Журнал общей химии. 2014. Т. 84. Вып. 8

УДК 547.793.4

НЕОБЫЧНАЯ РЕАКЦИЯ 4-[(3-КАРБОКСИПРОПИЛ)АМИНО]-6-ХЛОРО-5-НИТРОБЕНЗОФУРОКСАНА С 1,2-ДИНИТРАТОМ 3-АМИНОПРОПАН-1,2-ДИОЛА

© Е. А. Чугунова,¹ Р. Э. Мухаматдинова,² И. В. Серков,³ С. В. Харламов,¹ А. Б. Добрынин,¹ А. Р. Бурилов¹

¹Институт органической и физической химии имени А. Е. Арбузова Казанского научного центра Российской академии наук Россия, 420088, Казань, ул. Арбузова, 8; e-mail: elena-chugunova@list.ru ²Казанский национальный исследовательский технологический университет ³Институт физиологически активных веществ Российской академии наук, Черноголовка

Изучена реакция 4-[(3-карбоксипропил)амино]-6-хлоро-5-нитробензобуроксана с 1,2-динитратом 3-аминопропан-1,2-диола, приводящая к образованию 6-хлор-5-нитро-4-(2-оксопирролидин-1-ил)бензофуроксана вместо ожидаемого аминопроизводного 4,6-дихлор-5-нитробензофуроксана.

Ключевые слова: 4,6-дихлор-5-нитробензофуроксан, рентгеноструктурный анализ, 1,2-динитрат 3-аминопропан-1,2-диола, NO-доноры.

Производные бензофуроксанов обладают широким спектром биологической активности [1], в том числе они проявляют антибактериальное [2], гербицидное [3], антипаразитарное [4], антилейкемическое [5], противоревматическое [6] и сосудорасширяющее действие [7]. В связи с этим бензофуроксаны представляют интерес в качестве базовых реагентов для синтеза новых биологически активных гетероциклических соединений, потенциальных NO-генерирующих пролекарств.

Ранее нами были описаны получение и свойства аминопроизводных 4,6-дихлоро-5-нитробензофуроксана [8].

i, MeOH, NaHCO₃, 60°С, 4 ч

Поступило в Редакцию 13 марта 2014 г.

1325

Е. А. Чугунова и др.

Присутствие в молекуле соединений (Ша–д) свободной карбоксильной группы, которая может выступать в качестве линкеров для введения дополнительной фармакофорной группы, обеспечит синтез новых гибридных соединений. Ранее такая возможность была нами продемонстрирована на примере взаимодействия соединения (IIIг) с 2-аминоэтилнитратом [8].

i, этилацетат, изобутилхлорформиат, Et₃N, 0-4°C, 30 мин; *ii*, этилацетат, 2-аминоэтилнитрат, Et₃N, 20°C, 1 ч.

В настоящей работе в качестве фармакофорной группы, содержащей дополнительный NO-донорный фрагмент, нами был использован 1,2-динитрат 3-аминопропан-1,2-диол. Однако попытки получить в результате реакции производное 4,6-дихлор-5-

нитробензофуроксана (VII), аналогичного синтезированному производному (V) [8], потерпели неудачу. В качестве основного продукта в этой реакции было получено гетероциклическое соединение (VIII).

1326

VIII

i, этилацетат, изобутилхлорформиат, Et₃N, 0–4°C, 30 мин; *ii*, этилацетат, 1,2-динитрат 3-аминопропандиол, Et₃N, 20°C, 1 ч.

Необычная реакция 4-[(3-карбоксипропил)амино]-6-хлоро-5-нитробензофуроксана с 1,2-динитратом...

Общий вид молекулы соединения (VIII) по данным РСА.

Структура соединения (VIII) была подтверждена данными ЯМР спектроскопии и рентгеноструктурного анализа. Спектры ЯМР содержат два набора уширенных сигналов, относящихся к двум таутомерам в соотношении 70:30.

Согласно данным РСА (см. рисунок), в элементарной ячейке соединения (VIII) находятся две независимые молекулы, отличающиеся друг от друга расположением атомов C^{13} и C^{14} в оксопирролидиновом фрагменте. Длины связей находятся в пределах стандартных значений для данного типа связей. Межмолекулярные взаимодействия приводят к образованию сложной трехмерной структуры.

Экспериментальная часть

Спектры ЯМР ¹Н записаны на приборе AVANCE-600 с рабочей частотой 600.13 МГц относительно сигналов остаточных протонов дейтерированного растворителя (ацетон- d_6). Температуру плавления определяли на нагревательном столике Boetius без коррекции. ТСХ выполняли на пластинках Silufol UV 254 (Kavalier).

6-Хлор-5-нитро-4-(2-оксопирролидин-1-ил)бензофуроксан (VIII). В 2 мл этилацетата растворяли 0.080 г (0.25 ммоль) бензофуроксана (IIIг), 0.035 мл (0.25 ммоль) триэтиламина и 0.035 мл (0.25 ммоль) изобутилхлорформиата. Полученную реакционную смесь перемешивали 30 мин при 0–4°С и затем упаривали в вакууме. Остаток снова растворяли в 2 мл этилацетата и прибавляли раствор 1,2-динитрата 3-аминопропан-1,2-диола, полученный из 55 мг (0.30 мМ.) азотнокислой соли 1 ч, промывали водой, соляной кислотой и насыщенным водным раствором NaCl. Органический слой отделяли, сушили над безводным Na₂SO₄ и упаривали в вакууме. Остаток очищали колоночной хроматографией на силикагеле Kieselgel 60 (Merck, Германия) в системе бензол–этилацетат. Выход 74%, т. пл. 110–112°С (гексан). Спектр ЯМР ¹Н (ацетон- d_6), δ , м. д.: 2.35 с (2H, H¹³), 2.55 с (2H, H¹²), 3.78 д (2H¹⁴_{МИНор}). Спектр ЯМР ¹³С (ацетон- d_6), d_C , м. д.: 19.71 (C¹³), 30.08 (C¹²), 50.02 (C¹⁴), 50.33 (C¹⁴_{МИНор}), 110.85 (C⁹_{МИНор}), 113.73 (C⁷, C⁸), 119.49 (C⁷_{МИНор}), 122.77 (C⁴_{МИНор}), 125.06 (C⁴, C⁶), 128.75 (C⁶_{МИНор}), 147.10 (C⁵), 148.64 (C⁹, C⁵_{МИНор}), 150.91 (C⁸_{МИНор}), 174.58 (C¹¹), 175.46 (C¹¹_{МИНор}).

Рентгеноструктурное исследование выполнено на автоматическом дифрактометре Bruker Smart АРЕХ II ССD [графитовый монохроматор, λ (Мо K_{α}) 0.71073 Å, ω -сканирование], $2\theta < 54^{\circ}$, R_{int} 0.021. Кристаллы соединения (VIII) моноклинные С₁₀Н₇СlN₄O₅, *М* 298.65. Параметры ячейки при 150 K: a 18.992(2), b 15.552(2), c 7.932(1) Å, β 94.259(1)°, V 2336.3(5) Å³, Z 8, пространственная группа *P2*₁/*c*, *d*_{выч} 1.698 г/см³, µ 0.356 мм⁻¹, *F*(000) 1216. Было измерено 19452 отражений, из них 5085 независимых, число наблюдаемых отражений с $I > 2\sigma(I)$ равно 4629, окончательные значения факторов расходимости: R 0.0282, wR₂ 0.0772, GOF 0.91, число определяемых параметров 361. Учет поглощения проводили с использованием программы SADABS [9]. Структура расшифрована прямым методом по программе SIR [10] и уточнена сначала в изотропном, затем в анизотропном приближении по программе SHELXL-97 [11]. Все водородные атомы помещены в вычисленные положения, которые уточняли по модели наездника. Все расчеты выполнены с использованием программ WinGX [12] и АРЕХ2 [13]. Рисунки и анализ межмолекулярных контактов выполнены с помощью программы PLATON [14]. Кристаллографические данные структуры (IX) депонированы в Кембриджскую базу кристаллоструктурных данных (ССDC 1001192).

Рентгеноструктурное исследование выполнено в Отделении рентгеноструктурных исследований Центра коллективного пользования на базе лаборатории дифракционных методов исследования Института органической и физической химии имени А.Е. Арбузова Казанского научного центра Российской академии наук.

1327

1,2-динитрата 3-аминопропан-1,2-диола и 45 мкл триэтиламина в 2 мл этилацетата. Реакционную смесь перемешивали при комнатной температуре

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 14-03-31365, 12-03-97041).

Е.А. Чугунова и др.

Список литературы

- [1] Jovené C., Chugunova E.A., Goumont R. // Mini-Rev. Med. Chem. 2013. Vol. 13. P. 1089. DOI: 10.2174/ 1389557511313080001.
- [2] Jorge S.D., Masunari A., Oliveira Rangel-Yagui C., Mesquita Pasqualoto K.F., Costa Tavares L. // Bioorg. Med. Chem. 2009. Vol. 17. P. 3028. DOI: 10.1016/j.bmc.2009.03.011.
- [3] Cerecetto H., Dias E., Di Maio R., Gonzales M., Pacce S., Saenz P., Seoane G. // J. Agric. Food Chem. 2000. Vol. 48.
 P. 2995. DOI: 10.1021/jf9904766.
- [4] Hotez P., Molyneux D.H., Fenwick A., Ottesen E., Kumaresan J., Savioli L., Sachs S.E., Sachs J.D. // N. Engl. J. Med. 2007. Vol. 357. P. 1018. DOI: 10.1056/NEJMra064142.
- [5] Ghosh P.B., Whitehouse M.W. // J. Med. Chem. 1969. Vol. 12.
 P. 505. DOI: 10.1021/jm00303a606.
- [6] Macphee D.G., Robert G.P., Ternai B., Ghosh P., Stephens R.
 // Chem.-Biol. Interact. 1977. Vol. 19. P. 77. DOI: 10.1016/0009-2797(77)90043-6.

- [7] Ghosh P.B., Everitt B. // J. Med. Chem. 1974. Vol. 17. P. 203. DOI: 10.1021/jm00248a013.
- [8] Серков И.В., Чугунова Е.А., Бурилов А.Р., Бачурин С.О. // Докл. АН. 2013. Т. 3. № 4. С. 417.
- [9] Sheldrick G.M. SADABS. Bruker AXS Inc., Madison, USA, 1997.
- [10] Altomare A., Cascarano G., Giacovazzo C., Viterbo D. // Acta Crystallogr. (A). 1991. Vol. 47. P. 744. DOI: 10.1107/ S0108767391006566.
- [11] Sheldrick G.M. SHELX-97. Programs for Crystal Structure Analysis, Release 97-2, University of Guttingen, 1997. Vol. 1–2.
- [12] Farrugia L.J. // J. Appl. Crystallogr. 1999. Vol. 32. P. 837. DOI: 10.1107/S0021889899006020.
- [13] APEX2 (Version 2.1), SAINTPlus. Data Reduction and Correction Program (Version 7.31A), Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA, 2006.
- [14] Spek A.L. // Acta Crystallogr. (D). 2009. Vol. 65. P. 148. DOI: 10.11.

1328