
§9. РАНГ МАТРИЦЫ

Пусть A(m,n) — произвольная прямоугольная матрица. Будем

трактовать ее столбцы как систему векторов пространства C
m. Ранг

этой системы векторов назовем рангом матрицы A(m,n):

rank(A).
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Напомним, что размерность образа оператора A : Xn → Ym,

Im(A) = {y ∈ Ym : y = Ax, x ∈ Xn},

называется рангом оператора A:

rank(A).
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Теорема. Пусть

A : Xn → Ym

Aeq — матрица оператора A относительно произвольным образом

фиксированных базисов

{ek}
n
k=1 ⊂ Xn, {qk}

m
k=1 ⊂ Ym.

Тогда

rank(Aeq) = rank(A).
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Доказательство. Пусть

x = Enξ ∈ Xn.

Тогда

Ax = Qmη,

где

η = Aeqξ.
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Обозначим

Lr ⊂ C
m

подпространство, натянутое на столбцы матрицы Aeq. Тогда

η = Aeqξ ∈ Lr,

кроме того,

dim(Lr) = rank(Aeq).
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Имеем

η ∈ Lr,

Qη = Ax ∈ Im(A).

Следовательно,

Q : Lr → Im(A).
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Линейный оператор

Q : Lr → Im(A)

обратим, следовательно, подпространство Lr изоморфно ImA, и

dim (Lr) = dim(Im(A)).
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Итак,

dim (Lr) = dim(Im(A)),

но

dim(Lr) = rank(Aeq), dim(Im(A)) = rank(A),

следовательно,

rank(Aeq) = rank(A). ¤
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Таким образом, ранг матрицы оператора инвариантен по отно-

шению к выбору базисов, и можно было бы дать эквивалентное

определение ранга оператора как ранга его матрицы.
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Матрицу A(m,n) можно трактовать и как систему строк из про-

странства C
n. Ранг этой системы строк обозначим через rs.
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Теорема. Для любой матрицы A(m,n) выполнено равенство

rs = rank(A),

т. е. ранг системы ее строк равен рангу системы ее столбцов.
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Доказательство. Не ограничивая общности рассуждений можно

считать, что первые rs строк матрицы A(m,n) линейно независимы,

а каждая из последующих линейно выражается через первые rs

строк матрицы A(m,n).
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Пусть A(rs, n) — матрица, состоящая из первых rs строк матри-

цы A(m,n). Используем для преобразования матрицы A(rs, n) алго-

ритм, совпадающий, фактически, с прямым ходом метода Гаусса.
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Выберем в первой строке матрицы A(rs, n) ненулевой элемент. Это

возможно, так как ни одна строка матрицы A(rs, n) не может быть

нулевой.
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Переставим столбцы матрицы A(rs, n) так, чтобы столбец, содер-

жащий указанный ненулевой элемент оказался первым. Сохраним

за преобразованной таким образом матрицей прежнее обозначение.
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Умножим первую строку на −a21/a11 и сложим со второй:

ã2 = −
a21

a11
a1 + 1 · a2.
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Затем аналогичные преобразования проделаем со всеми последу-

ющими строками матрицы A(rs, n).
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В результате получим матрицу, у которой все элементы первого

столбца, кроме элемента a11, равны нулю, причем a11 6= 0.
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Вторая строка преобразованной матрицы есть нетривиальная ли-

нейная комбинация первых двух (линейно независимых) строк, по-

этому она отлична от нуля:

ã2 = −
a21

a11
a1 + 1 · a2 6= 0.
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Поменяв местами при необходимости второй столбец с одним из

последующих, мы получим матрицу, у которой

a22 6= 0.
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Умножим вторую строку на −a32/a22 и сложим с третьей:

ã3 = −
a32

a22
a2 + 1 · a3.
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Аналогичные преобразования проделаем и с последующими стро-

ками матрицы A(rs, n).
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Продолжая такие преобразования, мы, в результате, придем к

матрице, которую можно представить в блочном виде

(Ã(rs, rs), B(rs, n− rs)),

где Ã(rs, rs) — верхняя треугольная матрица с ненулевыми элемен-

тами на главной диагонали.
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Описанные выше преобразования не могут «сорваться», так как

в ходе указанных вычислений каждый раз возникает строка, кото-

рая является нетривиальной линейной комбинацией предыдущих

(линейно независимых) строк матрицы A(rs, n), и потому не может

оказаться нулевой.
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Очевидно, что, не ограничивая общности рассуждений, можно

считать что первые rs столбцов исходной матрицы A(rs, n) таковы,

что выполняя описанные выше преобразования и не прибегая к

перестановке столбцов, мы придем к матрице вида

(Ã(rs, rs), B(rs, n− rs)).
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Ясно, что det(Ã(rs, rs)) 6= 0, поэтому первые rs столбцов исходной

матрицы A(rs, n) линейно независимы. Но тогда, и первые rs столб-

цов матрицы A(m,n) линейно независимы.
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Покажем, что добавление к ним любого столбца матрицы A(m,n)

приводит к линейно зависимой системе.
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Пусть ∆rs — главный минор порядка rs матрицы A(m,n). Из

предыдущих рассуждений следует, что

∆rs 6= 0.
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Итак, ∆rs 6= 0, поэтому система линейных уравнений

a11x1 + a12x2 + · · · + a1rsxrs = a1k,

a21x1 + a22x2 + · · · + a2rsxrs = a2k,

· · ·

ars1x1 + ars2x2 + · · · + arsrsxrs = arsk

имеет решение при любом k = 1, 2, . . . , n.
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Каждая строка матрицы A(m,n) с номером, большим rs, линейно

выражается через первые rs строк матрицы A(m,n):

apk =

rs∑

i=1

αipaik, p = rs + 1, . . . , m, k = 1, . . . , n.
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Пусть вектор (x1, x2, . . . , xrs) есть решение системы
rs∑

j=1

aijxj = aik, i = 1, . . . , rs, k = 1, . . . , n.

Тогда
rs∑

i=1

αip

rs∑

j=1

aijxj =

rs∑

i=1

αipaik, p = rs + 1, . . . , m, k = 1, . . . , n,

следовательно,

rs∑

j=1




rs∑

i=1

αipaij


xj =

rs∑

i=1

αipaik, p = rs + 1, . . . , m, k = 1, . . . , n.
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Равенства
rs∑

j=1




rs∑

i=1

αipaij


xj =

rs∑

i=1

αipaik, p = rs + 1, . . . , m, k = 1, . . . , n,

учитывая

apk =

rs∑

i=1

αipaik, p = rs + 1, . . . , m, k = 1, . . . , n,

можно записать так:
rs∑

j=1

apjxj = apk, p = rs + 1, . . . , m, k = 1, . . . , n.
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Итак, если вектор (x1, x2, . . . , xrs) есть решение системы
rs∑

j=1

aijxj = aik, i = 1, . . . , rs, k = 1, . . . , n,

то он удовлетворяет и равенствам
rs∑

j=1

aijxj = aik, i = rs + 1, . . . , m, k = 1, . . . , n,

т. е.
rs∑

j=1

aijxj = aik, i = 1, . . . , m, k = 1, . . . , n.
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Равенства
rs∑

j=1

aijxj = aik, i = 1, . . . , m, k = 1, . . . , n,

означают, что каждый столбец матрицы A(m,n) есть линейная ком-

бинация ее первых rs столбцов, следовательно,

rank(A(m,n)) = rs. ¤
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Квадратная матрица порядка n невырождена тогда и только то-

гда, когда

rank(A) = n.
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Любая перестановка строк или столбцов матрицы, очевидно, не

меняет ее ранга.
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Теорема. Пусть A(m,n) — произвольная матрица, а B(m,m)

и C(n, n) — квадратные невырожденные матрицы. Тогда

rank(A) = rank(BA),

rank(A) = rank(AC).
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Доказательство. Для проверки равенства

rank(A) = rank(BA),

достаточно заметить, что если матрица B невырождена, то для ли-

нейной независимости системы столбцов

Ba1, . . . , Bap

необходимо и достаточно линейной независимости столбцов

a1, . . . , ap

Действительно, если матрица B невырождена, то

Ax = 0 ⇐⇒ BAx = 0.
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Имеем

rank(A) = rank(BA).

Следовательно,

rank(AT ) = rank(ATBT ).

Обозначим

D = AT , C = BT .

Тогда

rank(D) = rank(DC). ¤

39

39



.

Упражнение. Показать, что для любых допускающих умноже-

ние прямоугольных матриц A, B справедливо неравенство

rank(AB) 6 min{rank(A), rank(B)}.
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