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Abstract The problems of electromagnetic wave diffraction by thin conductive
barriers in a semi-infinite parallel-plate waveguide are reduced to infinite sets of
linear algebraic equations concerning the expansion coefficients of the field by its
eigen waves. Values of resonant frequencies are obtained for which there is a sharp
increase in the characteristics of the electromagnetic field in the area between the
barrier and the metal wall.

1 Introduction

In the design of radiotechnical devices with optimal characteristics the situations
when there is a resonant growth of certain parameters of the electromagnetic field
are of particular interest. Barriers in waveguide structures are widely used in the
production of converters, filters, splitters and other elements.
In this paper, we explore the resonant effects that occur when the diffraction

of eigen electromagnetic wave, which attacks a thin conductive barriers in a semi-
infinite parallel-plate waveguide with metal walls.
As it is known [1], any electromagnetic field in the parallel-plate waveguide can be

presented as a sum of its eigen waves propagating or damping in different directions.
The theory of equivalent chains was used in [2] as a simple model of the process
of electromagnetic wave diffraction. In recent years, during the investigation of the
resonant properties of waveguides with heterogeneities, the method of equivalent
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circuits [3], the method of moments [4] and more rigorous methods as well as
method of the Riemann-Hilbert problem [5] and method of integral equations [6]
are used. Some numerical results can be found in the works [7], [8].
In this paper, the method of integral-series identities is used to reduce the paired

series functional equations of diffraction problems by the screens to regular infinite
sets of linear algebraic equations (ISLAE) [9]. Early we investigated the resonant
properties of the diaphragms in the semi-infinite waveguides [10], [11].

2 Lateral Barrier in a Waveguide

Let us consider the two-dimensional problem of TE-wave diffraction by a lateral
barrier in a half-infinite parallel-plate waveguide 0 < 𝑥 < 𝑎, 𝑧 < 𝑑. The barrier is
located in the plane 𝑧 = 0. The partM = (𝛼, 𝛽) of the cross-section [0, 𝑎] of the
waveguide corresponds to it (Fig. 1). Let’s denote by N supplement of M up to
[0, 𝑎].

Fig. 1 Lateral barrier in a plane waveguide.

Let free currents and charges be absent, the medium be homogeneous and
isotropic, electromagnetic field harmoniously depend on time (exp(−𝑖𝜔𝑡)). Denote

𝜑𝑛 (𝑥) =
√︁
2/𝑎 sin 𝜋𝑛𝑥

𝑎
, 𝛾𝑛 =

√︁
^2 − (𝜋𝑛/𝑎)2,

where ^ is wave number, Re 𝛾 > 0 or Im 𝛾𝑛 > 0 and 𝑛 = 1, 2, . . .
From the region 𝑧 < 0 on the barrier runs its eigen wave

𝑢0 (𝑥, 𝑧) = 𝜑𝑙 (𝑥) 𝑒𝑖𝛾𝑙 𝑧 .

We will look for the wave reflected to the left in the form of
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𝑢1 (𝑥, 𝑧) =
+∞∑︁
𝑛=1

𝑎𝑛𝜑𝑛 (𝑥) 𝑒−𝑖𝛾𝑛𝑧 ,

and we will look for the wave passed to the right in the form of

𝑢2 (𝑥, 𝑧) =
+∞∑︁
𝑛=1

𝑏𝑛𝜑𝑛 (𝑥)
(
𝑒𝑖𝛾𝑛𝑧 − 𝑒2𝑖𝛾𝑛𝑑 𝑒−𝑖𝛾𝑛𝑧

)
.

For the wave 𝑢2 (𝑥, 𝑧) a boundary condition is fulfilled on the metal wall 𝑧 = 𝑑, and
this wave is bounded for 𝑛→ +∞.
Let’s write down the boundary conditions on theM:

𝜑𝑙 (𝑥) +
+∞∑︁
𝑛=1

𝑎𝑛 𝜑𝑛 (𝑥) = 0,
+∞∑︁
𝑛=1

𝑏𝑛
(
1 − 𝑒2𝑖𝛾𝑛𝑑

)
𝜑𝑛 (𝑥) = 0

and the conjugation conditions on the N :

𝜑𝑙 (𝑥) +
+∞∑︁
𝑛=1

𝑎𝑛 𝜑𝑛 (𝑥) =
+∞∑︁
𝑛=1

𝑏𝑛
(
1 − 𝑒2𝑖𝛾𝑛𝑑

)
𝜑𝑛 (𝑥),

𝛾𝑙 𝜑𝑙 (𝑥) −
+∞∑︁
𝑛=1

𝑎𝑛 𝛾𝑛 𝜑𝑛 (𝑥) =
+∞∑︁
𝑛=1

𝑏𝑛 𝛾𝑛
(
1 + 𝑒2𝑖𝛾𝑛𝑑

)
𝜑𝑛 (𝑥).

It follows that 1 + 𝑎𝑙 = 𝑏𝑙
(
1 − 𝑒2𝑖𝛾𝑙𝑑

)
and 𝑎𝑛 = 𝑏𝑛

(
1 − 𝑒2𝑖𝛾𝑛𝑑

)
, 𝑛 ≠ 𝑙. We exclude

the unknowns 𝑎𝑛.
To regularize the pair series functional equations,we use an integral-series identity

𝑎∫
0

( +∞∑︁
𝑛=1

𝑏𝑛
(
1 − 𝑒2𝑖𝛾𝑛𝑑

)
𝜑𝑛 (𝑡)

)
𝐾 (𝑡, 𝑥) 𝑑𝑡 =

+∞∑︁
𝑛=1

𝑏𝑛𝛾𝑛 𝜑𝑛 (𝑥),

here

𝐾 (𝑡, 𝑥) =
+∞∑︁
𝑚=1

𝛾𝑚

1 − 𝑒2𝑖𝛾𝑚𝑑
𝜑𝑚 (𝑡) 𝜑𝑚 (𝑥).

It is assumed that 𝛾𝑚𝑑 ≠ 𝜋 𝑗 .
Finally, after projecting on the function 𝜑𝑘 (𝑥) we get ISLAE (𝑘 = 1, 2, . . . )

𝑏𝑘𝛾𝑘 −
+∞∑︁
𝑛=1

𝑏𝑛
(
1 − 𝑒2𝑖𝛾𝑛𝑑

) +∞∑︁
𝑚=1

𝛾𝑚

1 − 𝑒2𝑖𝛾𝑚𝑑
𝐽𝑛𝑚 𝐼𝑚𝑘 = 𝛾𝑙 𝐽𝑙𝑘 ,

where
𝐼𝑛𝑚 =

∫
M

𝜑𝑛 (𝑡) 𝜑𝑚 (𝑡) 𝑑𝑡, 𝐽𝑛𝑚 =

∫
N

𝜑𝑛 (𝑡) 𝜑𝑚 (𝑡) 𝑑𝑡.
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3 Computing Experiments, I

The computing experiments are based on the multiple solving the truncated ISLAE
in the case when the frequency of the excitatory wave changes with a small step. We
will look for approximate solution of ISLAE by truncation method. It is enough to
take the parameter of truncated method 𝑁 = 30. As a wave incoming on the barrier,
we will consider the first mode of the waveguide.
Let’s choose the following parameters: 𝑎 = 1.1, 𝑑 = 1.3; 𝛼 = 0.1; 𝛽 = 1.0

in dimensionless quantities. As the computing experiment has shown, the modules
of coefficients 𝑏1, 𝑏2, . . . have sharp local maximums, with correspond to wave
number ≈ 3.7410, ≈ 5.6135, ≈ 7.7910, . . . . These values are close to the eigen
wave numbers ≈ 3.7412, ≈ 5.6140, ≈ 7.7921 of a two-dimensional rectangular
region of the size 𝑎 × 𝑑.
The dependence of coefficient 𝑏1 module on wave number ^ in the neighborhoods

of resonant values is shown in Fig. 2–3.

Fig. 2 Dependence of the module of 𝑏1 on the wave number ^ .

If the size of barrier decreases, then the resonant values of 𝑘 decrease slightly
also.
The dependence of the conditional number cond 𝐴 = | |𝐴| | · | |𝐴−1 | | on the param-

eter ^ is also resonant.
If we balance the equations in SLAE (divide each equation by the largest in-

module coefficient for the unknowns), then the conditioned number will be signifi-
cantly reduced, but the solution of the SLAE will not change. But after balancing,
it becomes possible to study the dependence on the parameter ^ of the values of the
determinant of the matrix of the SLAE coefficients. Now the modules of these values
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Fig. 3 Dependence of the module of 𝑏1 on the wave number ^ .

in the neighborhood of the resonant point do not exceed one. Before balancing, they
had an order of 1045 or more.
As in the case of diaphragm in the semi-infinite waveguide [11], the resonant

values of the parameter ^ can be found: 1) when solving the SLAE of diffraction
problem; 2)when calculating the conditioned number of thematrix of its coefficients;
3) when analyzing the values of the determinant of this matrix.

4 Longitudinal Barrier in a Waveguide

Now let the thin conductive barrier with a length of 𝑑 be placed at a height of 𝑏 from
the lower wall of the waveguide (Fig. 4).
We will use the following notations:

𝜑𝑎𝑛 (𝑥) =
√︁
2/𝑎 sin 𝜋𝑛𝑥

𝑎
, 𝛾𝑎𝑛 =

√︁
^2 − (𝜋𝑛/𝑎)2,

𝜑𝑏𝑛 (𝑥) =
√︁
2/𝑏 sin 𝜋𝑛𝑥

𝑏
, 𝛾𝑏𝑛 =

√︁
^2 − (𝜋𝑛/𝑏)2,

𝜑𝑐𝑛 (𝑥) =
√︁
2/(𝑎 − 𝑏) sin 𝜋𝑛(𝑥 − 𝑏)

𝑎 − 𝑏 ,

𝛾𝑐𝑛 =
√︁
^2 − (𝜋𝑛/(𝑎 − 𝑏))2, 𝑛 = 1, 2, . . .

Let the eigen wave
𝑢0 (𝑥, 𝑧) = 𝜑𝑎𝑙 (𝑥)𝑒

𝑖𝛾𝑎
𝑙
𝑧 .

run on the barrier. We will look for the wave reflected to the left in the form of
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Fig. 4 Longitudinal barrier in a waveguide.

𝑢𝐴(𝑥, 𝑧) =
+∞∑︁
𝑛=1

𝑎𝑛𝜑
𝑎
𝑛 (𝑥)𝑒−𝑖𝛾

𝑎
𝑛 𝑧

and we will look for the wave in the regions B: 0 < 𝑥 < 𝑏, 0 < 𝑧 < 𝑑 and C:
𝑏 < 𝑥 < 𝑎, 0 < 𝑧 < 𝑑 in the form of

𝑢𝐵 (𝑥, 𝑧) =
+∞∑︁
𝑛=1

𝑏𝑛𝜑
𝑏
𝑛 (𝑥)

(
𝑒𝑖𝛾

𝑏
𝑛 𝑧 − 𝑒2𝑖𝛾𝑏

𝑛 𝑑𝑒−𝑖𝛾
𝑏
𝑛 𝑧
)
,

𝑢𝐶 (𝑥, 𝑧) =
+∞∑︁
𝑛=1

𝑐𝑛𝜑
𝑐
𝑛 (𝑥)

(
𝑒𝑖𝛾

𝑐
𝑛 𝑧 − 𝑒2𝑖𝛾𝑐

𝑛𝑑𝑒−𝑖𝛾
𝑐
𝑛 𝑧
)
.

The equalities on the (0, 𝑏)

2𝜑𝑎𝑙 (𝑥) +
+∞∑︁
𝑛=1

𝑑𝑛𝜑
𝑎
𝑛 (𝑥) =

+∞∑︁
𝑛=1

𝑏𝑛𝜑
𝑏
𝑛 (𝑥)

(
1 − 𝑒2𝑖𝛾𝑏

𝑛 𝑑
)
,

−
+∞∑︁
𝑛=1

𝑑𝑛𝛾
𝑎
𝑛𝜑

𝑎
𝑛 (𝑥) =

+∞∑︁
𝑛=1

𝑏𝑛𝛾
𝑏
𝑛𝜑

𝑏
𝑛 (𝑥)

(
1 + 𝑒2𝑖𝛾𝑏

𝑛 𝑑
)
,

and on the (𝑏, 𝑎)

2𝜑𝑎𝑙 (𝑥) +
+∞∑︁
𝑛=1

𝑑𝑛𝜑
𝑎
𝑛 (𝑥) =

+∞∑︁
𝑛=1

𝑏𝑛𝜑
𝑐
𝑛 (𝑥)

(
1 − 𝑒2𝑖𝛾𝑐

𝑛𝑑
)
,

−
+∞∑︁
𝑛=1

𝑑𝑛𝛾
𝑎
𝑛𝜑

𝑎
𝑛 (𝑥) =

+∞∑︁
𝑛=1

𝑐𝑛𝛾
𝑐
𝑛𝜑

𝑐
𝑛 (𝑥)

(
1 + 𝑒2𝑖𝛾𝑐

𝑛𝑑
)
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should be fulfilled if 𝑧 = 0. Here 𝑑𝑙 = 𝑎𝑙 − 1, 𝑑𝑛 = 𝑎𝑛, 𝑛 ≠ 𝑙.
Let’s exclude unknowns 𝑑𝑛 using the integral-series identity

+∞∑︁
𝑛=1

𝑑𝑛𝜑
𝑎
𝑛 (𝑥) =

𝑎∫
0

( +∞∑︁
𝑛=1

𝑑𝑛𝛾
𝑎
𝑛𝜑

𝑎
𝑛 (𝑡)

)
𝐾 (𝑡, 𝑥) 𝑑𝑡, 𝑥 ∈ (0, 𝑎),

𝐾 (𝑡, 𝑥) =
+∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝜑𝑎𝑚 (𝑡)𝜑𝑎𝑚 (𝑥).

Replace 𝑥 by 𝑡 in the equalities of the second pair, multiply both parts by 𝐾 (𝑡, 𝑥)
and integrate from 0 to 𝑎. Then we get

−
+∞∑︁
𝑛=1

𝑑𝑛𝜑
𝑎
𝑛 (𝑥) =

+∞∑︁
𝑛=1

𝑏𝑛𝛾
𝑏
𝑛 (1 + 𝑒2𝑖𝛾

𝑏
𝑛 𝑑)

+∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝜑𝑎𝑚 (𝑥) 𝐼𝑏𝑚𝑛

+
+∞∑︁
𝑛=1

𝑐𝑛𝛾
𝑐
𝑛 (1 + 𝑒2𝑖𝛾

𝑐
𝑛𝑑)

+∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝜑𝑎𝑚 (𝑥) 𝐼𝑐𝑚𝑛, 𝑥 ∈ (0, 𝑎).

Let’s add the equations of the first pair and new equality. The equation

2𝜑𝑎𝑙 (𝑥) =
+∞∑︁
𝑛=1

𝑏𝑛𝜑
𝑏
𝑛 (𝑥)

(
1 − 𝑒2𝑖𝛾𝑏

𝑛 𝑑
)

+
+∞∑︁
𝑛=1

𝑏𝑛𝛾
𝑏
𝑛

(
1 + 𝑒2𝑖𝛾𝑏

𝑛 𝑑
) +∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝜑𝑎𝑚 (𝑥) 𝐼𝑏𝑚𝑛

+
+∞∑︁
𝑛=1

𝑐𝑛𝛾
𝑐
𝑛

(
1 + 𝑒2𝑖𝛾𝑐

𝑛𝑑
) +∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝜑𝑎𝑚 (𝑥) 𝐼𝑐𝑚𝑛, 𝑥 ∈ (0, 𝑏),

we multiply by 𝜑𝑏
𝑘
(𝑥) and integrate from 0 to 𝑏. A similar equation on (𝑏, 𝑎) is

multiplied by 𝜑𝑐
𝑘
(𝑥) and integrated from 𝑏 to 𝑎. Then

2𝐼𝑏𝑙𝑘 = 𝑏𝑘 (1 − 𝑒2𝑖𝛾
𝑏
𝑘
𝑑) +

+∞∑︁
𝑛=1

𝑏𝑛𝛾
𝑏
𝑛 (1 + 𝑒2𝑖𝛾

𝑏
𝑛 𝑑)

+∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝐼𝑏𝑚𝑛 𝐼
𝑏
𝑚𝑘

+
+∞∑︁
𝑛=1

𝑐𝑛𝛾
𝑐
𝑛 (1 + 𝑒2𝑖𝛾

𝑐
𝑛𝑑)

+∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝐼𝑐𝑚𝑛 𝐼
𝑏
𝑚𝑘 , 𝑘 = 1, 2, . . .

2𝐼𝑐𝑙𝑘 = 𝑐𝑘 (1 − 𝑒2𝑖𝛾
𝑐
𝑘
𝑑) +

+∞∑︁
𝑛=1

𝑏𝑛𝛾
𝑏
𝑛 (1 + 𝑒2𝑖𝛾

𝑏
𝑛 𝑑)

+∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝐼𝑏𝑚𝑛 𝐼
𝑐
𝑚𝑘

+
+∞∑︁
𝑛=1

𝑐𝑛𝛾
𝑐
𝑛 (1 + 𝑒2𝑖𝛾

𝑐
𝑛𝑑)

+∞∑︁
𝑚=1

1
𝛾𝑎𝑚

𝐼𝑐𝑚𝑛 𝐼
𝑐
𝑚𝑘 , 𝑘 = 1, 2, . . .
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where

𝐼𝑏𝑚𝑛 =

𝑏∫
0

𝜑𝑎𝑚 (𝑡)𝜑𝑏𝑛 (𝑡) 𝑑𝑡, 𝐼𝑐𝑚𝑛 =

𝑎∫
𝑏

𝜑𝑎𝑚 (𝑡)𝜑𝑐𝑛 (𝑡) 𝑑𝑡.

So, the ISLAE to determine the coefficients 𝑏𝑛 and 𝑐𝑛 consists of two groups of
equations. When truncated, we leave 𝑁 unknown in each equation and 𝑁 equations
in each group.

5 Computing Experiments, II

A computational experiment has shown that at some values of electromagnetic
oscillation frequencies there is a resonant increase in field expansion coefficients in
regions B and C. The dependencies of the coefficient 𝑏1 module on the frequency
(more precisely, when the wave number 𝑘 changes in the truncated ISLAU) are
shown on Fig. 5-7.

Fig. 5 Dependence of the module of 𝑏1 on the wave number ^ .

Resonant frequencies depend significantly on the value of the 𝑏. It’s easy to see
that the highest peak of the lines on the charts are observed when the frequencies are
close to the eigen values 𝜋

√︁
1/𝑏2 + 1/𝑑2 of the frequencies of rectangular domain

of the size 𝑏 × 𝑑. At low values of 𝑑 resonances are not observed.
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Fig. 6 Dependence of the module of 𝑏1 on the wave number ^ .

Fig. 7 Dependence of the module 𝑏1 on the wave number ^ .

6 Conclusion

In this paper the diffraction problems of the electromagnetic wave by the barrier in
a semi-infinite waveguide are reduced to infinite sets of linear algebraic equations
relative to coefficients of expansion by eigen waves of the waveguide. The com-
puting experiment has shown that the dependence of the desired coefficients on the
frequency of the excitatory wave is resonant.
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