Test 3

1.

Two point charges, q_1 = +25 nC and q_2 = -75 nC, are separated by a distance of 3 cm. Find the magnitude of electric force that q_1 exerts on q_2 .

 $k=9 \cdot 10^{9} \text{ N} \cdot \text{m}^{2} \cdot \text{C}^{-2}$ $q_{1}=+25 \text{ nC}=+25 \cdot 10^{-9} \text{ C}$ $q_{2}=-75 \text{ nC}=-75 \cdot 10^{-9} \text{ C}$ r=3 cm=0.03 m

$$F = k \cdot \frac{|q_1 \cdot q_2|}{r^2} = 9 \cdot 10^9 \cdot \frac{|25 \cdot 10^{-9} \cdot 75 \cdot 10^{-9}|}{0.03^2} \approx 0.019 \text{ (N)}$$

2.

A positive point charge $q = +3 \ \mu C$ is surrounded by a sphere with radius r = 0.2 m. Find the electric flux Φ (N·m²·C⁻¹) through the sphere. *****

$$k=9 \cdot 10^{9} \text{ N} \cdot \text{m}^{2} \cdot \text{C}^{-2}$$

$$q=+3 \ \mu\text{C}=+3 \cdot 10^{-6} \text{ C}$$

$$\Phi = \frac{q}{\epsilon_{0}} = 4 \cdot \pi \cdot k \cdot q \approx 4 \cdot 3.14 \cdot 9 \cdot 10^{9} \cdot 3 \cdot 10^{-6} = 3.4 \cdot 10^{5} \text{ (N} \cdot \text{m}^{2} \cdot \text{C}^{-1})$$

3.

A parallel-plate capacitor (insulator is air) has a capacitance of C = 1 F. If the plates are 1 mm apart, what is the area A (m²) of the plates? *****

$$d = 1 \text{ mm} = 1 \cdot 10^{-3} \text{ m}$$

$$A = \frac{C \cdot d}{\epsilon_0} = 4 \cdot \pi \cdot k \cdot C \cdot d = 4 \cdot 3.14 \cdot 9 \cdot 10^9 \cdot 1 \cdot 1 \cdot 10^{-3} = 1 \cdot 10^8 \text{ (m}^2)$$

4.

Find the equivalent capacitance,

when the two capacitors $C_1 = 1$ F and $C_2 = 3$ F are connected in series. *****

$$\frac{1}{c} = \frac{1}{c_1} + \frac{1}{c_2} = \frac{1}{1} + \frac{1}{3} = \frac{4}{3}$$
$$C = \frac{3}{4} = 0.75 \text{ (F)}$$

5.

Find the equivalent capacitance,

when the two capacitors $C_1 = 1$ F and $C_2 = 3$ F are connected in parallel. *****

$$C = C_1 + C_2 = 1 + 3 = 4$$
 (F)

6.

The potential difference is V = 2 V. A current is I = 0.5 A. Find the resistance $R(\Omega)$. *****

$$R = \frac{V}{I} = \frac{2}{0.5} = 4 \; (\Omega)$$

7.

A wire has a diameter of d = 1 mm, the length l = 314 m, and the resistivity $\rho = 2 \cdot 10^{-8} \Omega \cdot m$. Find the resistance $R(\Omega)$.

$$d = 1 \text{ mm} = 10^{-3} \text{ m}$$

$$R = \rho \cdot \frac{l}{A} = \rho \cdot \frac{l}{\pi \cdot \frac{d^2}{4}} = 2 \cdot 10^{-8} \cdot \frac{314}{3.14 \cdot \frac{(10^{-3})^2}{4}} \approx 8 (\Omega)$$

8.

Find the equivalent resistance,

when the two resistors $R_1 = 1 \Omega$ and $R_2 = 3 \Omega$ are connected in parallel. *****

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{1} + \frac{1}{3} = \frac{4}{3}$$
$$R = \frac{3}{4} = 0.75 \ (\Omega)$$

9.

Find the equivalent resistance, when the two resistors $R_1 = 1 \Omega$ and $R_2 = 3 \Omega$ are connected in series. *****

$$R = R_1 + R_2 = 1 + 3 = 4 (\Omega)$$

10.

Find the power of energy dissipation *P* (W) in the resistor $R = 10 \Omega$, if current I = 2 A. *****

$$P = I^2 \cdot R = 2^2 \cdot 10 = 40 \text{ (W)}$$

11. The proton ($q = 1.6 \cdot 10^{-19}$ C) has velocity $v = 2 \cdot 10^5$ m/s. The uniform magnetic field with magnitude B = 5 T has angle with velocity direction $\alpha = 30^{\circ}$. Find Lorentz force *F* (N). *****

 $\sin(30^{\circ}) = 0.5$ F = q·v·B·sin(\alpha) = 1.6·10⁻¹⁹·2·10⁵·5·0.5 = 8·10⁻¹⁴ (N)

12.

Two straight, parallel, superconducting cables 4.5 mm apart carry equal currents of I = 15000 A.

Length of cables is l = 1 m.

Find force F(N) of interaction between these cables. *****

 $\mu_0 = 4 \cdot \pi \cdot 10^{-7} (\text{T} \cdot \text{m} \cdot \text{A}^{-1})$ $r = 4.5 \text{ mm} = 4.5 \cdot 10^{-3} \text{ m}$ $F = \frac{\mu_0 \cdot I_1 \cdot I_2 \cdot l}{2 \cdot \pi \cdot r} = \frac{4 \cdot \pi \cdot 10^{-7} \cdot 15000 \cdot 15000 \cdot 1}{2 \cdot \pi \cdot 4.5 \cdot 10^{-3}} = 1 \cdot 10^4 \text{ (N)}$

13.

The solenoid consists of a helical winding of wire on a cylinder,

usually circular in cross section.

The solenoid has $n = 10^7$ turns of wire per meter of length and carries a current I = 2 A. Find the magnitude of magnetic field B (T) at the center of the solenoid's length. *****

 $\mu_0 = 4 \cdot \pi \cdot 10^{-7} (\text{T} \cdot \text{m} \cdot \text{A}^{-1})$ $B = \mu_0 \cdot n \cdot I = 4 \cdot \pi \cdot 10^{-7} \cdot 10^7 \cdot 2 = 25.12 \text{ (T)}$

14. The speed of sound at 20 °C is v = 344 m/s. The frequency is f = 172 Hz. Find the wavelength λ (m). *****

 $\lambda = v/f = 344/172 = 2$ (m)

15. The frequency of wave is f = 500 Hz. Find the period T (s). *****

T = 1/f = 1/500 = 0.002 (s)