Test 3

1.

Two point charges, $q_{1}=+25 \mathrm{nC}$ and $q_{2}=-75 \mathrm{nC}$, are separated by a distance of 3 cm .
Find the magnitude of electric force that q_{1} exerts on q_{2}.

$k=9 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$
$q_{1}=+25 \mathrm{nC}=+25 \cdot 10^{-9} \mathrm{C}$
$q_{2}=-75 \mathrm{nC}=-75 \cdot 10^{-9} \mathrm{C}$
$r=3 \mathrm{~cm}=0.03 \mathrm{~m}$
$F=k \cdot \frac{\left|q_{1} \cdot q_{2}\right|}{r^{2}}=9 \cdot 10^{9} \cdot \frac{\left|25 \cdot 10^{-9} \cdot 75 \cdot 10^{-9}\right|}{0.03^{2}} \approx 0.019(\mathrm{~N})$
2.

A positive point charge $q=+3 \mu \mathrm{C}$ is surrounded by a sphere with radius $r=0.2 \mathrm{~m}$.
Find the electric flux $\Phi\left(\mathrm{N} \cdot \mathrm{m}^{2} \cdot \mathrm{C}^{-1}\right)$ through the sphere.

$k=9 \cdot 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-2}$
$q=+3 \mu \mathrm{C}=+3 \cdot 10^{-6} \mathrm{C}$
$\Phi=\frac{q}{\epsilon_{0}}=4 \cdot \pi \cdot k \cdot q \approx 4 \cdot 3.14 \cdot 9 \cdot 10^{9} \cdot 3 \cdot 10^{-6}=3.4 \cdot 10^{5}\left(\mathrm{~N} \cdot \mathrm{~m}^{2} \cdot \mathrm{C}^{-1}\right)$
3.

A parallel-plate capacitor (insulator is air) has a capacitance of $C=1 \mathrm{~F}$.
If the plates are 1 mm apart, what is the area $A\left(\mathrm{~m}^{2}\right)$ of the plates?

$d=1 \mathrm{~mm}=1 \cdot 10^{-3} \mathrm{~m}$
$A=\frac{C \cdot d}{\epsilon_{0}}=4 \cdot \pi \cdot k \cdot C \cdot d=4 \cdot 3.14 \cdot 9 \cdot 10^{9} \cdot 1 \cdot 1 \cdot 10^{-3}=1 \cdot 10^{8}\left(\mathrm{~m}^{2}\right)$
4.

Find the equivalent capacitance,
when the two capacitors $C_{1}=1 \mathrm{~F}$ and $C_{2}=3 \mathrm{~F}$ are connected in series.

$\frac{1}{c}=\frac{1}{C_{1}}+\frac{1}{C_{2}}=\frac{1}{1}+\frac{1}{3}=\frac{4}{3}$
$C=\frac{3}{4}=0.75$ (F)

5.

Find the equivalent capacitance,
when the two capacitors $C_{1}=1 \mathrm{~F}$ and $C_{2}=3 \mathrm{~F}$ are connected in parallel.

$C=C_{1}+C_{2}=1+3=4(\mathrm{~F})$
6.

The potential difference is $V=2 \mathrm{~V}$.
A current is $I=0.5 \mathrm{~A}$.
Find the resistance $R(\Omega)$.

$R=\frac{V}{I}=\frac{2}{0.5}=4(\Omega)$
7.

A wire has a diameter of $d=1 \mathrm{~mm}$, the length $l=314 \mathrm{~m}$, and the resistivity $\rho=2 \cdot 10^{-8} \Omega \cdot \mathrm{~m}$. Find the resistance $R(\Omega)$.

$d=1 \mathrm{~mm}=10^{-3} \mathrm{~m}$
$R=\rho \cdot \frac{l}{A}=\rho \cdot \frac{l}{\pi \cdot \frac{d^{2}}{4}}=2 \cdot 10^{-8} \cdot \frac{314}{3.14 \cdot \frac{\left(10^{-3}\right)^{2}}{4}} \approx 8(\Omega)$
8.

Find the equivalent resistance,
when the two resistors $R_{1}=1 \Omega$ and $R_{2}=3 \Omega$ are connected in parallel.

$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}=\frac{1}{1}+\frac{1}{3}=\frac{4}{3}$
$R=\frac{3}{4}=0.75(\Omega)$
9.

Find the equivalent resistance,
when the two resistors $R_{1}=1 \Omega$ and $R_{2}=3 \Omega$ are connected in series.

$R=R_{1}+R_{2}=1+3=4(\Omega)$
10.

Find the power of energy dissipation $P(\mathrm{~W})$ in the resistor $R=10 \Omega$, if current $I=2 \mathrm{~A}$.

$P=I^{2} \cdot R=2^{2} \cdot 10=40(\mathrm{~W})$
11.

The proton $\left(q=1.6 \cdot 10^{-19} \mathrm{C}\right)$ has velocity $v=2 \cdot 10^{5} \mathrm{~m} / \mathrm{s}$.
The uniform magnetic field with magnitude $B=5 \mathrm{~T}$ has angle with velocity direction $\alpha=30^{\circ}$.
Find Lorentz force $F(\mathrm{~N})$.

$\sin \left(30^{\circ}\right)=0.5$
$F=q \cdot v \cdot B \cdot \sin (\alpha)=1.6 \cdot 10^{-19} \cdot 2 \cdot 10^{5} \cdot 5 \cdot 0.5=8 \cdot 10^{-14}(\mathrm{~N})$
12.

Two straight, parallel, superconducting cables 4.5 mm apart carry equal currents of $I=15000$ A.
Length of cables is $l=1 \mathrm{~m}$.
Find force $F(\mathrm{~N})$ of interaction between these cables.

$\mu_{0}=4 \cdot \pi \cdot 10^{-7}\left(\mathrm{~T} \cdot \mathrm{~m} \cdot \mathrm{~A}^{-1}\right)$
$r=4.5 \mathrm{~mm}=4.5 \cdot 10^{-3} \mathrm{~m}$
$F=\frac{\mu_{0} \cdot I_{1} \cdot I_{2} \cdot l}{2 \cdot \pi \cdot r}=\frac{4 \cdot \pi \cdot 10^{-7} \cdot 15000 \cdot 15000 \cdot 1}{2 \cdot \pi \cdot 4.5 \cdot 10^{-3}}=1 \cdot 10^{4}(\mathrm{~N})$
13.

The solenoid consists of a helical winding of wire on a cylinder, usually circular in cross section.
The solenoid has $n=10^{7}$ turns of wire per meter of length and carries a current $I=2 \mathrm{~A}$.
Find the magnitude of magnetic field $B(\mathrm{~T})$ at the center of the solenoid's length.

$\mu_{0}=4 \cdot \pi \cdot 10^{-7}\left(\mathrm{~T} \cdot \mathrm{~m} \cdot \mathrm{~A}^{-1}\right)$
$B=\mu_{0} \cdot n \cdot I=4 \cdot \pi \cdot 10^{-7} \cdot 10^{7} \cdot 2=25.12(\mathrm{~T})$
14.

The speed of sound at $20^{\circ} \mathrm{C}$ is $v=344 \mathrm{~m} / \mathrm{s}$.
The frequency is $f=172 \mathrm{~Hz}$.
Find the wavelength $\lambda(\mathrm{m})$.

$\lambda=v / f=344 / 172=2(\mathrm{~m})$
15.

The frequency of wave is $f=500 \mathrm{~Hz}$.
Find the period T (s).

$\mathrm{T}=1 / f=1 / 500=0.002(\mathrm{~s})$

