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Abstract: Promising material for hybrid photodynamic therapy consisting of Ce0.5Y0.35Tb0.15F3 crystalline
nanoparticles and Radachlorin is reported. One possible option of conjugation of Ce0.5Y0.35Tb0.15F3

nanoparticles and Radachlorin using polyethylenimine (PEI) is tested. The energy transfer reaches
28%. It is shown that conjugates of CeF3—Tb3+ NPs and Radachlorin using PEI—are stable, and the
distance between nanoparticles and photosensitizer molecules is about 5 nm.
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1. Introduction

Photodynamic therapy (PDT) is a modern and non-invasive form of therapy, used
in the treatment of cancers and non-oncological diseases [1]. It is based on the use of
photosensitizers that accumulate in pathological tissues and generate reactive oxygen
species (ROS) when irradiated by the light of the appropriate wavelength [2]. The ROS are
highly aggressive towards organic molecules, and the selectivity of their action is due to
their low lifetime period. The phototoxic reactions occur only in the area of photosensitizer
distribution, enabling selective destruction [3].

Nowadays, many types of photosensitizers are under investigation, and some al-
ready work within certified therapy protocols [4]. One of the critical characteristics of
the photosensitizer is the wavelength of light which activates ROS generation because
of practical demand of deeper propagation of light into the biological tissue. Photosensi-
tizers being used now are activated in the red part of the visible spectral range or in the
near-IR spectral range. Therefore, the conventional PDT can be used only for superficial
diseases or mucous diseases where the light source can be delivered as a probe. There
is an approach allowing use of X-ray or ionizing irradiation in order to overcome these
limitations by creating conjugates of scintillator nanoparticles and photosensitizers [5,6].
The photosensitizers are loaded on the surface of the nanoparticle. During the irradiation
by X-ray light, the nanoparticles convert the energy into visible light, which activates
photosensitizer molecules located on the surface. The efficiency of energy transfer from
scintillator nanoparticle to photosensitizers is a crucial factor for such an approach [3,6,7].

The Ce0.5Y0.35Tb0.15F3 fluoride material is well studied for different photonic appli-
cations [8,9]. In our previous work, the spectral–kinetic properties as well as morphology
and chemical composition of these NPs was thoroughly investigated [8]. It was established
that upon ultraviolet excitation, the NPs produce intense emissions in the visible range
with lifetimes around 10 ms, which is the result of efficient nonradiative resonant energy
transfer from Ce3+ ions to Tb3+ ions. It can be seen that Tb3+-doped materials can poten-
tially sensitize the chlorine-based PDT agents due to good overlapping of the absorption
spectrum of the latter and emission of Tb3+ ions. It was also discovered that the most
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promising composition for use with chlorine e6 is Ce0.5Y0.35Tb0.15F3. In our work, we have
investigated the chlorine e6-based commercially available photosensitizer Radachlorin [10],
which is extensively investigated at the moment in various biomedical applications and
utilized in clinical trials [11–13].

Thus, the main objectives of this study were to create conjugates of Ce0.5Y0.35Tb0.15F3
nanoparticles and molecules of photosensitizer Radachlorin, study such important parame-
ters as the efficiency of energy transfer between doping ions and Radachlorin, and to study
biological activity (cytotoxicity and cellular uptake).

2. Materials and Methods
2.1. Sample Preparation

All the chemicals used are of analytical grade. Citric acid (C6H8O7·H2O), Y(NO3)3·6H2O,
Ce(NO3)3·6H2O, Tb(NO3)3·6H2O, NH4F, ammonium, and polyethylenimine (PEI) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). All the chemicals were used without
further purification. The doping ions’ concentration is represented in molar percentage
(mol.%). Crystalline CeF3-YF3-TbF3 nanoparticles were fabricated via the co-precipitation
method described earlier [14–16]. In more detail, Ce0.5Y0.35Tb0.15F3 nanoparticles were
synthesized via the co-precipitation method in ammonium citrate solution with a 3-fold
excess of NH4F fluorinating agent. Obtained nanoparticles were subjected to microwave
treatment. In particular, a 0.3 M solution of citric acid was prepared. Then, the pH of
the solution was adjusted to 5 by adding a 25% solution of ammonium in order to obtain
an ammonium citrate solution (the pH value was controlled using the AMTAS PH-920
pH meter (USA). Then, rare-earth nitrates were added to the 150 mL ammonium citrate
solution while stirring on a magnetic stirrer (400 rpm). The NH4F solution was added
dropwise to the resulting mixture of rare-earth nitrates while stirring on a magnetic stirrer
(400 rpm). The solution continued to be stirred at room temperature for 15 min. In the next
step, the solution was treated by microwave irradiation (2.45 GHz, 650 W) in the microwave
oven. The precipitate was purified with distilled water by centrifugation (Janetski K24;
3000–5000 rpm, centrifugation time was 10 min) 8 times. In order to form PEI–nanoparticle
composites, 100 mg of dried nanoparticles were suspended in 10 mL of distilled water via
sonication. Additionally, 25 mL of distilled water was added to 100 mg of PEI. The mixture
was placed in an ultrasonic bath (model ODALQ40, 600 W, volume 4 L) for 7 min in order
to obtain a homogenous solution. The colloidal solution of the nanoparticles was added
dropwise to the PEI solution and stirred for several hours. Washing by centrifugation
was carried out to remove residual unreacted PEI (until pH factor was about 6). We have
used commercial PEI from Sigma Aldrich with average Mw of about 25,000. As for the
photosensitizer, we have used commercially available drug Radachlorin produced by
RadaPharma (Moscow, Russia) company. It consists of 3.5 mg/mL water solution of a
mixture of sodium salts of chlorine e6, chlorine p6, and purpurin 5 [11]. We diluted it in
distilled water 1:10 for our experiments.

2.2. Sample Classification

Bold CeF3-YF3-TbF3 nanoparticles are named NP, nanoparticles coated with PEI are
named PEI-NP, and PEI-NP conjugated with “Radachlorin” are named PEI-NP-RCH.

2.3. Characterization of the Samples

The phase composition of the material was characterized by an X-ray diffraction
method with Bruker D8 X-ray diffractometer (Cu, Kα radiation λ = 0.154 nm) (Billerica, MA,
USA). The absorption spectrum of Radachlorin solution was obtained using a Schimadzu
UV3600 spectrophotometer (Kyoto, Japan). The photoinduced luminescence spectra of the
nanoparticles were recorded with a portable spectrometer EPP2000, StellarNet (Tampa, FL,
USA). The luminescence decay of Ce3+ and Tb3+ ions was investigated with an MDR-23
monochromator and an FEU-87 photomultiplier tube with the time constant of about 6 ns.
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The luminescence was excited by emission of the 4th harmonic of Q-switched YAG: Nd
laser (wavelength 266 nm, pulse duration 10 ns, pulse repetition rate 10 Hz).

2.4. Cells Preparation and Cytotoxicity Assessment of CeF3-YF3-TbF3 Nanoparticles

The A 549 (human lung carcinoma) cells were purchased in the Russian collection
of vertebrate cell cultures, Russian Academy of Sciences, St. Petersburg, Russia. Lung
carcinoma (A 549) cells were cultured in Eagle (MEM) biological medium with Hank’s
salts supplemented with 10% fetal calf serum (HyClone, Cytiva, Parramatta, Australia),
glutamine (2 mM) (ReagentPlus, ≥99% (HPLC), (Sigma-Aldrich, St. Louis, MO, USA)),
penicillin and streptomycin (100 IU/mL) at 37 ◦C in 5% CO2 humidified atmosphere.
The cytotoxicity of the samples was analyzed via the colorimetric MTT assay. The test
protocol for cytotoxicity evaluation was adopted from elsewhere [17]. The A 549 cells were
seeded in 96-well plates (SPL Lifesciences, Pocheon, Republic of Korea) in a concentration
104 cells/well and incubated overnight. Then, we replaced the medium in wells with
the 100 µL of fresh water containing nanoparticles. The sample suspension in distilled
water was added to the cultural medium in a ratio of 1/10 (v/v) for each concentration.
Then, the obtained suspension was sonicated for 10 min in a sonication bath (model ODA-
LQ40, 600 W, volume 4 L, Oda Sevis, Moscow, Russia) until the suspension appeared
homogeneous to the naked eye. The cells were treated with the samples at 0.01, 0.05, 0.1,
0.25, 0.5, and 1.0 g/L. Exposure time was 24 h at 37 ◦C in humid air (98%) containing
5% CO2. Three hours before the end of the exposure period, MTT (3-(4,5-dimethyl-2-
thiazolyl)-2,5-diphenyltetrazolium bromide, Sigma-Aldrich, #M5655, St. Louis, MO, USA)
solution in 0.1 M pH 7.2 phosphate-buffered saline (PBS) (5 mg/mL, 20 µL/well) was added
to the cells. After the completion of the exposure period, the supernatant was removed,
and 100 µL/well solution containing 10% SDS (Sigma-Aldrich, #L3771) in PBS was added.
Absorbance at 570 nm of each well was measured using a microplate reader (Biorad, xMark,
Hercules, CA, USA). Each experiment was repeated 2 times, with five replications. The
incubation time (120 min) for internalization study was measured between the moment of
adding the samples and the moment of fixing by glutaraldehyde or between the moment
of adding the samples and the moment of performing flow cytometry experiments.

2.5. Flow Cytometry

In this work, the possibility of the nanoparticles’ internalization of the samples by the
A 549 cells was investigated via flow cytometry. The cell monolayer with 80% confluence
was trypsinized, and the cell suspension was precipitated by centrifugation (1500 rpm,
5 min). The supernatant was removed, the cells were resuspended in a complete Eagle
(MEM) medium at a concentration of 106 cells/mL, and a suspension of samples in distilled
water in a ratio of 1/10 (v/v) was added. The final concentration of samples was 0.5 g/L
for all cases. A cytometric assessment of the internalization of nanoparticles by cells
was performed in a flow cytometer analyzing changes in the intensity of side-scattering
signal (SSC) of the cells. The value of the SSC is proportional to the cells’ granularity.
FACSCanto II cytofluorometer (BD Biosciences, Franklin Lakes, NJ, USA) was used in the
work. The initial processing of the results was performed using the FACSDiva Software
v9.0 (BD Biosciences, Franklin Lakes, NJ, USA) program.

2.6. Transmission Electron Microscopy

Preparation of A549 cells treated with samples for TEM was carried out as follows.
The cells were separated from the incubation medium by centrifuging for 5 min at 1000 rpm.
Then, the supernatant containing non-cell-bound nanoparticles was removed, pellet was
resuspended in PBS, and then centrifuged again, repeating it three times. After, the cells
were resuspended in 1 mL of PBS and transferred to 1.5 mL Eppendorf tubes. The cells
were centrifuged at 4000 rpm in an Eppendorf 5412 microcentrifuge (Hamburg, Germany)
for 5 min. Then, the supernatant was carefully removed, and 1.5 mL of 2.5% glutaraldehyde
(Merck, Rahway, NJ, USA) in PBS was added and left at + 4 ◦C. Samples (system “cells + PEI-
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NP” as well as “cell + PEI-NP-RCH”) were prepared for TEM in the following way. The
samples were fixed overnight in 2.5% glutaraldehyde prepared in PBS at 4 ◦C, washed
three times with 0.1 M phosphate buffer, and post-fixed by incubation in 1% (w/v) osmium
tetroxide in the same buffer (25 mg/mL) at 4 ◦C for 4 h. The samples were dehydrated by
passage through a graded ethanol series (30, 40, 50, 60, 70, 80, 90 and then 96% ethanol)
before being transferred to 100% acetone and propylene oxide. Then, the samples were
immersed in Epon resin (Fluka, Buchs, Switzerland) that contained propylene oxide added
in the proportions (v/v) 1:2, 1:1, and 2:1, with each step involving a 12 h incubation. The
samples were then embedded in pure Epon resin. Ultrathin sections (ca. 100 nm) were
prepared using a glass knife on a Leica UC7 (Wetzlar, Germany), mounted on 200 mesh
copper grids, and stained with 2% aqueous uranyl acetate (w/v) for 20 min and Reynolds’
lead citrate (Reynolds 1963) for 7 min. The sections were examined using a transmission
electron microscope (HT 7700 Exalens, Hitachi, Tokyo, Japan) operated at an accelerating
voltage of 100 kV.

3. Results
3.1. Optical Spectroscopy of the Samples

The potential for effective energy transfer from Tb3+-doped nanoparticles to chlorine
e6-based photosensitizer is shown again for our objects of investigation. In Figure 1, the
luminescence spectrum of our CeF3-YF3-TbF3 nanoparticles is shown together with the
absorption spectrum for Radachlorin. The absorption spectrum consists of familiar bands
of chlorine e6. The Q band in our spectrum has two maxima due to presence of both e6 as-
sociates (shorter wavelength band) and noninteracting-with-each-other molecules (longer
wavelength band) [18]. The group of 5D4-7F5 transitions of Tb3+ ions overlaps with the
absorption band of Radachlorin, which poses the prospective efficient nonradiative energy
transfer for application as the conversion from high energy photons to ROS generation and
for investigation of nanoparticles + Radachlorin composite materials.

According to the XRD data, all the NPs are hexagonal-structured nanocrystals that
correspond to the structure of matrices of CeF3. Sharp peaks and lack of peaks from
impurities are observed, suggesting the high purity of these samples. The possibility of
conjugation between NPs and Radachlorin by means of PEI was investigated through
spectral–kinetic characteristics’ observation of colloidal solutions of samples. We used the
luminescence decay curve of the 5D4-7F5 transition of Tb3+ ions at 541 nm as a marker
when in a stepwise manner small portions of Radachlorin were added to the samples until
colloidal solution precipitated. After each step, the luminescence decay of the 5D4-7F5
transition of Tb3+ was registered. The obtained luminescence decay curves are presented
in Figure 2a,b.
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Figure 2. Luminescence decay of 5D4-7F5 transition of Tb3+ ions under 266 nm excitation in aqueous
solution of Ce0.5Y0.35Tb0.15F3 nanoparticles bold (NP) (a) and covered with PEI (PEI-NP) (b) with
Radachlorin photosensitizer added, (c) the luminescence decay of 5D4-7F5 transition of Tb3+ ions in
PEI-NP with Radachlorin solution with water added, (d) dependencies of Tb3+ luminescence decay
time (5D4-7F5 transition) and energy transfer efficiency to Radachlorin.
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Our results show that luminescence decay of NPs in colloid solution does not change
with the addition of Radachlorin (Figure 2a), whereas we see the shortening of luminescence
decay for PEI-NP in the presence of Radachlorin even for smaller amounts (Figure 2b). The
data explicitly shows that the addition of Radachlorin leads to a decrease in decay time
of Tb3+ luminescence. This means that there is efficient energy transfer between NPs and
Radachlorin. The behavior of the obtained decays appeared to be close to single-exponential
for non-coated nanoparticles and significantly deviated from those coated with PEI, so the
decay time was then estimated as an averaged decay time [19]:

tav =

∫
t ∗ I(t)dt∫

I(t)dt
(1)

where I(t) is the luminescence intensity. The results of lifetime evaluation are presented
in Figure 2c. The value of luminescence of Tb3+ ions at 541 nm in our colloidal solution
without Radachlorin appears to be larger than that obtained by us for dry samples in our
previous work [8], most probably due to radiative energy transfer between NPs. Then, the
decay time values were used to calculate the efficiency of the energy transfer from NPs to
Radachlorin. In order to estimate the efficiency of energy transfer (kET), a simple expression
was used [20]:

kET = 1 − τNPs
/

τNPs + Rch
(2)

where τNPs is the deacy time of 5D4-7F5 transition of Tb3+ ions in the absence of Radachlorin,
and τNPs + Rch is the decay time of the same transmission but in presence of Radachlorin.
The efficiency of energy transfer vastly increases at low amounts of Radachlorin, reaching
the value of 20%. The highest observed value of energy transfer efficiency is 28% in the
solution with 18.1 µL Radachlorin. The next step was to prove the formation of stable
conjugates of NPs and Radachlorin molecules. The sample with NPs and 18.1 µL of
Radachlorin was diluted with water three times in 0.5 mL increments, and decay time was
monitored every time. The idea behind this approach is that the stable conjugates do not
change the Tb3+ decay time when diluted. On the other hand, if the NPs and Radachlorin
molecules are not properly bonded, the additional water does increase average distance
between NPs and Radachlorin, and energy transfer rate and the observed decay time
increase. The results of the experiment are presented in Figure 2d. The amount of added
water has little to no effect on decay time and energy transfer efficiency. This leads to
the conclusion that stable conjugates of NPs and Radachlorin were formed by means of
PEI. Our spectroscopy data allow estimation of the effective distance between Tb3+ ions in
NPs and Radachlorin molecules as elements of a conjugate. The Forster resonance energy
transfer (FRET) theory is a reliable way to obtain this value [21,22]. FRET is a strongly
distance-dependent transfer of energy between two elements usually called donor and
acceptor. In order for FRET to happen, the donor should be an emissive molecule or particle
and the acceptor should be able to absorb the light the donor emits. This energy transfer
takes place at a distance range of approximately 1–20 nm. The key parameter in FRET
theory is R0, also called critical radius. This value demonstrates the distance between donor
and acceptor, which provides 50% FRET efficiency. This parameter can be relatively easily
calculated as [9]:

R0
6 =

2.07
128π5

κ2QD

n4

∫
FD(λ)α(λ)λ

4dλ (3)

where κ2 is the orientation factor, n is the refractive index of the medium, QD is the
luminescence quantum yield of the donor, FD is the donor emission spectrum normalized
to unity (

∫
FD(λ)dλ = 1), and α is the extinction coefficient of the acceptor. In the case

under study for water solutions, the orientation factor can be averaged as 2/3; n is taken
equal to the refractive index of water 1.333. The optical properties of the NPs have already
been studied, and the results have been published [8]. Thus, the QD value can be borrowed
from the article as 83%. In the case under study, NPs serve as energy donors, whereas
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Radachlorin is an acceptor. These data finally allow obtaining the R0 = 4.9 nm for the
pair NPs–Radachlorin. The next step is to estimate the distance between the NPs and
Radachlorin in the obtained conjugates. It is well known that FRET efficiency can be
calculated as [9]:

kFRET =
1

1 + ( r
R0
)6 (4)

where r is the distance between donor and acceptor. We consider that FRET is the
only mechanism responsible for energy transfer between NPs and Radachlorin. Thus,
Equations (2) and (3) effectively describe the same value. Taking that into account, it is
now possible to calculate the distance between NPs and Radachlorin for different amounts
of the added photosensitizer. Results of the calculation are presented in Table 1; the stable
PEI-NP-Radachlorin conjugate corresponds to approximately 5 nm distance between Tb3+

ions and chlorine e6 molecule.

Table 1. Distance between NPs and Radachlorin calculated from FRET.

Sample NPs+PEI
1.67 µL Rch

NPs+PEI
3.34 µL Rch

NPs+PEI
5.01 µL Rch

NPs+PEI
8.35 µL Rch

NPs+PEI
11.69 µL Rch

NPs+PEI
15.03 µL Rch

NPs+PEI
18.1 µL Rch

r, nm 7.1 5.9 5.8 5.4 5.3 5.2 5.1

3.2. Cytotoxicity of PEI-NP and PEI-NP-RCH Samples

Relative viability histogram of A 549 cells (human lung carcinoma) treated with the
studied samples in comparison to intact cells (control) is represented in Figure 3 (incubation
time—24 h).
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Figure 3. Relative viability of A 549 cells (human lung carcinoma) treated with the studied samples
in comparison to intact cells (control cells) (incubation time—24 h).

It can be seen that all the samples demonstrate low cytotoxicity. The viability slightly
decreases with the increase in concentration from ~ 100% (0.01 g/L) to ~90% (1.0 g/L).
The samples do not demonstrate a difference in survival rate between each other. It
can probably be explained by using biocompatible polymers as well as the clinically
approved photosensitizer. The chosen concentration range is commonly used for different
experiments where inorganic nanoparticles serve as drug carriers [23,24]. The obtained
cytotoxicity data allow for the conclusion that the studied samples are promising for
biomedical applications.
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3.3. Visualization of Nanoparticles Internalization by A549 Cells Using TEM

TEM image of A 549 cells that are not exposed by the samples (control) is shown in Figure 4.
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It can be seen that the A 549 cells have a polygonal shape and sheet-like pattern, in
normal monolayer culture, which is illustrative of epithelial cells including A 549 ones. The
cell membrane has peculiar structural features such as membrane protrusions. Most of the
membrane protrusions are planar folds (lamellipodia-like) with lengths from 200 to 800 nm.
Plasma membrane extrusions have a diameter value in the 30–60 nm range. The same cell
membrane structural features of A 549 cells were observed in works [25–27]. The cytoplasm
contains vesicles having a diameter in the range from 200 to 2000 nm. Apparently, these
vesicles are formed by the membrane protrusions that fused back into the membrane and
trapped extracellular fluid (pinocytosis) [28]. The cell nuclei and other compartments
are also clearly observed. It can be concluded that the morphology of A 549 cells is in
agreement with literature analogs. Hence, the chosen cells can be used for further study of
the cellular uptake process. TEM image of the A 549 human lung carcinoma cells treated by
polymer-coated nanoparticle composite (PEI-NP) and TEM images of A 549 cells exposed
by the PEI-NP-RCH (Figure 5a,b) for 2 h incubation reveal cell uptake of composites. More
TEM images are represented in Supplementary Materials.

It can be seen that the PEI-NP composites and PEI-NP-RCH conjugates are effectively
uptaken by A 549 cells. They are packed in the intricate shape vesicles floating in the
cytoplasm. The linear size of these vesicles is in the 300–4000 nm range. The composites
and the conjugates are not observed in the cell nucleus. It seems that coated fluoride
nanoparticles are uptaken more efficiently in comparison to unmodified fluoride nanopar-
ticles [26,27]. It can be suggested that the polymer coating and Radachlorin conjugation
provide a positive zeta potential of nanoparticles [29]. It influences the interaction between
positively charged nanoparticles and negatively charged cell membranes implementing the
approaching of nanoparticles and cells. For the studied materials, it can be suggested that
the internalization occurs via macropinocytosis classified as the endocytic process by which
cells internalize fluids and particles together. During macropinocytosis, relatively large
vesicles (0.3–5.0 µm linear size) are formed. The internalization seems to occur via planar
folds, which are 100–300 nm in length. For the rest of the endocytic pathways (clathrin-
mediated, caveolae-mediated, RhoA-mediated endocytosis) fewer vesicles (<200 nm) are
formed; hence, these pathways were not considered. The linear sizes of vesicles are bigger
than the linear sizes of planar folds. Probably, the coalescence of vesicles upon contact
takes place. It seems that the vesicles are formed by these planar folds, which fused back
into the membrane and trapped extracellular fluid containing cargo. Macropinocytosis
is not directly coordinated by the presence of cargo unlike receptor-mediated endocytic
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processes [30]. The membrane disruption was not observed for all the TEM images. It
can be concluded that the studied materials do not destroy the cell membrane, which is
crucially important for further therapeutic applications. Indeed, membrane disruption
can cause necrosis, which is highly undesirable for therapy. On the other hand, drug
carriers (including nanoparticle-photosensitizer conjugates) naturally uptaken by cells
(by macropinocytosis or receptor-mediated pinocytosis) are able to give rise to apoptosis,
which is a crucial factor for cancer therapy. It can be concluded that the composites and
the conjugates are effectively uptaken by the cells after 2 h of incubation. Moreover, ac-
cording to Figures 5 and S1, the samples were not found in the cell nuclei. It also confirms
the safety of the samples. This fact paves the way toward therapeutic application of the
studied materials.
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3.4. Flow Cytometry Study of Cellular Uptake of PEI-NP and PEI-NP-RCH

Although the TEM method allows visualizing the process of cell uptake, it is difficult to
make a qualitative comparison of cell uptake efficiency for different types of nanomaterials.
Such comparison requires analyzing a large number of TEM images to obtain appropriate
statistics; however, the reliability of the data is still questionable. On the other side, the
flow cytometry method allows studying up to 106–108 cells in a sample, which is good for
evidential statistics. In the flow cytometry method, one cell at a time goes through a laser
beam, where the scattered light is a characteristic of the cells and their components [31].
Indeed, cells effectively scatters light due to a high cell optical inhomogeneity. The inter-
nalized particles (nanoparticles, composites, and conjugates) located in the cell and/or
on the cell membrane increase the cell optical inhomogeneity that leads to an increase in
side scattered light intensity (SSC) [32]. In this work, the SSC intensity serves as a measure
of cell uptake efficiency. The SSC histogram for the studied composites and conjugates is
represented in Figure 6. Note that for the control experiments, the cells were not exposed
to the studied materials.
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Figure 6. The intensity of SSC for different samples after 24 h of conjugates’ exposure. The 0.5 g/L
concentration was taken. The cells untreated with nanoparticles A549 used as control.

It can be seen that both PEI-NP and PEI-NP-RCH double SSC intensity in compar-
ison to control. Indeed, according to [33], the PEI coating of Er3+, Yb3+:NaYF4 fluoride
nanoparticles provides 5 times higher positive zeta potential than PVP coating (51.1 and
10.2 mV, respectively). As it was mentioned above, the particles with high zeta potential
effectively interact with the negatively charged cell membrane. Significant differences
between the SSC intensity of cells treated with PEI-NP and PEI-NP-RCH were not found.
We also estimated cytotoxicity of bare NPs, which was low. The results are represented in
Table 2. The cytotoxicity of RCH was not estimated; however, according to the work [34], it
is also low.

Table 2. Cytotoxicity of bare NPs.

Concentration, g/L Survival, % Error Bar. %

0 100 1.3

0.1 96.9 0.5

0.5 96.5 0.8
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4. Conclusions

Effective energy transfer from NPs to Radachlorin molecules is demonstrated for NPs
covered with PEI. As well as this, it is shown that energy transfer efficiency reaches 28% in
the case of NP-PEI-RCH conjugates. Stability of NP-PEI-RCH conjugates is proved with
distance between Tb3+ ions and Radachlorin around 5 nm, calculated from spectroscopy
data by Forster theory.

All the samples demonstrate low cytotoxicity (the viability slightly decreases with
the increase in concentration from ~100% (0.01 g/L) to ~90% (1.0 g/L)). The samples
do not demonstrate differences in viability between each other. It was suggested that
low cytotoxicity is a consequence of the use of biocompatible polymers as well as the
clinically approved photosensitizer. The chosen concentration range is commonly used
for experiments.

It was shown that all the samples are easily uptaken by human lung carcinoma via
macropinocytosis. The nanoparticles are packed in the intricately shaped vesicles floating
in the cytoplasm. The linear sizes of these vesicles are in the 300–4000 nm range. The
samples are not observed in the cell nucleus. The effectiveness of the uptake was estimated
via flow cytometry. It was suggested that side-scatter signal intensity (SSC) is proportional
to the effectiveness of the uptake.

Based on the facts, that the PEI-NP-RCH samples are non-toxic, easily uptaken by
the cells, form stable conjugates, and demonstrate high energy transfer efficiency, it can be
concluded that the studied PEI-NP-RCH samples are promising for biomedical applications
including PDT.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jcs7060255/s1. Figure S1: A 549 human lung carcinoma cells treated
by polymer-coated nanoparticle composite PEI-NP and TEM images of A 549 cells exposed by the for
2 h incubation.
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