнений

При реализации прямых методов важно, чтобы все данные рас-
полагались в оперативной (быстрой) памяти компьютера. Если поря-
док системы настолько велик, что оперативной памяти для реализа-
ции метода недостаточно, то время, затрачиваемое на решение систе-
мы, существенно увеличивается. Для таких систем предпочтительнее
оказываются итерационные методы. Основная идея этих методов со-
стоит в построении последовательности векторов xk, k = 1, 2, . . . ,
сходящейся к решению x системы Ax = b. За приближенное реше-
ние принимается вектор xk при достаточно большом k. В качестве
критерия окончания итерационного процесса обычно принимают ли-
бо достаточную близость двух соседних приближений xk и xk+1, либо
достаточную малость невязки Axk − b.

28. Простейшие итерационные методы

Всюду в дальнейшем через zk будем обозначать вектор xk−x, где
x — решение системы

Ax = b, (28.1)
т. е. погрешность приближения с номером xk.

1. Метод Якоби1). Будем считать, что все диагональные эле-
менты матрицы A отличны от нуля. Перепишем систему (28.1), раз-
решая каждое уравнение относительно переменной, стоящей на диа-
гонали:

xi = −
i−1∑
j=1

aij
aii

xj −
n∑

j=i+1

aij
aii

xj +
bi
aii

, i = 1, 2, . . . , n. (28.2)

Выберем некоторое начальное приближение x0 = (x01, x
0
2, . . . , x

0
n) и

построим последовательность векторов x1, x2, . . . , определяя век-
тор xk+1 по уже найденному вектору xk при помощи соотношений:

xk+1
i = −

i−1∑
j=1

aij
aii

xkj −
n∑

j=i+1

aij
aii

xkj +
bi
aii

, i = 1, 2, . . . , n. (28.3)

1)Карл Густав Якоб Яко́би (Carl Gustav Jacob Jacobi; 1804 — 1851) — немецкий математик.
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Формулы (28.3) определяют итерационный метод решения систе-
мы (28.1), называемый методом Якоби.

Укажем легко проверяемое достаточное условие сходимости этого
метода. Напомним, что для матрицы A выполнено условие диагональ-
ного преобладания по строкам, если

q = max
16i6n

n∑
j=1, j ̸=i

|aij|
|aii|

< 1. (28.4)

Теорема 1. Пусть матрица A системы (28.1) — матрица с
диагональным преобладанием по строкам. Тогда итерационный ме-
тод Якоби сходится при любом начальном приближении x0; спра-
ведлива следующая оценка скорости сходимости:

∥zk∥∞ 6 qk∥z0∥∞. (28.5)

Доказательство. Пусть x — решение системы уравнений
(28.1). Вычитая почленно из равенства (28.3) равенство (28.2), по-
лучим

zk+1
i = −

i−1∑
j=1

aij
aii

zkj −
n∑

j=i+1

aij
aii

zkj , i = 1, 2, . . . , n,

следовательно,

|zk+1
i |6

i−1∑
j=1

|aij|
|aii|

|zkj |+
n∑

j=i+1

|aij|
|aii|

|zkj |6
(

i−1∑
j=1

|aij|
|aii|

+
n∑

j=i+1

|aij|
|aii|

)
max
16j6n

|zkj |=

= q max
16j6n

|zkj |, i = 1, 2, . . . , n,

откуда вытекает, что
∥zk+1∥∞ 6 q∥zkj ∥∞

для любого k = 0, 1, . . . , поэтому

∥zk∥∞ 6 qk∥z0j∥∞ → 0

при k → ∞, поскольку 0 < q < 1, а это и означает, что xk → x. �
Оценка (28.5) показывает, что, чем меньше q, т. е. чем выше диаго-

нальное преобладание матрицы A, тем быстрее сходится метод Якоби.
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2. Метод Зейделя. Формулы (28.3) допускают естественную
модификацию. Именно, при вычислении xk+1

i будем использовать уже
найденные компоненты вектора xk+1, т. е. xk+1

1 , xk+1
2 , . . . xk+1

i−1 . В ре-
зультате приходим к итерационному методу Зейделя1):

xk+1
i = −

i−1∑
j=1

aij
aii

xk+1
j −

n∑
j=i+1

aij
aii

xkj +
bi
aii

, i = 1, 2, . . . , n, k = 0, 1, . . .

(28.6)
Метод Зейделя позволяет более экономно расходовать память

компьютера, поскольку в данном случае вновь получаемые компонен-
ты вектора xk+1 можно размещать на месте соответствующих компо-
нент вектора xk, в то время как при реализации метода Якоби все
компоненты векторов xk, xk+1 должны одновременно находиться в
памяти компьютера.

Достаточное условие сходимости и оценку скорости сходимости
метода Зейделя дает

Теорема 2. Пусть матрица A — матрица с диагональным пре-
обладанием по строкам. Тогда метод Зейделя сходится при любом
начальном приближении x0; справедлива оценка скорости сходимо-
сти:

∥zkj ∥∞ 6 qk∥z0∥∞, (28.7)

где q определяется (28.4).
Доказательство. Вычитая почленно из равенства (28.6) равен-

ство (28.2), получим

zk+1
i = −

i−1∑
j=1

aij
aii

zk+1
j −

n∑
j=i+1

aij
aii

zkj , i = 1, 2, . . . , n. (28.8)

Пусть max
16j6n

|zk+1
j | = |zk+1

l |. Из l-того уравнения системы (28.8) выте-
кает, что

|zk+1
l | 6 αl max

16j6n
|zk+1

j |+ βl max
16j6n

|zkj |,

где

αl =
l−1∑
j=1

|alj|
|all|

, βl =
n∑

j=l+1

|alj|
|all|

,

1)Филипп Людвиг Зейдель (Philipp Ludwig von Seidel; 1821 — 1896) — немецкий математик
и астроном.
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следовательно,

∥zk+1∥∞ 6 βl
1− αl

∥zk∥∞.

Из условия (28.4) получаем, что αl+βl 6 q < 1, но тогда и qαl+βl 6 q,
таким образом, βl/(1 − αl) 6 q, поэтому ∥zk+1∥∞ 6 qmax ∥zk∥∞ для
любого k > 0. Дальнейшие рассуждения совпадают с соответствую-
щими рассуждениями из доказательства предыдущей теоремы. �

3. Метод редаксации. Зачастую существенного ускорения
сходимости можно добиться за счет введения в расчетные формулы
числового параметра. В качестве примера приведем итерационный
процесс

xk+1
i =(1− ω)xki + ω

(
−

i−1∑
j=1

aij
aii

xk+1
j −

n∑
j=i+1

aij
aii

xkj +
bi
aii

)
, (28.9)

i = 1, 2, . . . , n, k = 0, 1, . . . Этот метод называется методом релак-
сации, число ω — релаксационным параметром. При ω = 1 метод
переходит в метод Зейделя.

Ясно, что по затратам памяти и объему вычислений на каждом
шаге итераций метод релаксации не отличается от метода Зейделя.

29. Элементы общей теории итерационных методов

1. Далее наряду со стандартным скалярным произведением бу-
дем использовать так называемое энергетическое скалярное произ-
ведение и соответствующую ему норму на пространстве Cn. Имен-
но, если D ∈ Mn — эрмитова положительно определенная матри-
ца, то по определению (x, y)D = (Dx, y), будем полагать также, что
∥x∥D = (Dx, x)1/2 1).

2. Придадим итерационным методам, рассмотренным в преды-
дущих пунктах, матричные формулировки. Начнем с метода Якоби.
Нетрудно видеть, что равенства (28.3) можно записать в матричном
виде

D(xk+1 − xk) + Axk = b, (29.1)
где D = diag(a11, a22, . . . , ann). Для того, чтобы придать матрич-
ную форму записи методам Зейделя и релаксации, обозначим через L
нижнюю треугольную матрицу, поддиагональные элементы которой

1)См. по этому поводу п. 2, с. 61.
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совпадают с соответствующими элементами матрицы A, а все диа-
гональные элементы равны нулю. Через R обозначим верхнюю тре-
угольную матрицу такую, что A = L+D+R. Равенства (28.9) могут
быть переписаны тогда в следующем виде:

1

ω
(D + ωL)(xk+1 − xk) + Axk = b. (29.2)

3. Будем рассматривать общий класс итерационных методов,
определяемых соотношениями

1

τ
B(xk+1 − xk) + Axk = b, k = 0, 1, . . . , (29.3)

вектор x0 считается заданным. Здесь B — невырожденная матрица,
τ > 0 — число, называемое итерационным параметром. Для того,
чтобы найти вектор xk+1 по уже известному вектору xk, решим си-
стему линейных уравнений

Bwk = rk, (29.4)

где rk = Axk − b, и положим xk+1 = xk − τwk.
Очевидно, при построении итерационного метода (29.3) матри-

ца B должна выбираться так, чтобы решение системы уравнений вида
(29.4) выполнялось намного быстрее, чем решение исходной системы
уравнений (28.1).

Итерационные методы Якоби, Зейделя и релаксации являются
частными случаями метода (29.3). Например, в случае метода Яко-
би B = D, τ = 1.

4. Наша ближайшая цель — получить условия на матрицу B и
параметр τ , обеспечивающие сходимость метода (29.3).

Если x — решение системы (28.1), то, очевидно,

1

τ
B(x− x) + Ax = b. (29.5)

Вычитая почленно равенства (29.3), (29.5), получим

1

τ
B(zk+1 − zk) + Azk = 0, (29.6)

откуда
zk+1 = Szk, (29.7)

где
S = I − τB−1A. (29.8)
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и, следовательно,
zk = Skz0, (29.9)

Понятно, что сходимость итерационного метода (29.3) определя-
ется свойствами матрицы S, которую обычно называют матрицей ша-
га итерационного метода (29.3).

Теорема 1. Для того, чтобы итерационный метод (29.3) схо-
дился при любом начальном приближении x0, необходимо и доста-
точно, чтобы спектральный радиус ρ(S) матрицы S был меньше
единицы.

Доказательство. Н е о б х о д и м о с т ь. Пусть λ — собствен-
ное число матрицы S такое, что |λ| > 1, e — соответствующий этому
собственному числу нормированный собственный вектор матрицы S.
Выберем в качестве начального приближения в итерационном мето-
де (29.3) вектор x0 = x+e, где x — решение уравнения (28.1). Тогда в
соответствии с (29.9) имеем zk = λke, следовательно, |zk| = |λ|k. Оче-
видно, либо |zk| → ∞ при k → ∞, либо |zk| = 1 для всех k = 1, 2, . . . ,
т. е. метод (29.3) не сходится. Д о с т а т о ч н о с т ь. Если спектраль-
ный радиус матрицы S меньше единицы, то она является сходящейся
матрицей (см. с. 212, [5]), т. е. Sk → 0 при k → ∞, и тогда из (29.9)
вытекает, что zk → 0 при k → ∞. �

Из теоремы 1 и оценки (23.7), с. 74, сразу же вытекает
Следствие 1. Для сходимости итерационного метода (29.3)

достаточно, чтобы для какой-либо согласованной нормы выполня-
лось условие ∥S∥ < 1.

Например, при τ = 1 итерационный метод (29.3) сходится, если
матрицы A и B достаточно близки, т. е. ∥B−1∥∥B−A∥ < 1. Используя
оценку (26.8), с. 80, получим отсюда, что итерационный метод (29.3)
сходится, если τ = 1 и

∥B − A∥
∥A∥

cond(A) < 1/2.

Опираясь на теорему 1, получим часто используемое для систем
уравнений с эрмитовой положительно определенной матрицей усло-
вие сходимости итерационного процесса (29.3).

Теорема 2 (Самарский1)). Пусть матрица A положительно
определена и пусть для любого не равного нулю вектора x из Cn

1)Александр Андреевич Самарский (1919 — 2008) — советский, российский математик.
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выполнено неравенство

(B1x, x) > (τ/2)(Ax, x), (29.10)

где B1 = (1/2)(B + B∗). Тогда матрица B невырождена, и ите-
рационный процесс (29.3) сходится при любом начальном прибли-
жении x0. Обратно, если матрица A положительно определена и
итерационный процесс (29.3) сходится при любом начальном при-
ближении x0, то выполнено условие (29.10).

Доказательство. Невырожденность матрицы B сразу же сле-
дует из условия (29.10) и положительной определенности матрицы A
(см. упражнение 3 на с. 223, [5]). Покажем, что если выполнено усло-
вие (29.10), то ρ(S) < 1, где S — матрица, определенная равен-
ством (29.8). Вследствие теоремы 1 отсюда будет вытекать сходимость
итерационного метода (29.3). Пусть λ, x — собственная пара матри-
цы S. Тогда Bx− τAx = λBx, поэтому

λ =
(Bx, x)− τ(Ax, x)

(Bx, x)
.

Используя формулу (6.3), с. 221, [5], представим матрицу B в виде

B = B1 + iB2, (29.11)

где B1 = (1/2)(B +B∗), B2 — эрмитовы матрицы. Тогда

λ =
(B1x, x)− τ(Ax, x) + i(B2x, x)

(B1x, x) + i(B2x, x)
,

следовательно,

|λ|2 = ((B1x, x)− τ(Ax, x))2 + (B2x, x)
2

(B1x, x)2 + (B2x, x)2
.

Запишем последнее равенство в виде

|λ|2 = (1− a)2 + b2

1 + b2
, (29.12)

где a = τ(Ax, x)/(B1x, x), b = (B2x, x)/(B1x, x). Из условия (29.10)
получаем, что 0 < a < 2, поэтому |1 − a| < 1, откуда, очевидно,
вытекает, что |λ| < 1. Для доказательства второй части теоремы до-
статочно заметить, что если итерационный процесс (29.3) сходится
при любом начальном приближении, то по теореме 1 все собствен-
ные числа матрицы S по модулю строго меньше единицы, и тогда
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из представления (29.12) получаем, что 0 < a < 2, следовательно,
условие (29.10) выполнено. �

Теорема 3. Пусть выполнены условия теоремы 2. Тогда для
погрешностей итерационного процесса (29.3) при любом k > 0 вы-
полнено неравенство

(Azk+1, zk+1) < (Azk, zk), (29.13)

если zk ̸= 0.
Доказательство. Используя тривиальное тождество

zk = (1/2)(zk+1 + zk)− (1/2)(zk+1 − zk),

преобразуем уравнение (29.6) к виду
1

τ
(B − (τ/2)A)(zk+1 − zk) + (1/2)A(zk+1 + zk) = 0.

Умножая теперь скалярно обе части последнего равенства на век-
тор 2(zk+1 − zk) и используя представление (29.11), после элементар-
ных преобразований получим

2

τ
((B1 − (τ/2)A)(zk+1 − zk), zk+1 − zk)+

+ i
2

τ
(B2(z

k+1 − zk), zk+1 − zk)+

+ (Azk+1, zk+1)− (Azk, zk) + i Im(Azk, zk+1) = 0,

поэтому

2

τ
((B1 − (τ/2)A)(zk+1 − zk), zk+1 − zk)+

+ (Azk+1, zk+1)− (Azk, zk) = 0. (29.14)

Если zk ̸= 0, то вследствие невырожденности оператора B из (29.6)
вытекает, что zk+1 − zk ̸= 0. Тогда на основании условия (29.10) из
равенства (29.14) получаем, что (Azk+1, zk+1)− (Azk, zk) < 0. �

5. Если матрица A положительно определена, то уравнение

Ax = b (29.15)

эквивалентно задаче минимизации функции (функционала)

F (x) = (Ax, x)− 2Re(x, b) 1). (29.16)
1)Функционал F часто называют энергетическим. Это связано с задачами физики, в которых

возникают уравнения с положительно определенными матрицами.
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Действительно, пусть x̂ — решение уравнения (29.15). Тогда

F (x) = (Ax, x)− 2Re(x,Ax̂) =

= (Ax, x)− 2Re(x,Ax̂) + (Ax̂, x̂)− (Ax̂, x̂) =

= (A(x− x̂), x− x̂)− (Ax̂, x̂), (29.17)

следовательно, функции F (x) и F0(x) = (A(x − x̂), x − x̂) отлича-
ются на постоянное слагаемое. Поскольку матрица A положительно
определена, то единственной точкой минимума функции F0, а стало
быть, и функции F является x̂. Вследствие (29.17) неравенство (29.13)
можно записать в виде

F (xk+1) < F (xk). (29.18)

Таким образом, можно сказать, что при выполнении условий
теоремы 2 итерационный процесс (29.3) является релаксационным1):
каждое последующее приближение уменьшает значение функционала
F . Используя полученные в предыдущем пункте общие результаты,
исследуем сходимость метода релаксации (29.2).

Теорема 4. Пусть матрица A положительно определена,

0 < ω < 2. (29.19)

Тогда итерационный метод релаксации (29.2) сходится при любом
начальном приближении x0.

Доказательство. Будем опираться на теорему 2. В рассматри-
ваемом случае B = D + ωL, τ = ω, B1 = D + (ω/2)(L + L∗), A =
D + L+ L∗, и условие (29.10) принимает вид (Dx, x) > (ω/2)(Dx, x)
для любого x ̸= 0. Все диагональные элементы положительно опре-
деленной матрицы положительны2), поэтому матрица D положитель-
но определена, и условие (29.10) выполнено, если выполнено условие
(29.19). �

Теорема 5. Условие (29.19) необходимо для сходимости итера-
ционного процесса (28.9).

Доказательство. Запишем равенство (29.8) в виде

(D + ωL)S = (D + ωL)− ωA = (1− ω)D − ωR. (29.20)

Поскольку L и R — строго треугольные матрицы, а D — диагональ-
ная матрица, все диагональные элементы которой отличны от нуля,

1)Релаксация (лат. relaxatio) — уменьшение напряжения, ослабление.
2)Действительно, akk = (Aik, ik) > 0, k = 1, 2, . . . , n.
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то, вычисляя определители левой и правой частей равенства (29.20),
получим, что det(S) = (1− ω)n, следовательно (см. (7.7), с. 193, [5]),

n∏
k=1

|λk| = |1− ω|n, (29.21)

где λ1, λ2, . . . ,λn — собственные числа матрицы S. Если условие
(29.19) нарушено, то |1−ω| > 1, и среди собственных чисел λk матри-
цы S есть хотя бы одно, модуль которого больше единицы, но тогда
по теореме 1 найдется начальное приближение x0, при котором ите-
рационный процесс (28.9) не сходится. �

6. Оптимизация итерационного параметра. Из доказа-
тельства теоремы 1 видно, что итерационный процесс (29.3) сходит-
ся тем быстрее, чем меньше спектральный радиус матрицы S =
I − τB−1A. В связи с этим возникает задача отыскания такого (оп-
тимального) значения итерационного параметра τ , при котором ве-
личина ρ(S) принимает минимальное значение.

Наиболее просто эта задача решается в случае, когда матри-
цы A, B положительно определены. Поскольку в рассматриваемом
случае B = B∗, т. е. в представлении (29.11) матрица B2 равна ну-
лю, то из (29.12) получаем, что для любой собственной пары λ, x
матрицы S справедливо равенство

|λ| =
∣∣∣∣1− τ

(Ax, x)

(Bx, x)

∣∣∣∣ . (29.22)

Нетрудно видеть, что если x — собственный вектор матрицы S,
то x — собственный вектор матрицы B−1A и, следовательно, x —
собственный вектор задачи

Ax = λBx (29.23)

(см. подробнее § 13, с. 237, [5]). Очевидно, справедливо и обратное:
любой собственный вектор задачи (29.23) есть собственный вектор
матрицы S.

Для любой собственной пары x, λ задачи (29.23) справедливо
равенство (Ax, x) = λ(Bx, x). Поэтому все собственные числа зада-
чи (29.23) положительны. Пусть m — минимальное, а M максималь-
ное из этих чисел. Тогда для любого собственного вектора x матрицы
S справедливы неравенства

m 6 (Ax, x)

(Bx, x)
6 M. (29.24)
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Рис. 1. К выбору оптимального итерационного параметра

Полученные оценки являются точными, поскольку соответствующие
неравенства (29.24) превращаются в равенства, если в качестве x
взять собственный вектор, отвечающий m или M .

Нетрудно видеть, что функция g(µ) = |1 − τµ| вещественного
переменного µ на любом ограниченном отрезке вещественной оси до-
стигает максимального значения на одном из концов этого отрезка.
Поэтому, используя соотношения (29.22), (29.24), получаем, что

ρ(S) = φ(τ) = max{|1− τm|, |1− τM |}. (29.25)

График функции φ(τ) при τ > 0 изображен на рис. 1. Нетрудно
убедиться, что

min
τ> 0

φ(τ) = φ(τ0) = ρ0 = (M −m)/(M +m), (29.26)

где τ0 = 2/(M +m).
Таким образом, итерационный процесс (29.3) при оптимальном

значении итерационного параметра τ = τ0 сходится тем быстрее,
чем больше m/M , т. е. чем меньше разброс собственных чисел за-
дачи (29.23).

Упражнение 29.1. Покажите, что если матрицы A, B эрмитовы и положительно
определены, то итерационный метод (29.3) сходится при любом τ ∈ (0, 2/M).

7. При сделанных в предыдущем пункте предположениях о мат-
рицах A, B удается получить оценки скорости сходимости сходимости
итерационного метода (29.3).

Нам потребуются далее следующие вспомогательные построе-
ния1). Пусть A — эрмитова неотрицательная матрица порядка n,
{ek}nk=1 — ортонормированная система ее собственных векторов:
Aek = λke

k. Очевидно, что λk > 0 при k = 1, 2, . . . , n. Опреде-
лим матрицу A1/2 ее действием на векторы базиса A1/2ek = λ

1/2
k ek,

k = 1, 2, . . . , n. Нетрудно убедиться, что матрица A1/2 эрмитова
1)Более подробное изложение см. в [5], с. 236.
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и неотрицательна, причем, если матрица A положительно опреде-
лена, то и матрица A1/2 положительно определена. Очевидно, что
(A1/2)2 = A. Полезно отметить также, что матрицы A1/2 и A пе-
рестановочны, т. е. A1/2A = AA1/2. Матрицу A1/2 называют кор-
нем квадратным из матрицы A. Если матрица A положительно
определена, то (A1/2)−1 = (A−1)1/2. Будем использовать обозначение
(A−1)1/2 = A−1/2.

Теорема 6. Пусть матрицы A, B эрмитовы и положительно
определены. Тогда для приближений, построенных по итерационно-
му методу (29.3) при τ = τ0, справедливы следующие оценки:

∥xk − x̂∥A 6 ρk0∥x0 − x̂∥A, k = 1, 2, . . . (29.27)

Доказательство. Используя (29.7), нетрудно убедиться, что

A1/2zk+1 = (I − τ0A
1/2B−1A1/2)A1/2zk,

следовательно,

∥zk+1∥A 6 ∥(I − τ0A
1/2B−1A1/2)∥2∥zk∥A.

Матрица I − τ0A
1/2B−1A1/2, очевидно, эрмитова. Поэтому

∥(I − τ0A
1/2B−1A1/2)∥2 = ρ(I − τ0A

1/2B−1A1/2).

Пусть y, λ — собственная пара матрицы A1/2B−1A1/2, т. е.

A1/2B−1A1/2y = λy. (29.28)

Матрица B−1A1/2 обратима. Полагая y = A−1/2Bx, получим, что соб-
ственные значения задачи (29.28) совпадают с собственными значе-
ниями задачи (29.23). Поэтому, проводя рассуждения полностью сов-
падающие с выполненными в п. 6, получим, что ∥zk+1∥A 6 ρ0∥zk∥A,
откуда, очевидно, следует (29.27). �

Упражнение 29.2. Покажите, что если выполнены условия теоремы 6, то спра-
ведливы оценки

∥xk − x̂∥B 6 ρk0∥x0 − x̂∥B, k = 1, 2, . . . (29.29)

30. Итерационные методы вариационного типа

В этом параграфе рассматривается задача о решении системы ли-
нейных алгебраических уравнений

Ax = b (30.1)
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с эрмитовой положительно определенной матрицей A ∈ Mn. Как бы-
ло показано в предыдущем параграфе, для решения таких уравнений
можно применять итерационные методы с оптимальным выбором па-
раметров. Следует однако иметь в виду, что вычисление оптимальных
значений параметров требует знания границ спектра некоторой вспо-
могательной задачи на собственные значения. Итерационные методы
вариационного типа свободны от этого недостатка. Входящие в них
параметры меняются от шага к шагу и вычисляются в ходе итераци-
онного процесса. При этом методы автоматически настраиваются на
оптимальную скорость сходимости.

1. Метод наискорейшего спуска. Пусть x0 — некоторое на-
чальное приближение к решению уравнения (30.1). Все последующие
приближения будем вычислять по формуле

xk+1 = xk − τk+1r
k, k = 0, 1, . . . (30.2)

Здесь и всюду далее
rk = Axk − b. (30.3)

Параметр τk+1 > 0 на каждом шаге итерационного метода будем вы-
бирать так чтобы минимизировать энергетическую норму погрешно-
сти

∥xk+1 − x̂∥A = (A(xk+1 − x̂), xk+1 − x̂)1/2.

Нетрудно проверить, что ∥xk+1 − x̂∥A = ∥rk+1∥A−1. Из (30.2) очевид-
ным образом следует, что rk+1 = rk − τk+1Ar

k, k = 0, 1, . . . Таким
образом, параметр τk+1 должен быть выбран так, чтобы минимизи-
ровать величину ∥rk − τk+1Ar

k∥A−1. Элементарные выкладки дают:

∥rk − τk+1Ar
k∥2A−1 = (A−1rk, rk)− 2τk+1(r

k, rk) + τ 2k+1(Ar
k, rk).

Отсюда получаем, что

τk+1 =
(rk, rk)

(Ark, rk)
. (30.4)

Формулы (30.2)–(30.4) полностью определяют метод наискорейшего
спуска.

2. Исследуем сходимость метода наискорейшего спуска
Теорема 1. Если A — эрмитова положительно определенная

матрица, то метод (30.2)–(30.4) сходится при любом начальном
приближении x0. Имеет место следующая оценка скорости сходи-
мости

∥xk − x̂∥A 6 ρk0∥x0 − x̂∥A, k = 1, 2, . . . , (30.5)
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где ρ0 = (M − m)/(M + m) = (cond(A) − 1)/(cond(A) + 1), M ,
m — максимальное и минимальное собственные числа матрицы A
соответственно.

Доказательство. Из соотношения (30.2) и способа определе-
ния параметра τk+1 вытекает, что

∥zk+1∥A = ∥zk − τk+1Az
k∥A 6 ∥zk − τ0Az

k∥A,

где τ0 = 2/(M +m). Далее, как при доказательстве теоремы 6, с. 94
(полагая B = I), получим, что ∥zk − τ0Az

k∥A 6 ρ0∥zk∥A. �
3. В случае, когда матрица A и вектор b вещественны, метод

наискорейшего спуска допускает простую интерпретацию, оправды-
ваюшую его название. Пусть x ∈ Rn,

∇F (x) =

(
∂F (x)

∂x1
,
∂F (x)

∂x2
, . . . ,

∂F (x)

∂xn

)
есть градиент дифференцируемой функции F в точке x. Элемен-
тарные вычисления дают, что для функции F , определенной равен-
ством (29.16), с. 90, ∇F (x) = 2(Ax− b). Отсюда следует (см. (30.2)),
что при любом τk+1 > 0 точка xk+1 лежит на луче, проходящем через
точку xk в направлении наибыстрейшего убывания функции F (см.
курс математического анализа). Описанный выше способ определе-
ния параметра τk+1 означает, что точка xk+1 есть точка минимума
функции F на указанном луче (см. (29.17), с. 91).

4. Как показывает оценка (30.5), сходимость метода наискорей-
шего спуска существенно замедляется с ухудшением обусловленности
матрицы A. Однако на практике довольно часто удается исправить
положение, переходя к решению эквивалентной системы, матрица ко-
торой имеет меньшее число обусловленности.

Пусть B — эрмитова положительно определенная матрица. Пре-
образуем систему (30.1) к следующему виду:

B−1/2AB−1/2B1/2x = B−1/2b.

Полагая

C = B−1/2AB−1/2, y = B1/2x, f = B−1/2b, (30.6)

получим
Cy = f. (30.7)

Матрица C эрмитова и положительно определена (докажите!).
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Запишем формулы метода наискорейшего спуска и соответству-
ющую оценку погрешности применительно к уравнению (30.7):

yk+1 = yk − τk+1(Cyk − f), k = 0, 1, . . . , (30.8)

τk+1 =
(rkC , r

k
C)

(CrkC , r
k
C)

, (30.9)

где
rkC = Cyk − f, (30.10)

∥yk − ŷ∥C 6 ρk0(C)∥y0 − ŷ∥C , k = 1, 2, . . . , (30.11)
ρ0(C) = (MC −mC)/(MC +mC) = (cond(C)− 1)/(cond(C) + 1), MC ,
mC — максимальное и минимальное собственные числа матрицы C
соответственно.

На первый взгляд, полученные формулы кажутся практически
бесполезными, так как матрица C и вектор f не определены кон-
структивно. Тем не менее, попробуем эти формулы преобразовать.

Умножим обе части уравнения (30.8) на B−1/2 и воспользуемся
затем равенствами (30.6). В результате получим

xk+1 = xk − τk+1w
k, k = 0, 1, . . . , (30.12)

где wj = B−1rj, rj = Axj − b, xj = B−1/2yj, j = 0, 1, . . . Далее, пре-
образуем формулу (30.13) с использованием (30.6), (30.10). Получим

τk+1 =
(wk, rk)

(Awk, wk)
, k = 0, 1, . . . (30.13)

Наконец, аналогичные преобразования приводят оценку (30.11) к ви-
ду

∥xk − x̂∥A 6 ρk0(C)∥x0 − x̂∥A, k = 1, 2, . . . (30.14)
Вычисления по формулам (30.12), (30.13) обычно проводятся сле-

дующим образом. Сначала по известному приближению xk вычисля-
ется невязка rk = Axk − b, затем путем решения уравнения

Bwk = rk (30.15)

находится так называемая поправка wk, при помощи формулы (30.13)
вычисляется итерационный параметр τk+1, и, наконец, по форму-
ле (30.12) находится следующее приближение xk+1. Важно подчерк-
нуть, что каждый шаг полученного итерационного метода требует
решения системы линейных алгебраических уравнений вида (30.15).
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Как показывает оценка (30.14), скорость сходимости метода опре-
деляется собственными числами задачи Cy = λy. Более подробная
ее запись с использованием (30.6) дает B−1/2AB−1/2y = λy. Матри-
ца B−1/2 обратима, поэтому, полагая B−1/2y = x, приходим к эквива-
лентной задаче Ax = λBx, уже рассматривавшейся нами ранее (см.
(29.23), с. 92).

Выбор матрицы B должен быть подчинен двум противоречивым
требованиям. С одной стороны, матрица B в определенном смысле
должна быть близка к матрице A, так как отношение MC/mC должно
быть, как можно, ближе к единице. С другой стороны, матрица B
должна быть существенно проще матрицы A, чтобы решение системы
уравнений вида (30.15) было намного менее трудоемким, чем решение
системы уравнений с матрицей A.

Сравнение оценок (29.27) и (30.14) показывает, что метод наиско-
рейшего спуска сходится не медленнее, чем метод (29.3) при опти-
мальном выборе итерационного параметра.

Метод, описанный в настоящем пункте, часто называют предобу-
словленным методом наискорейшего спуска.

5. Метод сопряженных градиентов. Этот метод решения
уравнения (30.1) можно рассматривать как непосредственное обоб-
щение метода наискорейшего спуска: по заданному начальному при-
ближению x0 ∈ Cn строятся векторы x1, x2, . . . при помощи соотно-
шений

xk = x0 −
k∑

j=1

α
(k)
j Aj−1(Ax0 − b), k = 1, 2, . . . ; (30.16)

при каждом k числа α
(k)
j , j = 1, 2, . . . , k, определяются так, чтобы

норма погрешности ∥xk − x̂∥A принимала минимальное значение.
Теорема 2. При каждом k = 1, 2, . . . приближение xk, опреде-

ленное указанным выше способом, существует, и, более того, оно
единственно.

Доказательство. Применяя те же обозначения, что и в преды-
дущих пунктах, из (30.16) получим, что

rk = r0 −
k∑

j=1

α
(k)
j Ajr0, k = 1, 2, . . . (30.17)
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Отсюда следует, что

∥xk − x̂∥A = ∥rk∥A−1 = ∥r0 −
k∑

j=1

α
(k)
j Ajr0∥A−1, k = 1, 2, . . . (30.18)

Таким образом, можно считать, что параметры α
(k)
j , j = 1, 2, . . . , k,

выбираются из условия минимума нормы, записанной в правой ча-
сти равенства (30.18). Иными словами, разыскивается элемент наи-
лучшего приближения к r0 в смысле нормы ∥ · ∥A−1 в подпростран-
стве, натянутом на векторы Ar0, A2r0, . . . , Akr0. Как известно (см.
§ 3, с. 148, [5]), такой элемент существует и определяется однозначно.
Поэтому и вектор rk определяется при помощи соотношения (30.17)
однозначно. Зная rk, вектор xk определим однозначно при помо-
щи (30.3). �

6. Теорема 2 гарантирует существование приближений по методу
сопряженных градиентов, но не указывает эффективного способа их
вычисления. Построение соответствующих расчетных формулы осно-
вано на устанавливаемых ниже свойствах последовательности невя-
зок rk, k = 0, 1, . . .

Лемма 1. При любом k = 1, 2, . . . выполнены равенства

(rk, Ajr0) = 0, j = 0, 1, . . . , k − 1. (30.19)

Доказательство. Как отмечалось в ходе доказательства тео-

ремы 2, вектор
k∑

j=1

α
(k)
j Ajr0 есть ортогональная проекция вектора r0

в смысле скалярного произведения (·, ·)A−1 на подпространство, натя-
нутое на векторы Ajr0, j = 1, 2, . . . , k. Поэтому (см. § 3, с. 148, [5]) для
вектора rk, определяемого формулой (30.17), выполнены равенства

(rk, Ajr0)A−1 = 0, j = 1, 2, . . . , k,

эквивалентные (30.19). �
Следствие 1. При любом k = 1, 2, . . . выполнены равенства

(rk, rj) = 0, j = 0, 1, . . . , k − 1, (30.20)

(Ark, rj) = 0, j = 0, 1, . . . , k − 2. (30.21)
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Доказательство. Для того, чтобы получить (30.20), запишем
rj по формуле (30.17), а затем воспользуемся (30.19). Вследствие эр-
митовости матрицы A и равенства (30.17) будем иметь

(Ark, rj) = (rk, Arj) = (rk, Ar0 −
j∑

l=1

α
(j)
l Al+1r0).

На основании (30.19) отсюда получаем (30.21). �
Замечание 1. Говорят, что ненулевые векторы x, y ∈ Cn сопря-

женны относительно эрмитовой матрицы A, если (Ax, y) = 0. Век-
тор rj пропорционален градиенту функционала F в точке xj ∈ Rn,
если матрица A и вектор b вещественны (см. п. 3, с. 96). Равен-
ства (30.21) оправдывают, таким образом, название изучаемого здесь
метода.

Лемма 2. Пусть

x = e1 + e2 + · · ·+ ep, (30.22)

где e1, e2, . . . , ep собственные векторы эрмитовой матрицы A, отве-
чающие всем попарно различным собственным числам λ1, λ2, . . . , λp

этой матрицы1). Тогда векторы x, Ax, . . . , Ap−1x линейно незави-
симы.

Доказательство. Пусть существуют c0, c1, . . . , cp−1 такие, что
c0x + c1Ax + · · · + cp−1A

p−1x = 0. Используя (30.22), после элемен-

тарных преобразований отсюда получим, что
p∑

k=1

p−1∑
j=0

cjλ
j
ke

k = 0. По

теореме 2, с. 186, [5] векторы e1, e2, . . . , ep линейно независимы, сле-
довательно,

p−1∑
j=0

cjλ
j
k = 0, k = 1, 2, . . . , p. (30.23)

Равенства (30.23) можно рассматривать как систему линейных урав-
нений относительно c0, c1, . . . , cp−1. Определитель системы (30.23)
есть определитель Вандермонда. Он отличен от нуля, поскольку
по условию теоремы все числа λ1, λ2, . . . , λp попарно различны.
Таким образом, система (30.23) может иметь только тривиальное
решение. �

Лемма 3. Пусть

r0 = e1 + e2 + · · ·+ ep, (30.24)
1)Согласно (9.1), с. 227, [5] любой вектор из Cn может быть представлен в указанном виде.
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где e1, e2, . . . , ep — собственные векторы матрицы A, отвечающие
ее попарно различным собственным числам. Тогда rp = 0, и rk ̸= 0
при k = 1, 2, . . . , p− 1.

Доказательство. По лемме 2 векторы

r0, Ar0, . . . , Ap−1r0 (30.25)

линейно независимы, поэтому векторы rk, определяемые соотноше-
ниями (30.17), при k < p не могут равняться нулю. Пусть теперь
k = p. Обозначим через Lp подпространство пространства Cn, натя-
нутое на векторы e1, e2, · · · , ep. Очевидно, что dimLp = p. Векторы
(30.25) принадлежат Lp и образуют его базис. Вследствие обратимо-
сти матрицы A векторы Ar0, A2r0, . . . , Apr0, также образуют базис в

Lp. По построению вектор
p∑

j=1

α
(p)
j Ajr0 есть элемент наилучшего при-

ближения к вектору r0 ∈ Lp, поэтому rp = r0 −
p∑

j=1

α
(p)
j Ajr0 = 0. �

Следствие 2. При любом начальном приближении x0 ∈ Cn ме-
тод сопряженных градиентов дает точное решение системы (30.1)
не больше чем через n итераций .

Справедливость этого утверждения сразу же вытекает из того
факта, что любой вектор r0 пространства Cn представим в виде
(30.24) при некотором p 6 n (см. сноску на предыдущей странице).

Замечание 2. Метод сопряженных градиентов может тракто-
ваться, таким образом, и как прямой метод решения систем линейных
алгебраических уравнений. Однако этот вывод справедлив лишь при
отсутствии ошибок округления, что при реальных вычислениях недо-
стижимо. На практике метод сопряженных градиентов используется
исключительно как итерационный.

Лемма 4. Пусть выполнены условия леммы 3. Тогда α
(k)
k ̸= 0

при любом k = 1, 2, . . . , p.

Доказательство. Предположим, что α
(p)
p = 0. Тогда из (30.17)

при k = p получаем, что

r0 −
p−1∑
j=1

α
(p)
j Ajr0 = 0,

а это противоречит линейной независимости системы векторов (30.25).
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Если α
(k)
k = 0 при некотором k < p, то из (30.17) вытекает, что

rk = r0 −
k−1∑
j=1

α
(k)
j Ajr0. (30.26)

По лемме 3 имеем, что rk ̸= 0, по лемме 1 для rk выполнены соот-
ношения (30.19). Получили, что ненулевой вектор rk одновременно
является линейной комбинацией некоторого набора векторов и орто-
гонален к каждому из векторов этого набора, чего быть не может. �

Лемма 5. Пусть выполнены условия леммы 3. Тогда при лю-
бом k 6 p− 1 векторы

r0, r1, . . . , rk−1, Ark−1 (30.27)

образуют базис в подпространстве Sk+1, натянутом на векторы r0,
Ar0, . . . , Akr0.

Доказательство. Принадлежность векторов системы (30.27)
подпространству Sk+1 сразу же вытекает из равенств (30.17). Оста-
лось доказать их линейную независимость. По следствию 1 векто-
ры r0, r1, . . . , rk−1 линейно независимы. В силу (30.17) они принадле-
жат Sk. Вектор Ark−1 можно записать в виде

Ark−1 = Ar0 −
k−2∑
j=1

α
(k−1)
j Aj+1r0 + α

(k−1)
k−1 Akr0,

причем по лемме 4 величина α(k−1)
k−1 отлична от нуля. Отсюда вытекает,

что вектор Ark−1 не принадлежит Sk. Таким образом, векторы (30.27)
линейно независимы. �

Из леммы 5 непосредственно вытекает
Следствие 3. При любом k 6 p− 1 существуют и однозначно

определены числа γ
(k)
0 , γ(k)

1 , . . . , γ(k)
k такие, что

rk =
k−1∑
j=0

γ
(k)
j rj + γ

(k)
k Ark−1. (30.28)

7. Покажем теперь, как можно вычислить коэффициенты в раз-
ложении (30.28).
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Пусть k = 1. Тогда r1 = γ
(1)
0 r0 + γ

(1)
1 Ar0. С другой стороны, по

формуле (30.17) получаем, что

r1 = r0 − α
(1)
1 Ar0. (30.29)

Векторы r0, Ar0 линейно независимы, следовательно, γ(1)
0 = 1. Ис-

пользуя теперь равенство (r1, r0) = 0 (см. (30.20)), получим, что

γ
(1)
1 = − (r0, r0)

(Ar0, r0)
. (30.30)

Из (30.3), (30.29), (30.30), очевидно, вытекает, что

x1 = x0 − (r0, r0)

(Ar0, r0)
r0. (30.31)

т. е. первое приближение по методу сопряженных градиентов, как
и следовало ожидать, совпадает с первым приближением по методу
наискорейшего спуска.

Далее, пусть k > 1. При любом l < k вследствие (30.28), (30.20)
получаем, что

0 =
k−1∑
j=0

γ
(k)
j (rj, rl) + γ

(k)
k (Ark−1, rl). (30.32)

Из (30.32), используя (30.20), (30.21), найдем, что

γ
(k)
0 , γ

(k)
1 , . . . , γ

(k)
k−3 = 0.

Поэтому (см. (30.28))

rk = γ
(k)
k−2r

k−2 + γ
(k)
k−1r

k−1 + γ
(k)
k Ark−1. (30.33)

Запишем rk−2, rk−1 по формуле (30.17) и подставим в (30.33). Полу-
чим, что

rk = (γ
(k)
k−2 + γ

(k)
k−1)r

0 +
k∑

j=1

δ
(k)
j Ajr0 (30.34)

с некоторыми коэффициентами δ
(k)
j . Сравнивая (30.34) с (30.17) и

используя линейную независимость системы векторов (30.25), будем
иметь, что γ

(k)
k−2+γ

(k)
k−1 = 1. Таким образом, соотношению (30.33) мож-

но придать следующий вид:

rk = αkr
k−1 + (1− αk)r

k−2 + βkAr
k−1. (30.35)
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Осталось найти числа αk, βk. Умножая равенство (30.35) почленно
сначала на rk−1, а затем на rk−2, получим систему линейных уравне-
ний для их определения:

αk(r
k−1, rk−1) + βk(Ar

k−1, rk−1) = 0,

−αk(r
k−2, rk−2) + βk(Ar

k−1, rk−2) = −(rk−2, rk−2).
(30.36)

Построенные нами формулы позволяют последовательно вычис-
лить все приближения по методу сопряженных градиентов. В са-
мом деле, используя соотношения (30.3) и умножая обе части равен-
ства (30.35) на A−1, в дополнение к (30.31), (30.36) будем иметь

xk = αkx
k−1 + (1− αk)x

k−2 + βkr
k−1 (30.37)

при k = 2, 3, . . .
Важно подчеркнуть, что в отличие от всех рассмотренных нами

ранее итерационных методов метод сопряженных градиентов требу-
ет при вычислении каждого последующего приближения xk, k > 2,
знания не одного, а двух предыдущих приближений, т. е. xk−1, xk−2.
Это предъявляет дополнительные требования к памяти компьютера.

8. Известны и другие варианты расчетных формул для постро-
ения последовательности x2, x3, . . . , различающиеся объемом необ-
ходимых вычислений и требуемой памятью компьютера. При отсут-
ствии ошибок округлений все они в силу теоремы 2 эквивалентны, но
при решении той или иной конкретной системы уравнений результа-
ты их работы могут различаться (иногда значительно) именно из-за
неизбежных ошибок округления.

Приведем пример расчетных формул метода сопряженных гради-
ентов, отличных от (30.36), (30.37):

α1 = 1, τ1 = (r0, r0)/(Ar0, r0),

τk =
(rk−1, rk−1)

(Ark−1, rk−1)
, αk =

(
1− τk

τk−1

(rk−1, rk−1)

(rk−2, rk−2)

1

αk−1

)−1

,
(30.38)

xk = αk(x
k−1 − τkr

k−1) + (1− αk)x
k−2, k = 2, 3, . . . . (30.39)

Упражнение 30.1. Получите формулы (30.38), (30.39) и интерпретируйте их ана-
логично п. 3, с. 96.

Указания. Положите βk = −αkτk. Исключите (Ark−1, rk−2) из второго уравнения
(30.36), используя равенство (30.35), записанное для rk−1. Сопоставьте (30.38), (30.39)
с (30.2)–(30.4).

Рекуррентные формулы (30.38) экономичнее формул (30.36), так
как не требуют вычисления скалярного произведения (Ark−1, rk−2).
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Чаще всего метод сопряженных градиентов реализуют в виде сле-
дующего алгоритма По заданному вектору x0 находят

r0 = b− Ax0, ρ0 = (r0, r0), (30.40)

p1 = r0, q1 = Ap1, α1 = ρ0/(p
1, q1), (30.41)

x1 = x0 + α1p
1, r1 = r0 − α1q

1. (30.42)
Затем для i = 2, 3, . . . последовательно вычисляют

ρi−1 = (ri−1, ri−1),

βi−1 = ρi−1/ρi−2,

pi = ri−1 + βi−1p
i−1,

qi = Api, (30.43)
αi = ρi−1/(p

i, qi),

xi = xi−1 + αip
i,

ri = ri−1 − αiq
i.

Как уже отмечалось, все описанные выше варианты реализации
метода сопряженных градиентов при отсутствии ошибок округления
приводят к одной и той же последовательности приближений x0, x1,
x2, . . . . Однако в реальных вычислениях они различаются по степени
устойчивости к ошибкам округления. Опыт показывает, что предпо-
чтительнее использовать алгоритм (30.40)–(30.43).

9. Переходим к оценке скорости сходимости метода сопряженных
градиентов.

Теорема 3. При любом k > 1

∥xk − x̂∥A 6 qk∥x0 − x̂∥A. (30.44)

Здесь

qk =
2ρk1

1 + ρ2k1
, ρ1 =

√
M −

√
m√

M +
√
m
,

M , m — максимальное и минимальное собственные числа матри-
цы A соответственно.

Доказательство. Представим равенства (30.16) в виде

zk = Pk(A)z
0, k = 1, 2, . . . , (30.45)
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где Pk(A) = I −
k∑

j=1

α
(k)
j Aj. Отсюда следует, что1)

A1/2zk = Pk(A)A
1/2z0, k = 1, 2, . . . (30.46)

Числа α
(k)
j , k = 1, 2, . . . , j = 1, 2, . . . , k, определяющие приближения

по методу сопряженных градиентов, таковы, что

∥zk∥A = ∥A1/2zk∥2 = ∥Pk(A)A
1/2z0∥2 6 ∥Qk(A)A

1/2z0∥2, (30.47)

где Qk(A) = I −
k∑

j=1

β
(k)
j Aj, а β

(k)
j , j = 1, 2, . . . , k, — какие угодно

числа. Из (30.47) получаем, что

∥zk∥A 6 ∥Qk(A)∥2∥z0∥A. (30.48)

Будем считать, что все β
(k)
j , j = 1, 2, . . . , k, вещественны. Тогда мат-

рица Qk(A) эрмитова, следовательно,

∥Qk(A)∥2 = max
16i6n

|Qk(λi(A))| 6 max
m6µ6M

|Qk(µ)| (30.49)

(см. (23.5), с. 73). Полином Qk имеет степень k, причем Qk(0) = 1.
Понятно, что числа β

(k)
j , j = 1, 2, . . . , k, можно выбрать так, что

Qk(µ) =
Tk

(
µτ0−1
ρ0

)
Tk

(
− 1

ρ0

) ∀µ ∈ R, (30.50)

где Tk — полином Чебышева порядка k (см. п. 2.2, с. 141, [5]). а ве-
личины ρ0, τ0 определены так же, как в теореме 1, с. 95. Нетрудно
проверить, что |(µτ0 − 1)/ρ0| 6 1 при µ ∈ [m,M ]. Поэтому (см. фор-
мулу (10.10), с. 142, [5])

max
m6µ6M

|Qk(µ)| =
1∣∣∣Tk

(
− 1

ρ0

)∣∣∣ . (30.51)

Поскольку ρ0 < 1, для вычисления Tk(−1/ρ0) нужно использовать
формулу предшествующую (10.10), с. 142, [5]. В результате, будем
иметь, что

max
m6µ6M

|Qk(µ)| = qk. (30.52)

Из (30.48), (30.49), (30.52) следует (30.44). �
1)Мы использовали тот факт, что корень из эрмитовой неотрицательной матрицы A переста-

новочен с матрицей A (см. с. 93).
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10. Оценка (30.44) показывает, что метод сопряженных гради-
ентов сходится существенно быстрее метода наискорейшего спуска.
Преимущество становится особенно заметным с увеличением отно-
шения M/m, т. е. с ухудшением обусловленности матрицы A.

11. Оценка (30.44) не может быть улучшена, в том смысле, что
не существует полинома Qk степени k, равного единице в нуле, и та-
кого, что max

m6µ6M
|Qk(µ)| < qk. Предполагая противное, мы должны

написать, что

max
m6µ6M

|Qk(µ)| < max
m6µ6M

∣∣∣Tk

(
µτ0−1
ρ0

)∣∣∣∣∣∣Tk

(
− 1

ρ0

)∣∣∣ (30.53)

для некоторого полинома Qk степени k такого, что Qk(0) = 1. Вы-
полним в неравенстве (30.53) замену переменной, полагая

t =
µτ0 − 1

ρ0
.

В результате, как нетрудно убедиться, получим, что

max
−16t61

|Q̃k(t)| < max
−16t61

|T̃k(t)|, (30.54)

где Q̃k(t) = Qk((ρ0t+ 1)/τ0), T̃k(t) = Tk(t)/Tk (−1/ρ0). Пусть

tj = cos
πj

k
, j = 0, 1, . . . , k.

Используя формулу (10,11), с. 127, [1], будем иметь, что

|T̃k(tj)| = max
−16t61

|T̃k(t)|, j = 0, 1, . . . , k,

причем при любых j = 0, 1, . . . , k− 1 знаки величин T̃k(tj) и T̃k(tj+1)
противоположны. Введем в рассмотрение полином Rk степени не вы-
ше k, полагая Rk(t) = Q̃k(t)−T̃k(t). Нетрудно сообразить, что при лю-
бых j = 0, 1, . . . , k − 1 знаки величин Rk(tj) и Rk(tj+1) также проти-
воположны. Это означает, что полином Rk имеет на интервале (−1, 1)
не менее k корней. Кроме того, Rk(−1/ρ0) = 0, а −1/ρ0 < −1. Таким
образом, полином Rk имеет не менее k + 1 корней, что невозможно.

Задача. Аналогично п. 4, с. 96, опишите и исследуйте предобусловленный вариант
метода сопряженных градиентов.



Глава 7
Алгебраическая проблема собственных значений

Под алгебраической проблемой собственных значений понимают
задачу отыскания собственных чисел и собственных векторов матри-
цы. Различают полную проблему собственных значений, т. е. нахож-
дение всех собственных чисел и собственных векторов, и частичную
проблему собственных значений, т. е. отыскание лишь некоторых соб-
ственных чисел и соответствующих им собственных векторов.

Понятно, что методы решения частичной проблемы собственных
значений должны быть более простыми. Мы рассмотрим примеры
методов обоих классов.

31. Методы прямой и обратной итераций

1. Метод прямой итерации. Этот метод предназначен для
отыскания максимального по модулю собственного числа матрицы и
соответствующего ему собственного вектора.

Выберем некоторое нормированное начальное приближение y0

и образуем последовательность нормированных векторов y1, y2, . . .
Именно, для k = 0, 1, . . . вычисляем xk+1 = Ayk, yk+1 = xk+1/|xk+1|.
Строим также последовательность чисел λ(k) = (Ayk, yk), k =
1, 2, . . .

На протяжении этого параграфа предполагаем, что матрица A
эрмитова. Собственные числа с матрицы A будем нумеровать в по-
рядке неубывания их модулей: |λ1| 6 |λ2| 6 · · · 6 |λn−1| 6 |λn|. Через
e1, e2, . . . , en будем обозначать соответствующие ортонормированные
собственные векторы. По теореме об ортогональном разложении ев-
клидова пространства при любом k = 0, 1, 2, . . .

yk = cke
n + sku

k, (31.1)

где (en, uk) = 0, |uk| = 1, ck = (yk, en), sk = (yk, uk), |ck|2 + |sk|2 = 1.
Далее будем использовать обозначение tk = sk/ck. Чем меньше |tk|,
тем ближе yk по направлению к собственному вектору матрицы A,
отвечающему λn.

Полезно отметить, что случае вещественной матрицы A числа ck,
sk вещественны, поэтому ck = cosφk, sk = sinφk, tk = tgφk, где φk
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можно интерпретировать как угол, образованный векторами en, yk
(сделайте рисунок!).

Теорема 1. Пусть |λn−1| < |λn|, c0 ̸= 0. Тогда tk → 0, λ(k) → λn

при k → ∞. Справедливы следующие оценки скорости сходимости:

|tk| 6
∣∣∣∣λn−1

λn

∣∣∣∣k |t0|, |λ(k) − λn| 6 (|λn−1|+ |λn|)
∣∣∣∣λn−1

λn

∣∣∣∣2k . (31.2)

Доказательство. В соответствии с изучаемым алгоритмом

yk+1 = α(ckAe
n + skAu

k) = α(ckλne
n + skAu

k).

Здесь α — число, выбираемое так, чтобы вектор yk+1 имел единичную
длину. Перепишем последнее равенство в виде

yk+1 = α(ck λne
n + |Auk|sk Auk/|Auk| ) =

= ck+1e
n + sk+1Au

k/|Auk|. (31.3)

Мы учли здесь, что вектор Auk ортогонален en, поскольку

(Auk, en) = (uk, Aen) = λn(u
k, en) = 0.

Из (31.3) вытекает, что

tk+1 =
|Auk|
λn

tk.

Записывая разложение uk по базису собственных векторов матрицы A

и учитывая ортогональность uk и en, получим, что Auk =
n−1∑
i=1

αiλie
i,

следовательно,

|Auk|2 =
n−1∑
i=1

α2
iλ

2
i 6 λ2

n−1

n−1∑
i=1

c2i = λ2
n−1|uk|2 = λ2

n−1. (31.4)

Таким образом,

|tk+1| 6
|λn−1|
|λn|

|tk|,

и первая оценка (31.2) доказана.
Вновь используя представление (31.1) и то, что (Auk, en) = 0,

получим:
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λn − λ(k) = λn − (A(ck e
n + sk u

k), ck e
n + sk u

k) =

= λn − (ck λne
n + sk Au

k, ck e
n + sk u

k) =

= λn − (λn|ck|2 + (Auk, uk)|sk|2) = (λn − (Auk, uk))|sk|2.

Отсюда вследствие (31.4) вытекает, что

|λn − λ(k)| 6 |λn + λn−1||sk|2 6 |λn + λn−1||tk|2,

Вместе с уже полученной первой оценкой (31.2) это завершает дока-
зательство теоремы. �

Условие c0 ̸= 0 на практике не слишком обременительно. Если
оно нарушается, то при проведении итераций за счет ошибок округ-
ления приближения обязательно выйдут из гиперплоскости, ортого-
нальной en.

2. Метод обратной итерации. Метод предназначен для
отыскания минимального по модулю собственного числа и соответ-
ствующего ему собственного вектора и состоит в следующем: выби-
раем нормированное начальное приближение y0 и строим последова-
тельность векторов y1, y2, . . . по формулам: xk+1 = A−1yk, yk+1 =
xk+1/|xk+1|, а также числа λ(k) = (Ayk, yk), k = 0, 1, 2, . . .

При реализации метода выгоднее не строить и хранить матри-
цу A−1, а решать на каждой итерации систему линейных уравнений
Axk+1 = yk. Предварительно целесообразно представить матрицу A
в виде LU или QR разложения (см. гл. 2).

Относительно сходимости метода справедлива теорема, полно-
стью аналогичная теореме 1, но на этот раз скорость сходимости ха-
рактеризуется отношением |λ1|/|λ2| < 1.

2.1.Метод обратной итерации со сдвигом. Рассмотрим обоб-
щение предыдущего метода, а именно переход от вектора yk к yk+1

будем выполнять по формулам: (A−σI)xk+1 = yk, yk+1 = xk+1/|xk+1|.
Здесь σ — параметр, называемый сдвигом. Последовательность λ(k),
k = 1, 2, . . . , по-прежнему, определяется формулой λ(k) = (Ayk, yk).
Сходимость этого метода исследуется по той же схеме, что и в теоре-
ме 1. При этом оказывается, что λ(k) → λj, где номер j характеризу-
ется условием |λj−σ| < |λi−σ| ∀ i ̸= j, а последовательность yk схо-
дится к соответствующему собственному вектору ej. Таким образом,
метод позволяет находить собственное число матрицы A, ближайшее
к заданному числу σ.
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32. Метод Якоби решения задач на собственные значения

1. В этом параграфе излагается метод Якоби, который можно
применять для приближенного отыскания собственных чисел и соб-
ственных векторов эрмитовых матриц. Как и все методы, исполь-
зуемые в настоящее время для приближенного решения задач на
собственные значения, метод Якоби является итерационным. В са-
мых общих чертах, идея его состоит в следующем. Пусть A — диа-
гональная матрица. Тогда собственные числа матрицы A есть ее
диагональные элементы. Метод Якоби для любой эрмитовой матри-
цы A дает способ построения последовательности матриц A1, A2, . . . ,
Ak, . . . таких, что каждая из матриц этой последовательности эрми-
това, подобна матрице A и с увеличением номера k становится все
более близкой к диагональной. В качестве приближенных значений
собственных чисел матрицы A берутся диагональные элементы мат-
рицы Ak, как только все ее внедиагональные элементы оказываются
достаточно малыми.

Итак, пусть A — эрмитова матрица порядка n, Q = {qij}ni,j=1 —
матрица, отличающаяся от единичной лишь четырьмя элементами:

qk,k = cosφ, qll = cosφ, qkl = −q sinφ, qlk = q̄ sinφ, (32.1)

где 1 6 k < l 6 n, φ — вещественное число, q — вообще говоря,
комплексное число, |q| = 1. Очевидно, Q — унитарная матрица1).

Образуем по матрице A матрицу Â = QTAQ и попытаемся вы-
брать параметры матрицы Q, т. е. числа k, l, φ, q, так, чтобы мат-
рица Â была максимально близка к диагональной.

Нетрудно убедиться, что матрица Ã = QTA отличается от мат-
рицы A лишь элементами строк с номерами k, l, причем

ãk,j = akj cosφ+ alj q̄ sinφ,

ãl,j = −akjq sinφ+ alj cosφ, j = 1, . . . , n. (32.2)

Аналогично, матрица Â = ÃQ отличается от матрицы Ã лишь эле-
ментами столбцов с номерами k, l, причем

âj,k = ãjk cosφ+ ãjlq sinφ,

âj,l = −ãjkq̄ sinφ+ ãjl cosφ, j = 1, . . . , n. (32.3)
Из (32.2), (32.3) сразу же следует, что

1)Матрица Q есть частный случай матрицы вращения, описанной в п. 1, с. 38.
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|ãk,j|2 + |ãl,j|2 = |ak,j|2 + |al,j|2, |âj,k|2 + |âj,l|2 = |aj,k|2 + |aj,l|2,
j = 1, . . . , n, (32.4)

âkl = q̄(all − akk) cosφ sinφ+ akl cos
2 φ− q̄2alk sin

2 φ. (32.5)
Вычислим сумму квадратов модулей внедиагональных элементов
матрицы Â. Используя соотношения (32.2) – (32.4), нетрудно полу-
чить, что ∑

i̸=j

|âij|2 =
∑
i ̸=j

|aij|2 − 2|akl|2 + |âkl|2. (32.6)

Определим теперь числа k, l из условия

|akl| = max
i̸=j

|aij|. (32.7)

Поскольку A — эрмитова матрица, то alk = ākl, и из (32.5) с учетом
того, что 1/q̄ = q, будем иметь, что

âkl = q̄

(
all − akk

2
sin 2φ+ qakl cos

2 φ− q̄ākl sin
2 φ

)
.

Будем считать, что akl ̸= 0. В противном случае матрица диагональ-
на, и ее собственные числа определяются тривиальным образом. По-
ложим

q = |akl|/akl. (32.8)
Тогда

âkl = q̄

(
all − akk

2
sin 2φ+ |akl| cos 2φ

)
. (32.9)

Выберем затем угол φ так, чтобы

|akl| cos 2φ+
1

2
(all − akk) sin 2φ = 0,

или
tg 2φ =

2|akl|
akk − all

. (32.10)

При указанном выборе параметров, определяющих матрицу Q, сумма
квадратов модулей внедиагональных элементов матрицы Â принима-
ет наименьшее значение.

Теперь можно описать метод Якоби. Пусть A0 = A. Образуем по-
следовательность матриц A1, A2, . . . при помощи рекуррентной фор-
мулы

Ap+1 = QT
pApQp, p = 0, 1, . . . , (32.11)
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где параметры матрицы Qp определяются так, чтобы сделать сум-
му квадратов внедиагональных элементов матрицы Ap+1 минимально
возможной, т. е. по формулам вида (32.7), (32.8), (32.10).

Вычисления проводят до тех пор, пока все внедиагональные эле-
менты матрицы Ap не станут достаточно малыми. Тогда в качестве
приближений к собственным числам матрицы A принимают диаго-
нальные элементы матрицы Ap, а столбцы матрицы Q0Q1 · · ·Qp счи-
тают приближениями к собственным векторам матрицы A.

2. При исследовании сходимости метода Якоби существенно ис-
пользуется

Теорема 1. Пусть параметры матрицы Q определяются со-
гласно формулам (32.7), (32.8), (32.10). Тогда∑

i̸=j

|âij|2 6 ρ
∑
i̸=j

|aij|2, (32.12)

где
0 < ρ = 1− 2

n(n− 1)
< 1

при n > 2.
Доказательство. Вследствие (32.10) из (32.6) получаем∑

i̸=j

|âij|2 =
∑
i̸=j

|aij|2 − 2|akl|2, (32.13)

а на основании (32.7) ∑
i̸=j

|aij|2 6 |akl|2n(n− 1). (32.14)

Здесь учтено, что матрица порядка n имеет n2 − n внедиагональных
элементов. Из (32.13), (32.14) очевидным образом следует (32.12). �

3. Докажем сходимость метода Якоби. Пусть Ap = {a(p)ij }ni,j=1. Из
рекуррентной формулы (32.11) и леммы 1 вытекает, что∑

i ̸=j

|a(p)ij |
2 6 ρ

∑
i ̸=j

|a(p−1)
ij |2 6 · · · 6 ρp

∑
i̸=j

|aij|
2 → 0 при p → ∞.

Это означает, что по любому заданному ε > 0 можно указать целое
положительное число p такое, что

|a(p)ij | 6 ε/n, i ̸= j, i, j = 1, 2, . . . , n. (32.15)
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Обозначим через Λp диагональную матрицу, на диагонали которой
расположены диагональные элементы матрицы Ap. В соответствии с
оценками (32.15), а также (24.4), с. 75, можем написать:

|λk(Ap)− λ
(p)
k | 6 ε, k = 1, 2, . . . , n,

где λ
(p)
k , k = 1, . . . , n, — диагональные элементы матрицы Λp, упо-

рядоченные по неубыванию, λk(Ap) — так же упорядоченные соб-
ственные числа матрицы Ap. Вследствие (32.11) имеем Ap = T T

p ATp,
где Tp = Q0Q1 . . . Qp, т. е. матрицы Ap и A подобны, а значит, их
собственные числа совпадают, поэтому

|λk(A)− λ
(p)
k | 6 ε, k = 1, 2, . . . , n. (32.16)

Таким образом, выполнив определенное количество итераций, мы
получим приближенные значения собственных чисел матрицы A с
любой наперед заданной точностью.

4. Применяя метод Якоби для приближенного отыскания соб-
ственных чисел и собственных векторов симметричной веществен-
ной матрицы, в формулах (32.1) параметр q следует положить рав-
ным единице. Соответственно в формуле (32.10) нужно заменить |akl|
на akl. Все выше полученные оценки при этом сохраняются.

33. QR-алгоритм

Этот алгоритм является одним из наиболее эффективных мето-
дов отыскания всех собственных чисел матрицы невысокого поряд-
ка. Формально метод чрезвычайно прост. Пусть A ∈ Mn. Положим
A0 = A и образуем последовательность матриц A0, A1, . . . по следу-
ющему правилу.

Если матрица Ak известна, то:
1) представляем матрицу в виде (см. §11, гл. 2)

Ak = QkRk, (33.1)

где Qk — унитарная, Rk — верхняя треугольная матрицы (такое пред-
ставление может быть получено, например, методом отражений, см.
гл. 2, с. 38),

2) строим матрицу
Ak+1 = RkQk. (33.2)

Нетрудно видеть, что матрицы Ak, Ak+1 унитарно подобны. В са-
мом деле, из (33.1), (33.2), очевидно вытекает, что

Ak+1 = Q∗
kAkQk. (33.3)
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Из (33.3) получаем, что

Ak+1 = S∗
kASk, (33.4)

где,
Sk = Q1Q2 · · ·Qk, (33.5)

т. е. каждая их матриц построенной последовательности унитарно
подобна матрице A.

Исследование сходимости QR-алгоритма проведем в предположе-
нии, что A — нормальная матрица, т. е. AA∗ = A∗A. Подробнее о
нормальных матрицах см., например, в [5].

Теорема 1. Пусть A — нормальная матрица. Тогда последова-
тельность треугольных матриц Rk, k = 0, 1, . . . , построенных при
помощи алгоритма (33.1), (33.2), сходится к диагональной матри-
це.

Для доказательства теоремы 1 нам потребуются некоторые вспо-
могательные результаты. Кроме того, будем придерживаться следу-
ющих соглашений. Если X ∈ Mn, то столбцы этой матрицы будем
обозначать через xi, а строки через xi, i = 1, 2, . . . , n. Под нормой век-
торов будем понимать норму ∥·∥2. В разложении (33.1) диагональные
элементы матриц Rk предполагаются неотрицательными (см. замеча-
ние 2 на с. 42).

Лемма 1. Пусть матрицы Ak, Qk, Rk, k = 0, 1, . . . , построены
по матрице A при помощи алгоритма (33.1), (33.2). Тогда1)

∥a(k),i∥ = ∥a(k)i ∥, i = 1, 2, . . . (33.6)

∥r(k),i∥ = ∥a(k),i∥, ∥r(k)i ∥ = ∥a(k+1)
i ∥, i = 1, 2, . . . , (33.7)

m∑
i=1

n∑
j=m+1

|r(k)ij |2 =
m∑
i=1

∥r(k)i ∥2 −
m∑
i=1

∥r(k),i∥2 =

=
m∑
i=1

∥a(k+1)
i ∥2 −

m∑
i=1

∥a(k)i ∥2 (33.8)

для m = 1, 2, . . . , n− 1,

|r(k)mm|2 = ∥a(k+1)
m ∥2 −

n∑
j=i+1

|r(k)mj |
2 (33.9)

1)Поясним, что индекс (k) обозначает принадлежность соответствующих строк и столбцов
матрице с номером k.
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для m = 1, 2, . . . , n.
Доказательство. Равенства (33.6) непосредственно следуют из

того, что если матрица A нормальна, то вследствие (33.4) и все мат-
рицы Ak, k = 1, 2, . . . , также — нормальные матрицы. Выполне-
ние (33.7) обеспечивается равенствами (33.1), (33.2) и тем, что мат-
рицы Qk унитарны и потому не меняют длин векторов. Первое ра-
венство (33.8) легко проверяется непосредственными вычислениями,
второе следует из (33.7), (33.6). Для обоснования (33.9) достаточно
учесть второе равенство (33.7). �

Доказательство теоремы 1. Очевидно, достаточно установить,
что последовательности

∆(k)
m =

m∑
i=1

n∑
j=m+1

|r(k)ij |2, m = 1, 2, . . . , n− 1,

стремятся к нулю, а последовательности r
(k)
mm, m = 1, 2, . . . , n, схо-

дятся при k → ∞. Пусть σ
(k)
m =

m∑
i=1

∥a(k)i ∥2. Из (33.8) вытекает, что

каждая из последовательностей σ
(k)
m не убывает. Из равенств (33.3)

(см. также упражнение на с. 74) получаем, что σ
(k)
m 6 ∥A∥E для всех

m = 1, 2, . . . , n − 1, k = 1, 2, . . . Таким образом, все последователь-
ности σ

(k)
m являются сходящимися. Но тогда из (33.8) вытекает, что

∆
(k)
m = σ

(k+1)
m − σ

(k)
m → 0 при k → ∞ для всех m = 1, 2, . . . , n − 1.

Заметим теперь, что ∥a(k+1)
1 ∥2 = σ

(k+1)
1 , ∥a(k+1)

m ∥2 = σ
(k+1)
m − σ

(k+1)
m−1 для

m = 2, 3, . . . , n − 1. Поэтому из равенств (33.9) вытекает, что все
последовательности |r(k)mm|, m = 1, 2, . . . , n, являются сходящимися.
Осталось напомнить, что по принятому соглашению |r(k)mm| = r

(k)
mm для

всех m = 1, 2, . . . , n, k = 1, 2, . . . �
Теорема 2. Пусть A ∈ Mn — нормальная матрица, как и вы-

ше, Rk, k = 0, 1, . . . , — последовательность треугольных матриц,
построенных при помощи алгоритма (33.1), (33.2),

r
(k)
11 > r

(k)
22 > · · · > r(k)nn > 0

есть диагональные элементы матрицы Rk, упорядоченные по невоз-
растанию,

|λ1| > |λ2| > · · · > |λn|

есть модули собственных чисел матрицы A. Тогда r
(k)
ii → |λi| для

i = 1, 2, . . . , n при k → ∞.
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Доказательство. Вследствие (33.4) имеем Ak+1A
∗
k+1 = S∗

kAA
∗Sk,

т. е. для любого k = 1, 2, . . . спектры матриц Ak+1A
∗
k+1 и AA∗ сов-

падают. Из (33.2) получаем, что Ak+1A
∗
k+1 = RkR

∗
k. По теореме 1

последовательность матриц RkR
∗
k стремится к диагональной матри-

це. Поэтому, рассуждая, как при обосновании метода Якоби (см. п.
3, с. 113), получаем, что (r

(k)
ii )2 → ρ2i при k → ∞ для i = 1, 2, . . . , n.

Здесь ρ21, ρ22, . . . , ρ2n — собственные числа матрицы AA∗, упорядочен-
ные по неубыванию. Напомним, что ρ1, ρ2, . . . , ρn > 0 — сингулярные
числа матрицы A, а для нормальной матрицы сингулярные числа и
модули собственных чисел совпадают, что непосредственно вытекает
из теоремы 4, с. 225, [5]. �

Отметим очевидное, но полезное
Следствие 1. Если матрица A самосопряжена и неотрица-

тельно определена, то (r
(k)
ii ) → λi, k → ∞, i = 1, 2, . . . , n.

Наиболее трудоемким при реализации QR-алгоритма является
вычисление на каждом шаге разложения матрицы на треугольный
и унитарный сомножители. Это требует 4n3/3 + O(n2) flops (см.
с. 42). Поэтому, обычно перед проведением итераций матрицу A по-
добным преобразованием приводят к такой форме, для которой QR-
разложение требует существенно меньших затрат, и которая сохраня-
ется на всех шагах QR-алгоритма. Особенно эффективно этот подход
может быть реализован для эрмитовых матриц.

Теорема 3. Пусть A ∈ Mn — ’эрмитова матрица. Тогда суще-
ствует унитарная матрица U такая, что матрица

UAU ∗ (33.10)

есть трехдиагональная (эрмитова) матрица.
Доказательство. Представим матрицу A в блочном виде

A =

[
α1 a∗1
a1 M1

]
.

Здесь α1 — число, a1 — столбец. Пусть

U1 =

[
1 0T

0 V1

]
,

где V1 — унитарная матрица порядка n− 1. Тогда

U1AU
∗
1 =

[
α1 (V1a1)

∗

V1a1 V1M1V
∗
1

]
.
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Рассуждая, как при доказательстве теоремы 1, с. 41, мы можем по-
строить матрицу V1 так, чтобы все элементы столбца V1a1, начиная
со второго были равны нулю. Аналогичные рассуждения можно про-
вести по отношению к матрице V1M1V

∗
1 и так далее. �

Упражнения.

33.1. Покажите, что алгоритм, описанный в доказательстве теоремы 3, требует
порядка 4n3/3 flops1).

33.2. Предполагая, что матрица Q в QR алгоритме строится с использованием мат-
риц отражения, докажите, что если матрица A — эрмитова трехдиагональная матрица,
то и все матрицы Ak, k = 1, 2, . . . , также эрмитовы и трехдиагональны. Покажите,
что QR разложение эрмитовой трехдиагональной матрицы требует O(n) flops.

33.3. Выясните, какую структуру будет иметь матрица UAU∗, построенная в ходе
доказательства теоремы 3, если отказаться от предположения об эрмитовости матри-
цы A. Матрицы такой структуры называются матрицами Хессенберга.

1)В [7] указана модификация этого алгоритма, позволяющая в вещественном случае умень-
шить затраты вдвое.



Глава 8
Практикум по численным методам

С целью закрепления теоретических знаний по численным мето-
дам линейной алгебры и навыков программирования, студентам мо-
гут быть предложены практические (лабораторные) задания, если это
предусмотрено учебным планом. Ниже приводятся типовые задания.
Далее мы будем предполагать, что задания выполняются в среде про-
граммирования MATLAB. Все встречающиеся ниже векторы и мат-
рицы вещественны.

34. Варианты систем линейных уравнений

Для выполнения заданий потребуются как тестовые, так и содер-
жательные примеры матриц и соответствующих им систем уравне-
ний. Приведем ряд таких примеров.

Тестовые матрицы и системы. Тестовые матрицы и системы
уравнений необходимы для отладки написанных студентом функций.
При этом могут потребоваться матрицы со специальными свойства-
ми (такими, как симметричность, положительная определенность и
т. д.). Следующие рекомендации могут помочь при создании тестов.

1. Квадратная матрица A общего вида заданного размера n мо-
жет задана с использованием генератора случайных чисел. Полез-
но элементы A генерировать равномерно распределенными на отрез-
ке [0, 1]. Такие матрицы с вероятностью, практически равной едини-
це, имеют ненулевой определитель достаточно хорошо обусловлены.
Соответствующая функция MATLAB имеет вид A = rand(n, n).

2. Команды A = rand(n, n); A = A+AT ; генерируют симметрич-
ную матрицу A общего вида с ненулевым определителем. Здесь AT ,
как обычно, есть транспонированная к A матрица.

3. Если A — квадратная матрица из теста 1 или 2, то достаточно
увеличить диагональные элементы A на n, чтобы получить матрицу
с диагональным преобладанием (как по строкам, так и столбцам). В
MATLAB это достигается командой A = A + n ∗ eye(n, n) (функция
E = eye(n, n) генерирует единичную матрицу размера n).
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4. Матрица A с элементами aij = min{i, j} является симмет-
ричной и положительно определенной, а обратная к ней являет-
ся трехдиагональной с целыми элементами; она задается командой
A = gallery(′minij′, n).

5. Пусть A матрица из предыдущего теста, E — матрица, все
элементы которой равны единицы. Тогда матрица B = 2A− E (т. е.
B = 2 ∗A− ones(size(A))) является симметричной, а ее собственные
числа равны λk(B) = 0.5 sec((2k − 1)π/(4n))2, k = 1 : n.

6. Команда A = gallery(′tridiag′, a, b, c) генерирует трехдиаго-
нальную матрицу размера n в разреженном формате (sparse). Век-
тор b (длины n) определяет диагональные элементы A, а a и c — соот-
ветсвенно, под- и наддиагональные элементы (векторы длины n− 1).

7. Команда A = gallery(′randjorth′, n, n, cond, 1, 1) генерирует
квадратную матрицу размера 2n с заданным числом обусловленности
равным cond.

8. При отладке функций решения систем уравнений Ax = b с
тестовой матрицей A вектор правой части b можно определить сле-
дующим образом. Выберем случайным образом решение системы x.
Например, положим x = rand(n, 1) и вычислим b = Ax. Таким об-
разом мы получили тестовую систему уравнений с известным реше-
нием x. Если теперь мы решим систему Ax = b и найдем ее решение
(обозначим его через y; из-за ошибок округления при вычислениях
вектор y, вообще говоря, отличается от x), то вектор x − y опреде-
ляет погрешность решения. Команда e = norm(x− y, inf) позволяет
вычислить максимальную погрешность решения. А именно, норму
∥x− y∥∞ = max

i=1,...,n
|xi − yi|.

Вариант 1. Матрица A и вектор b получаются в результате
дискретизации тем или иным методом квадратур (см. § 4, гл. 1) ин-
тегрального уравнения Фредгольма второго рода

u(x)− λ

∫ b

a

K(x, s)u(s) ds = f(x) ∀x ∈ [a, b]. (34.1)

Система уравнений имеет вид

yi − λ

n∑
j=1

cjK(xi, xj) yj = f(xi), i = 1, . . . , n,

где xi, ci, i = 1, . . . , n, есть узлы и коэффициенты квадратурной фор-
мулы. Матрица A определяется как матрица этой системы, а вектор
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b — как вектор правой части. Таким образом,

A = {δij − λ cjK(xi, xj)}ni,j=1, b = (f1, f2, . . . , fn)
T .

Решение y = (y1, . . . , yn)
T системы Ay = b дает приближенное реше-

ние интегрального уравнения: yi является приближением к u(xi).
Конкретные матрица A и вектор b получаются, если определить

интервал [a, b], число λ, ядро K(x, s), функцию f(x), а также квад-
ратурную формулу. Ниже мы укажем дополнительно точное реше-
ние уравнения (34.1), чтобы графически можно было бы сравнить
точность найденного приближенного решения и его зависимость от
числа узлов сетки n. Таким образом, помимо тестирования метода
решения системы алгебраических уравнений, предлагается попутно
протестировать метод решения интегрального уравнения Фредголь-
ма второго рода.

Отметим, что варианты 1a и 1b приводят к несимметричной мат-
рице A, остальные — к симметричной.
Вариант 1a. Квадратура — составная формула центральных прямо-
угольников,

[a, b] = [0, 1], λ = 0.5, K(x, s) = x es, f(x) = e−x, u(x) = x+ e−x.

Вариант 1b. Квадратура — составная формула трапеций,

[a, b] = [0, 1], λ = 0.5, K(x, s) = (x+ 1) e−xs,

f(x) = e−x − 0.5 + 0.5e−(x+1), u(x) = e−x.

Вариант 1c. Квадратура — составная формула центральных прямо-
угольников,

[a, b] = [−π, π], λ = 0.3/π, K(x, s) = 1/
(
0.64 cos2

(
(x+ s)/2

)
− 1
)
,

f(x) = 25− 16 sin2(x), u(x) = 17/2 + (128/17) cos(2x).

Вариант 1d. Квадратура — составная формула трапеций,

[a, b] = [−1, 1], λ = 1, K(x, s) = sh(x+ s),

f(x) = x2, u(x) = x2 + α sh(x) + β ch(x),

α = (6 sh(1)− 4 ch(1))/
(
2− sh2(2)/4

)
, β = α(sh(2)/2− 1).

Вариант 1e. Квадратура — составная формула центральных прямо-
угольников,

[a, b] = [0, 3π], λ = 1, K(x, s) = cos(x+ s),
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f(x) = (1− 3π/2) cos(x), u(x) = cos(x).

Вариант 1f. Квадратура — составная формула трапеций,

[a, b] = [0, 1], λ = −3, K(x, s) = (xs)2 − 4xs+ 1,

f(x) = 2π2 cos(2π x), u(x) = 2π2 cos(2π x) + 5(2x2 − 1)/3.

Вариант 2. Матрица A и вектор b получаются в результате
дискретизации методом коллокаций краевой задачи (см. § 5, гл. 1)

−u′′(x) + q(x)u(x) = f(x), x ∈ (a, b), (34.2)
u(a) = ua, u(b) = ub.

Для формирования матрицы A необходимо выполнить следую-
щие вычисления:
1) вычислить сетку узлов {xi} по формуле (5.5), гл. 1;
2) Вычислить матрицы D(1) и D(2) размера n + 1 по формулам
(5.9), (5.10) и (5.11) гл. 1. Cформировать матрицу D = −D2 +
diag(q(x0), q(x1), . . . , q(xn));
3) вычислить вектор столбец F = (f(x1), f(x2), . . . , f(xn−1))

T ;
4) вычислить b = F −D2:n,1ua−D2:n,n+1ub, где D2:n,k — элементы k-го
столбца D со второго по n-й;
5) A получается из D вычеркиванием строк и столбцов с номерами 1
и n+ 1.

После решения системы Az = b находится приближенное решение
задачи (34.2) в виде y = (ua, z1, . . . , zn−1, ub)

T .
Конкретные матрица A и вектор b получаются, если определить

интервал [a, b], функции q(x) и f(x). Ниже мы укажем дополнитель-
но точное решение уравнения (34.2), чтобы можно было графически
продемонстрировать точность найденного приближенного решения и
ее зависимость от числа узлов сетки n. Для построения графиков u(x)
и yn(x) достаточно использовать равномерную сетку узлов t = {ti}Ni=1

с шагом h = (b − a)/(N − 1) при 100 6 N 6 200. Для вычисления
yn(x) в этих узлах можно использовать формулу (5.12). Таким обра-
зом, помимо тестирования метода решения системы алгебраических
уравнений предлагается попутно протестировать метод решения кра-
евой задачи (34.2).

Отметим, что матрица A является симметричной и положительно
определенной, если q(x) > 0. Поскольку u(x) известно, то числа ua и
ub определяются равенствами ua = u(a), ub = u(b).
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Вариант 2a.

[a, b] = [0, 1], q(x) = 1/ε, ε = 0.05, f(x) = 0,

u =
(
exp(−x/ε1/2)− exp((x− 2)/ε1/2)

)
/
(
1− exp(−2/ε1/2)

)
.

Вариант 2b.

[a, b] = [−1, 1], q(x) = 1/ε, ε = 0.05, f(x) = (1/ε+ π2) cos(πx),

u = cos(πx) + exp((x− 1)/ε1/2) + exp(−(x+ 1)/ε1/2).

Вариант 2c.

[a, b] = [0, π], q(x) = sin(x), f(x) =
(
9 + sin(x)

)
sin(3x), u = sin(3x).

Вариант 2d.

[a, b] = [0, 2], q(x) = x2, f(x) = (4 + x2) cos(2x), u = cos(2x).

Вариант 2e.

[a, b] = [0, 3], q(x) = (1 + x)2, f(x) = 1− 6/(1 + x)4,

u = 1/(1 + x)2.

Вариант 2f.

[a, b] = [−2, 2], q(x) = 4 cos2(2x), f(x) = sin2(4x)− 16 cos(4x),

u = sin2(2x).

Вариант 3. Матрица A и вектор b получаются в результате
дискретизации методом конечных разностей краевой задачи (см.§ 5,
гл. 1)

−u′′(x) + q(x)u(x) = f(x), x ∈ (a, b), (34.3)
u(a) = ua, u(b) = ub.

Система алгебраических уравнений имеет вид

y0 = ua,

−yi−1 +
(
2 + h2q(xi)

)
yi − yi+1 = h2f(xi), i = 1, . . . , n− 1,

yn = ub.
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Поскольку y0 и yn известны, то их можно исключить из системы и по-
лучить новую систему для определения неизвестных y1, y2, . . . , yn−1:(

2 + h2q(x1)
)
y1 − y2 = h2f(x1) + ua,

−yi−1 +
(
2 + h2q(xi)

)
yi − yi+1 = h2f(xi), i = 2, . . . , n− 2, (34.4)

−yn−2 +
(
2 + h2q(xn−1)

)
yn−1 = h2f(xn−1) + ub.

Матрица A размера N = n − 1 этой новой системы является сим-
метричной, трехдиагональной и с диагональным преобладанием, ес-
ли q(x) > 0. Методы решения таких систем как правило не требуют
хранения A в памяти ЭВМ: достаточно трех векторов для хранения
элементов, расположенных на ненулевых диагоналях.

Конкретная система уравнений получается, если определить ин-
тервал [a, b], функции q(x) и f(x). Ниже мы укажем дополнительно
точное решение уравнения (34.3), чтобы можно было графически про-
демонстрировать точность найденного приближенного решения и ее
зависимость от числа узлов сетки n. Таким образом, помимо тестиро-
вания метода решения системы алгебраических уравнений, предла-
гается попутно протестировать конечно-разностный метод решения
краевой задачи (34.3).

Отметим, что поскольку u(x) известно, то числа ua и ub опреде-
ляются равенствами ua = u(a), ub = u(b).
Вариант 3a.

[a, b] = [0, 1], q(x) = 1/ε, ε = 0.05, f(x) = 0,

u =
(
exp(−x/ε1/2)− exp((x− 2)/ε1/2)

)
/
(
1− exp(−2/ε1/2)

)
.

Вариант 3b.

[a, b] = [−1, 1], q(x) = 1/ε, ε = 0.05, f(x) = (1/ε+ π2) cos(πx),

u = cos(πx) + exp((x− 1)/ε1/2) + exp(−(x+ 1)/ε1/2).

Вариант 3c.

[a, b] = [0, π], q(x) = sin(x), f(x) =
(
9 + sin(x)

)
sin(3x), u = sin(3x).

Вариант 3d.

[a, b] = [0, 2], q(x) = x2, f(x) = (4 + x2) cos(2x), u = cos(2x).

Вариант 3e.

[a, b] = [0, 3], q(x) = (1 + x)2, f(x) = 1− 6/(1 + x)4,
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u = 1/(1 + x)2.

Вариант 3f.

[a, b] = [−2, 2], q(x) = 4 cos2(2x), f(x) = sin2(4x)− 16 cos(4x),

u = sin2(2x).

35. Задание 1. Решение трехдиагональных систем
уравнений

1. Целью задания является закрепление теоретических знаний
и приобретение практических навыков при решении систем линей-
ных алгебраических уравнений с трехдиагональными матрицами ме-
тодом прогонки и итерационными методами, а также ознакомление
с конечно-разностным методом решения краевых задач для обыкно-
венных дифференциальных уравнений.

2. Для анализа методов каждый студент получает одну из систем
уравнений варианта 3.

3. Считая, что система уравнений имеет общий вид

aixi−1 + bixi + cixi+1 = fi, i = 1, . . . , N,

при a1 = 0, cN = 0, требуется реализовать и отладить на тестовом
примере следующие методы.

a) Метод прогонки. Метод должен быть реализован в виде от-
дельной функции с входными параметрами (a, b, c, f) и выходным x.
Здесь a, b, c — векторы коэффициентов системы, f — вектор правой
части;

b) Итерационный метод Якоби. Метод должен быть реализован
в виде отдельной функции с входными параметрами (a, b, c, f, tol, x0,
maxiter) и выходными параметрами [x, niter, r]. Здесь дополнитель-
но: tol — критерий точности, x0 — начальное приближение к x,
maxiter — максимальное число итераций (итерации выполняются
пока не выполнено условие ∥xk+1 − xk∥∞ 6 tol близости сосед-
них итераций ), niter — число итераций, потребовавшихся для до-
стижения критерия точности, r — вектор норм невязок на итера-
циях, т. е. r(k) = ∥rk∥∞. Предусмотреть, что входные параметры
tol, x0,maxiter (или часть из них) могут быть не указаны при вызове
функции; в этом случае принять по умолчанию tol = 10−6, x0 = 0,
maxiter = 10n. Также предусмотреть, что параметр niter и (или) r
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при вызове функции могут быть не указаны, а также сообщение на
экран, если достигнуто максимальное число итераций;

c) Итерационный метод Зейделя. Метод должен быть реализован
в виде отдельной функции (с теми же входными и выходными пара-
метрами, что и для метода Якоби);

d) Итерационный метод релаксации. Метод должен быть ре-
ализован в виде отдельной функции с входными параметрами
(a, b, c, f, omega, tol, x0,maxiter) и выходными — [x, niter, r]. Здесь
omega — параметр метода;

4. Для значений n = 10, 20, 50, 100 решить заданную систему
уравнений методом прогонки. При каждом n требуется определить
максимальную погрешность решения разностной схемы, т. е. величи-
ну en = ∥u − y∥∞ = max

i=1:n
|u(xi) − yi| и в одних осях построить гра-

фики u и y. Кроме того, требуется составить таблицу из трех строк,
откладывая в первой строке значения n, во второй — значения en,
в третьей — en n

2. Анализируя графики и таблицу, студент должен
сделать выводы о точности разностной схемы.

5. При n = 100 решить заданную систему методами прогонки,
Якоби, Зейделя и релаксации при ω = 1.7, ω = 1.8, ω = 1.9, пола-
гая tol = 10−6, maxiter = 10000, x0 равным случайному вектору.
Составить таблицу с пятью столбцами (по числу итерационных ме-
тодов) и тремя строками. В строках указываются соответствующие
итерационному методу значения niter, r(niter), а также истинная по-
грешность en = ∥yp − yit∥∞, где yp — решение, полученное методом
прогонки, yit — решение, полученное итерационным методом при до-
стижении критерия точности. Кроме того, в одних осях необходимо
построить графики норм невязок на итерациях (r) всех методов.

Анализируя графики и таблицу, студент должен сделать выводы
о поведении норм невязок методов на итерациях, скорости сходимо-
сти методов, влиянии параметра ω на скорость сходимости метода
релаксации.

6. Для значений n = 50, 100, 200, 400, 800 решить заданную си-
стему методами прогонки, Якоби, Зейделя и релаксации при одном
выбранном студентом параметре ω. Выбрать tol = 10−4, maxiter =
10000, x0 = 0. Требуется составить три таблицы с тремя строками
(по числу итерационных методов) и пятью столбцами (по числу зна-
чений n). В первой таблице в строках указываются соответствующие
итерационному методу значения niter; во второй таблице — r(niter),
в третьей — истинная погрешность en = ∥yp−yit∥∞, где yp — решение,
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полученное методом прогонки, yit — решение, полученное итерацион-
ным методом при достижении критерия точности.

Анализируя графики и таблицы, студент должен сделать выводы
о скорости сходимости методов, а также обоснованно выбрать наи-
лучший итерационный метод.

36. Задание 2. Метод Гаусса

1. Целью задания является закрепление теоретических знаний и
приобретение практических навыков решения систем линейных ал-
гебраических уравнений, а также ознакомление студента с одним из
приближенных методов решения краевых задач для обыкновенных
дифференциальных уравнений.

2. Для анализа методов каждый студент получает одну из систем
уравнений варианта 2.

3. Требуется реализовать и отладить на тестовом примере следу-
ющие алгоритмы метода Гаусса без выбора ведущего элемента для
решения системы уравнений Ax = b.

a) kij-алгоритм. Метод должен быть реализован в виде отдельной
функции с входными параметрами (A, b) и выходным x.

b) kji-алгоритм. Метод должен быть реализован в виде отдельной
функции с входными параметрами (A, b) и выходным x.

c) ijk-алгоритм LU разложения. Метод должен быть реализо-
ван в виде отдельной функции с входным параметром A и выход-
ными [L,U ];

d) jik-алгоритм LU разложения. Метод должен быть реализо-
ван в виде отдельной функции с входным параметром A и выходны-
ми [L,U ];

e) алгоритм решения системы LUx = b в виде отдельной функции
с входными параметрами [L,U, b] и выходным x;

Во всех функциях а)–d) необходимо предусмотреть сообщение на
экран, если разложение матрицы невозможно осуществить.

5. Для значений n = 100, 500, 1000, 1500, 2000 решить тестовую
систему, используя функции а)–e). Требуется составить три таблицы,
две из которых имеют шесть строк и пять столбцов, третья — две
строки и пять столбцов. В этих таблицах в столбцах указываются
значения n. В первой таблице в строках указывается время работы
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соответствующей функции; во второй таблице — погрешность най-
денного решения; в третьей — число обусловленности матрицы A,
вычисленное при помощи MATLAB функции cond.

Анализируя таблицы, студент должен сделать выводы о накопле-
нии погрешности при реализации метода Гаусса и соответствии вре-
мени работы теоретическим ожиданиям.

6. Написать функцию формирования заданной системы уравне-
ний из варианта 2 с входными параметрами (q, f, ua, ub,m) и выход-
ными [A, b], где q, f — указатели на функции дифференциального
уравнения, ua, ub данные краевых условий ua и ub, m — размер мат-
рицы A.

7. Для значений n = 5, 10, 20, 50 решить заданную систему урав-
нений kij – алгоритмом. При каждом n требуется определить макси-
мальную погрешность решения приближенного метода, т. е. величину
en = ∥u−y∥∞ = maxi=1:N |u(ti)−yn(ti)| и в одних осях построить гра-
фики u и yn. Кроме того, требуется составить таблицу из двух строк,
откладывая в первой строке значения n, во второй — значения en.
Анализируя графики и таблицу, студент должен сделать выводы о
точности дискретной схемы.

37. Задание 3. Метод Гаусса с выбором главного элемента

1. Целью задания является закрепление теоретических знаний и
приобретение практических навыков решения систем линейных ал-
гебраических уравнений, а также ознакомление студента с одним из
приближенных методов решения интегральных уравнений.

2. Для анализа методов каждый студент получает одну из систем
уравнений варианта 1.

3. Требуется реализовать и отладить на тестовом примере сле-
дующие алгоритмы метода Гаусса с выбором ведущего элемента по
столбцу для решения системы уравнений Ax = b.

a) kij-алгоритм. Метод должен быть реализован в виде отдельной
функции с входными параметрами (A, b) и выходным x.

b) kji-алгоритм. Метод должен быть реализован в виде отдельной
функции с входными параметрами (A, b) и выходным x.

c) ijk-алгоритм LU разложения. Метод должен быть реализован
в виде отдельной функции с входным параметром A и выходными
[L,U, p ], где p — вектор перестановок такой, что A(p, :) = L ∗ U .
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Соответствующая p матрица перестановок удовлетворяет равенству
PA = LU ;

d) jik-алгоритм LU разложения. Метод должен быть реализован
в виде отдельной функции с входным параметром A и выходными
[L,U, p ];

e) алгоритм решения системы LUx = Pb в виде отдельной функ-
ции с входными параметрами [L,U, p, b] и выходным x;

Во всех функциях а)–d) необходимо предусмотреть сообщение на
экран, если разложение матрицы невозможно осуществить.

5. Для значений n = 100, 500, 1000, 1500, 2000 решить тестовую
систему, используя функции а)–e). Требуется составить три таблицы,
две из которых имеют шесть строк и пять столбцов, третья — две
строки и пять столбцов. В этих таблицах в столбцах указываются
значения n. В первой таблице в строках указывается время работы
соответствующей функции; во второй таблице — погрешность най-
денного решения; в третьей — число обусловленности матрицы A,
вычисленное при помощи MATLAB функции cond.

Анализируя таблицы, студент должен сделать выводы о накопле-
нии погрешности при реализации метода Гаусса и соответствии вре-
мени работы теоретическим ожиданиям.

6. Написать функцию формирования заданной системы уравне-
ний из варианта 1 с входными параметрами (K, f, lambda, a, b, n) и
выходными [A, b], где K, f — указатели на функции ядра и правой
части интегрального уравнения, a, b отрезок интегрирования, n —
размер матрицы A.

7. Для значений n = 5, 10, 20, 50 решить заданную систему урав-
нений kij-алгоритмом. При каждом n требуется определить макси-
мальную погрешность решения приближенного метода, т.е. величину
en = ∥u − y∥∞ = max

16i6n
|u(xi) − yi| и в одних осях построить графи-

ки u и y. Кроме того, требуется составить таблицу из двух строк,
откладывая в первой строке значения n, во второй — значения en.
Анализируя графики и таблицу, студент должен сделать выводы о
точности рассматриваемого метода квадратур.

38. Задание 4. Итерационные методы вариационного типа

1. Целью задания является закрепление теоретических знаний и
приобретение практических навыков решения систем линейных ал-
гебраических уравнений итерационными методами.
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2. Для анализа методов каждый студент должен создать две
тестовые системы построения разреженных систем алгебраических
уравнений с симметричной и положительно определенной матрицей
порядка n, реализовав их в виде отдельных функций с входным пара-
метром n и выходными [A, b, x], где n — размер матрицы A системы,
b — вектор-столбец правой части, x — точное решение системы.

3. Требуется запрограммировать следующие итерационные мето-
ды решения системы уравнений Ax = b.

a) Метод наискорейшего спуска. Он должен быть реализован в ви-
де отдельной функции с входными параметрами (A, b, x0, tol,maxiter)
и выходными параметрами [x, niter, r]. Здесь x0 — начальное прибли-
жение к x, tol — критерий точности, maxiter — максимальное чис-
ло итераций; niter — число итераций, потребовавшихся для дости-
жения критерия точности, r — вектор норм невязок на итерациях,
т.е. r(k) = ∥rk∥∞. Итерации заканчиваются, если выполнено одно из
условий: либо ∥rk∥∞ 6 tol ∥b∥∞, либо k > maxiter. Здесь k — номер
итерации.

Предусмотреть, что входные параметры x0, tol,maxiter (или
часть из них) могут быть не указаны при вызове функции; в этом слу-
чае принять по умолчанию tol = 10−6, x0 = 0, maxiter = 10n. Также
предусмотреть, что параметр niter и (или) r при вызове функции мо-
гут быть не указаны, а также сообщение на экран, если достигнуто
максимальное число итераций;

b) Метод сопряженных градиентов. Он должен быть реализован
аналогично методу наискорейшего спуска. Предполагается использо-
вание расчетных формул (30.40)–(30.43), с. 105.

4. Для значений n = 500, 2500, 10000, 25000, 50000 решить тесто-
вые системы, используя реализованные методы, и параметры tol =
10−6, x0 = 0, maxiter = 10n. Требуется в одних осях построить
графики норм невязок на итерациях (r) обоих методов. Кроме то-
го, необходимо составить четыре таблицы, три из которых имеют три
строки и пять столбцов, четвертая — две строки и пять столбцов.
В этих таблицах в столбцах указываются значения n. В первой таб-
лице в строках указывается время работы соответствующей функции;
во второй таблице — истинная погрешность найденного решения, т. е.
величина ∥x− xit∥∞, где x — решение системы, xit — решение, полу-
ченное итерационным методом при достижении критерия точности;
в третьей — число итераций, в четвертой — число обусловленности
матрицы A, вычисленное при помощи MATLAB функции rcond.

Анализируя графики и таблицы студент должен сделать выводы о
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поведении норм невязок методов на итерациях и обоснованно выбрать
наилучший метод.

39. Задание 5. Метод Якоби решения задачи на
собственные значения

1. Целью задания является закрепление теоретических знаний и
приобретение практических навыков решения полной проблемы на
собственные значения матриц.

2. Каждый студент должен построить две симметричные матри-
цы A порядка n с известным набором собственных чисел и векторов и
реализовать их в виде отдельных функций с входным параметром n
и выходными параметрами [A, lamda, U ], где n — размер матрицы A,
lamda — вектор собственных чисел, U — матрица, столбцы которой
есть собственные векторы A, соответствующие lamda.

3. Требуется реализовать метод Якоби определения собствен-
ных чисел и векторов симметричной матрицы A. Он должен быть
реализован в виде отдельной функции с входными параметрами
(A, tol,maxiter) и выходными параметрами [lamda, U, niter]. Здесь
tol — критерий точности, maxiter — максимальное число итераций;
niter — число итераций, потребовавшихся для достижения критерия
точности.

Предусмотреть, что входные параметры tol,maxiter могут быть
не указаны при вызове функции; в этом случае принять по умолча-
нию tol = 10−3, maxiter = 10n. Также предусмотреть, что параметр
niter и (или) U при вызове функции могут быть не указаны. Выдать
сообщение на экран, если достигнуто максимальное число итераций.

4. Для значений n = 10, 50, 250, 500, 1000 найти собственные чис-
ла и векторы тестовых матриц при maxiter = 10n и tol = 10−3,
tol = 10−4, tol = 10−5.

Для каждого варианта вычислений требуется составить таблицу
с четырьмя строками и пятью столбцами. В первой строке табли-
цы указываются значения n; во второй — время работы функции;
в третьей — погрешность определения собственных чисел; в четвер-
той — погрешность определения собственных векторов, т. е. величина
max
i=1,...,n

∥ui−vi∥∞, где ui — точный собственный вектор, vi — найденный

методом Якоби.
Анализируя таблицы, студент должен сделать выводы об эффек-

тивности метода Якоби a) при определении собственных чисел; b) при
определении собственных векторов.



Основные обозначения

A = A(m,n) = {aij}m,n
i,j=1 — матрица из m строк и n столбцов,

вообще говоря, комплексная.
A = A(n) = {aij}ni,j=1 — квадратная матрица порядка n.
A−1 — матрица, обратная к матрице A.
AT — транспонированная матрица.
A∗ = (Ā)T — сопряженная матрица.
I — единичная матрица.
E — матрица, все элементы которой равны единице.
Rn — линейное пространство всех упорядоченных наборов (векто-

ров) (x1, x2, . . . , xn) вещественных чисел со стандартным скалярным

произведением (x, y) =
n∑

i=1

xiyi.

Cn — линейное пространство всех упорядоченных наборов (векто-
ров) (x1, x2, . . . , xn) комплексных чисел со стандартным скалярным

произведением (x, y) =
n∑

i=1

xiȳi.

ik = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−k

), k = 1, 2, . . . , n, — векторы естествен-

ного базиса пространства Rn (Cn).
Mm,n — множество всех прямоугольных матриц с m строками и

n столбцами.
Mn — множество всех квадратных матриц порядка n.
Xn — n-мерное линейное (евклидово) пространство, как правило,

над полем комплексных чисел.
A — линейный оператор, действующий из Xn в Ym.
A∗ — сопряженный к A оператор.
flops — floating point operation — арифметическая операция с пла-

вающей точкой.
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