
Periodic Motion

Periodic motion of some source object is necessary to produce a sustained musical
sound (i.e., one with definite pitch and quality). For example, to produce a standard
musical A (440 Hz), the source object must sustain periodic motion at 440 vibrations
per second with a tolerance of less than 1 Hz -- the normal human ear can detect the
difference between 440 Hz and 441 Hz. The conditions necessary for periodic motion
are

1. elasticity - the capacity to return precisely to the original configuration after being
distorted.

◦ a definite equilibrium configuration
◦a restoring force to bring the system back to equilibrium

2. A source of energy.
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Periodic Motion

Elasticity is the property of an object or material which causes it to be restored to its original
shape after distortion. It is said to be more elastic if it restores itself more precisely to its original
configuration. A spring is an example of an elastic object - when stretched, it exerts a restoring
force which tends to bring it back to its original length. This restoring force is generally
proportional to the amount of stretch, as described by Hooke's Law.

One of the properties of elasticity is that it takes about twice as much force to stretch a spring
twice as far. That linear dependence of displacement upon stretching force is called Hooke's law.
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Description of Periodic Motion

Motion which repeats itself precisely can be described with the following terms:

• Period: the time required to complete a full cycle, T in seconds/cycle

• Frequency: the number of cycles per second, f in 1/seconds or Hertz (Hz)

• Amplitude: the maximum displacement from equilibrium A

and if the periodic motion is in the form of a traveling wave, one needs also

• Velocity of propagation: v

• Wavelength: repeat distance of wave λ.

In a plot of periodic motion as a function of time, the period can be seen as the repeat
time for the motion. The frequency is the reciprocal of the period.

𝐸𝐸 = 1
𝑇𝑇
,  f - frequency 𝑇𝑇 = 1

𝑓𝑓
,  T - period
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Description of Periodic Motion
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Simple Harmonic Motion

When a mass is acted upon by an elastic force which tends to bring it back to its
equilibrium configuration, and when that force is proportional to the distance from
equilibrium (e.g., doubles when the distance from equilibrium doubles, a Hooke's Law
force), then the object will undergo simple harmonic motion when released.

A mass on a spring is the standard example of
such periodic motion. If the displacement of the
mass is plotted as a function of time, it will
trace out a pure sine wave.
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Energy of an Oscillator

A mass on a spring transforms energy back and forth between kinetic and potential
energy. If there were no dissipation, conservation of energy would dictate that the
motion would continue forever. For any real vibrating object, the implication of the
conservation of energy principle is that the vibrator will continue the transformation
from kinetic to potential energy until all the energy is transferred into some other form.
To set the object into motion, a net external force must do work on the mass to initially
stretch the spring, that amount of work being 2 joules in the example below.
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Damped Harmonic Oscillator
The Newton's 2nd Law motion equation is

𝑚𝑚𝑎𝑎 + 𝑐𝑐𝑣𝑣 + 𝑘𝑘𝑑𝑑 = 0

𝑚𝑚𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

+ 𝑐𝑐 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

+ 𝑘𝑘𝑑𝑑 = 0

This is in the form of a homogeneous second order differential
equation and has a solution of the form

𝑑𝑑 = 𝑑𝑑𝜆𝜆𝑡𝑡

Substituting this form gives an auxiliary equation for λ

𝑚𝑚𝜆𝜆2 + 𝑐𝑐𝜆𝜆 + 𝑘𝑘 = 0

The roots of the quadratic auxiliary equation are

𝜆𝜆 =
−𝑐𝑐 ± 𝑐𝑐2 − 4𝑚𝑚𝑘𝑘

2𝑚𝑚

The three resulting cases for the damped oscillator are

𝑐𝑐2 − 4𝑚𝑚𝑘𝑘 > 0 Overdamped

𝑐𝑐2 − 4𝑚𝑚𝑘𝑘 = 0 Critical damping

𝑐𝑐2 − 4𝑚𝑚𝑘𝑘 < 0 Underdamped
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Damping Coefficient

When a damped oscillator is subject to a damping force which
is linearly dependent upon the velocity, such as viscous
damping, the oscillation will have exponential decay terms
which depend upon a damping coefficient. If the damping
force is of the form

𝐹𝐹𝑑𝑑𝑎𝑎𝑚𝑚𝑎𝑎𝑖𝑖𝑖𝑖𝑑𝑑 = −𝑐𝑐𝑣𝑣

then the damping coefficient is given by

𝛾𝛾 =
𝑐𝑐

2𝑚𝑚
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Underdamped Oscillator

For any value of the damping coefficient γ less than the critical damping factor the mass will
overshoot the zero point and oscillate about x=0. The behavior is shown for one-half and one-tenth
of the critical damping factor. Also shown is an example of the overdamped case with twice the
critical damping factor.

Note that these examples are for the same specific initial conditions, i.e., a release from rest at a
position x0. For other initial conditions, the curves would look different, but the behavior with time
would still decay according to the damping factor.
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Underdamped Oscillator

When a damped oscillator is underdamped, it approaches
zero faster than in the case of critical damping, but
oscillates about that zero.

The equation is that of an exponentially decaying
sinusoid.

𝑑𝑑 = 𝑑𝑑−𝛾𝛾𝑡𝑡𝑎𝑎 cos 𝜔𝜔1𝑈𝑈 − 𝛼𝛼

The damping coefficient is less than the undamped
resonant frequency . The sinusoid frequency is given by

𝜔𝜔1 = 𝜔𝜔12 − 𝛾𝛾2

but the motion is not strictly periodic
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Driven Oscillator

If a damped oscillator is driven by an external force, the solution to the motion equation has two
parts, a transient part and a steady-state part, which must be used together to fit the physical
boundary conditions of the problem.

The motion equation is of the form

𝑚𝑚
𝑑𝑑2𝑑𝑑
𝑑𝑑𝑈𝑈2

+ 𝑐𝑐
𝑑𝑑𝑑𝑑
𝑑𝑑𝑈𝑈

+ 𝑘𝑘𝑑𝑑 = 𝐹𝐹0 cos(𝜔𝜔𝑈𝑈 + 𝜑𝜑𝑑𝑑)

and has a general solution

𝑑𝑑 𝑈𝑈 = 𝑑𝑑𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖𝑠𝑠𝑖𝑖𝑒𝑒𝑖𝑖𝑡𝑡 + 𝑑𝑑𝑠𝑠𝑡𝑡𝑒𝑒𝑎𝑎𝑑𝑑𝑦𝑦 𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡𝑒𝑒

In the underdamped case this solution takes the form

𝑑𝑑 𝑈𝑈 = 𝑑𝑑ℎ𝑑𝑑−𝛾𝛾𝑡𝑡 sin 𝜔𝜔′𝑈𝑈 + 𝜑𝜑ℎ + 𝑑𝑑 cos(𝜔𝜔𝑈𝑈 − 𝜑𝜑)

Transient solution Steady-state solution

Determined by
initial position
and velocity

Determined by
driving force
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Wave Graphs

Waves may be graphed as a function of time or
distance. A single frequency wave will appear as a
sine wave in either case. From the distance graph the
wavelength may be determined. From the time graph,
the period and frequency can be obtained. From both
together, the wave speed can be determined.
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Traveling Waves

Waves may be graphed as a function of time or distance. A
single frequency wave will appear as a sine wave in either
case. From the distance graph the wavelength may be
determined. From the time graph, the period and frequency
can be obtained. From both together, the wave speed can
be determined.

The motion relationship "distance = velocity x time" is the key to the basic wave relationship.
With the wavelength as distance, this relationship becomes λ = vT. Then using f=1/T gives the
standard wave relationship

𝑣𝑣 = 𝐸𝐸𝜆𝜆

Wave velocity = frequency x wavelength

This is a general wave relationship which applies to sound and light waves, other
electromagnetic waves, and waves in mechanical media.
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Resonance

In sound applications, a resonant frequency is a natural frequency of vibration determined by the
physical parameters of the vibrating object. This same basic idea of physically determined natural
frequencies applies throughout physics in mechanics, electricity and magnetism, and even
throughout the realm of modern physics.

It is easy to get an object to vibrate at its resonant frequencies, hard at other frequencies.

A child's playground swing is an example of a pendulum, a resonant system with only one
resonant frequency. With a tiny push on the swing each time it comes back to you, you can
continue to build up the amplitude of swing. If you try to force it to swing a twice that frequency,
you will find it very difficult.

Swinging a child in a playground
swing is an easy job because you are
helped by its natural frequency.

But can you swing it at some other
frequency?
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Picking out resonant frequencies

A vibrating object will pick out its resonant frequencies from a complex excitation and vibrate at
those frequencies, essentially "filtering out" other frequencies present in the excitation.

If you just whack a mass on a spring with a stick, the initial motion may be complex, but the main
response will be to bob up and down at its natural frequency. The blow with the stick is a
complex excitation with many frequency components, but the spring picks out its natural
frequency and responds to that.
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Vibrating String

The fundamental vibrational mode of a stretched string is such that the wavelength is twice the
length of the string.

Applying the basic wave relationship gives an expression for the fundamental frequency:

𝐸𝐸1 =
𝑣𝑣𝑤𝑤𝑎𝑎𝑣𝑣𝑒𝑒 𝑡𝑡𝑖𝑖 𝑠𝑠𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑

2𝐿𝐿

Since the wave velocity is given by 𝑣𝑣 = 𝑇𝑇
𝑚𝑚/𝐿𝐿

, the frequency expression can be put in the form:

𝐸𝐸1 =

𝑇𝑇
𝑚𝑚/𝐿𝐿
2𝐿𝐿

T = string tension

m = string mass

L = string length
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Harmonics

An ideal vibrating string will vibrate with its fundamental frequency and all harmonics of that
frequency. The position of nodes and antinodes is just the opposite of those for an open air
column.

The fundamental frequency can be calculated from

𝐸𝐸1 =
𝑣𝑣𝑤𝑤𝑎𝑎𝑣𝑣𝑒𝑒 𝑡𝑡𝑖𝑖 𝑠𝑠𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖𝑑𝑑

2𝐿𝐿
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Nodes and Antinodes

The standing waves produced by wave motion in strings or air columns can be used to
establish the values for wavelength, frequency and speed for the waves in accordance
with the wave relationship, v = fλ.
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Steps to Produce String Resonance
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Overtones and Harmonics

The term harmonic has a precise meaning - that of an integer (whole number) multiple of the
fundamental frequency of a vibrating object. The term overtone is used to refer to any resonant
frequency above the fundamental frequency - an overtone may or may not be a harmonic. Many of
the instruments of the orchestra, those utilizing strings or air columns, produce the fundamental
frequency and harmonics. Their overtones can be said to be harmonic. Other sound sources such as
the membranes or other percussive sources may have resonant frequencies which are not whole
number multiples of their fundamental frequencies. They are said to have non-harmonic overtones.

All harmonics are
overtones for an
open air column
or a string

Closed air columns
produce only odd
harmonics.

A rectangular 
membrane 
produces 
harmonics, but 
also some other 
overtones.
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Air Column Resonance

The resonant frequencies of air columns depend upon the speed of sound in air as well as the
length and geometry of the air column. Longitudinal pressure waves reflect from either closed or
open ends to set up standing wave patterns. Important in the visualization of these standing waves
is the location of the nodes and antinodes of pressure and displacement for the air in the columns.

A cylindrical air column with both ends open will vibrate with a fundamental mode such that the
air column length is one half the wavelength of the sound wave. Each end of the column must be
an antinode for the air

motion since the ends are open to the atmosphere and cannot produce significant pressure
changes. For the fundamental mode, there is one node at the center.

The open air column can produce all harmonics. Open cylinders are employed musically in the
flute, the recorder, and the open organ pipe.
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Harmonics of Open Air Column

An open cylindrical air column can produce all harmonics of the
fundamental. The positions of the nodes and antinodes are reversed
compared to those of a vibrating string, but both systems can produce
all harmonics. The sinusoidal patterns indicate the displacement nodes
and antinodes for the harmonics. A pressure node corresponds to a
displacement antinode, and the harmonic patterns can also be
visualized in terms of air pressure or density patterns.

This is a depiction of air pressure and
density variations for first five standing
wave modes of an open cylinder. The ends
are constrained to be nodes of pressure,
being essentially at atmospheric pressure.
A half cycle later, all the high pressure
points would be low pressure points, and
vice versa.
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