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Abstract: Platelet aggregation causes various diseases and therefore challenges the development of
novel antiaggregatory drugs. In this study, we report the possible mechanism of platelet aggregation
suppression by newly synthesized myrtenol-derived monoterpenoids carrying different heteroatoms
(sulphur, oxygen, or nitrogen). Despite all tested compounds suppressed the platelet aggregation
in vitro, the most significant effect was observed for the S-containing compounds. The molecular
docking confirmed the putative interaction of all tested compounds with the platelet’s P2Y12 receptor
suggesting that the anti-aggregation properties of monoterpenoids are implemented by blocking
the P2Y12 function. The calculated binding force depended on heteroatom in monoterpenoids and
significantly decreased with the exchanging of the sulphur atom with oxygen or nitrogen. On
the other hand, in NMR studies on dodecyl phosphocholine (DPC) as a membrane model, only
S-containing compound was found to be bound with DPC micelles surface. Meanwhile, no stable
complexes between DPC micelles with either O- or N-containing compounds were observed. The
binding of S-containing compound with cellular membrane reinforces the mechanical properties of
the latter, thereby preventing its destabilization and subsequent clot formation on the phospholipid
surface. Taken together, our data demonstrate that S-containing myrtenol-derived monoterpenoid
suppresses the platelet aggregation in vitro via both membrane stabilization and blocking the P2Y12

receptor and, thus, appears as a promising agent for hemostasis control.

Keywords: S; N; O-containing monoterpenoids; platelet aggregation suppressing activity; 1D,2D
solution-state NMR; cell membranes model; molecular docking; P2Y12 receptor
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1. Introduction

The abnormal changes in blood coagulation leading to hemostasis disorders are the
key elements of various obstetric and surgical pathology, cardiovascular, cerebrovascular,
infectious, and immune diseases [1–4]. Nevertheless, the prevention and treatment of
thrombosis and hemorrhagic conditions remain challenging and require a deeper insight
into molecular mechanisms of blood coagulation and its regulation. It is worthwhile
noting that most of the drugs suppressing the activity of platelets available to date do
not guarantee effective prevention or treatment of thrombosis. Thus, the resistance of
up to 61% of patients has been reported to aspirin, the most common and widely used
anti-aggregation agent, which acts as an irreversible blocker of the cyclooxygenase enzymes
and thromboxane A2 synthesis inhibitor [5]. The clopidogrel resistance, an inhibitor of
well-known platelet receptors P2Y12, was reported to be in a range of 5–45% [6]. Therefore,
the development of new agents for corrections of the hemostasis system disorders is strictly
required.

Several studies have revealed that a large number of pathological processes generally
don’t affect the hemostatic system directly, but influence the blood coagulation system by
damaging the endothelium (for example, atherosclerosis, preeclampsia of pregnant women,
etc.) [7]. Further, endothelial dysfunction activates platelet receptors and leads to platelet
adhesion and aggregation under the influence of various inductors [8]. Thereby, developing
novel substances suppressing the receptor activity of platelets seems to be a promising
direction for investigation, while the role of the transformation of cell membranes in the
activation of coagulation hemostasis is often overlooked.

Various agents interacting with cell membrane and thus modifying its properties
seem promising agents for thrombosis control. Terpenes, a vast class of substances of
membranotropic substances, provide membrane stabilization and decrease thrombogenic
properties [9] via Van der Waals interactions with phospholipids of cell membranes. More-
over, sulphur-containing derivatives of monoterpenes have antifungal, anti-inflammatory,
antibacterial, and anti-Helicobacter activity [10,11].

Previously we developed synthetic approaches for obtaining sulphur-containing
monoterpenoids of different structures [12]. It has been found that among all the stud-
ied compounds, sodium ([(1R,2R,4R)-1,7,7-trimethylbicyclo[2.2.1]hept-2-yl] thio) acetate
exhibits promising antiplatelet and anticoagulation activity and bioavailability because
of its high solubility in water–alcohol solutions [13]. In addition, our study has reported
that the distribution of the molecule within the cellular lipid membrane of platelets can
directly influence the anticoagulant properties [13]. The NMR studies of this thioterpenoid
interaction with phospholipid membrane revealed its membrane location with the shift
to the membrane–water interface that apparently shields the hydrophobic interactions of
coagulation factors with the membrane surface [13].

In this paper, we aim to demonstrate the crucial role of heteroatoms in platelet ag-
gregation suppressing activity and anticoagulant properties of bicyclic monoterpenoids.
For this reason, we synthesized three compounds based on (+) myrtenol with identical
hydrophobic and hydrophilic fragments, differing only in heteroatoms (sulphur, oxygen, or
nitrogen). The comparative study of their interaction with model phospholipid membranes
by NMR spectroscopy and molecular docking with the platelet receptor P2Y12 allowed
concluding that S-containing myrtenol-derived monoterpenoid suppresses the platelet
aggregation in vitro via both membrane stabilization and blocking the P2Y12 receptor.

2. Materials and Methods
2.1. Chemistry
2.1.1. Synthesis of
2-((((1S,5R)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)thio)ethan-1-ol (4)

The compound 2-mercaptoethanol (0.145 g, 1.86 mmol) was dissolved in a mixture
of THF and DMF (70:30 V/V respectively, 20 mL), and K2CO3 (0.51 g, 3.69 mmol) was
added. After 10 min, (+)-myrtenyl bromide 2 (0.4 g, 1.86 mmol) was added. The obtained
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mixture was stirred at room temperature for 24 h, and most of the solvent was removed
under low pressure. The final product was purified with column chromatography (silica
gel, hexane/ethyl acetate 4:1 V/V) to afford sulfide 4 (0.3 g, 76% yield) as a colorless
oil. [α]23

D = −5.0◦ (c 1; CH3OH). NMR 1H (CDCl3) δ, ppm: 0.83 (s, 3H), 1.13 (d, 1H,
J = 8.7 Hz), 1.29 (s, 3H), 2.09 (br.s, 1H), 2.15–2.23 (m, 1H), 2.20–2.34 (q, 2H), 2.39–2.45 (m, 1H),
2.59–2.69 (m, 2H), 3.01 (d, 1H, J = 13.4 Hz), 3.11 (d, 1H, J = 13.4 Hz,), 3.65–3.74 (br.s., 2H),
5.37 (s, 1H). NMR 13C {1H} (CDCl3) δ, ppm: 21.26, 26.27, 31.43, 31.85, 34.16, 37.67, 38.27,
40.65, 45.18, 60.20, 120.49, 143.52. HRMS-ESI: m/z [M + H]+ calcd for C12H21OS: 213.1313;
found: 213.1313.

2.1.2. Synthesis of
2-((((1S,5R)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)methyl)amino)ethan-1-ol (5)

The compound 2-aminoethanol (0.227 g, 3.72 mmol) was dissolved in EtOH (20 mL),
and then (+)-myrtenyl bromide 2 (0.2 g, 0.93 mmol) was added. The obtained mixture
was stirred at 50 ◦C for 24 h, and most of the solvent was removed under low pressure.
The final product was purified with column chromatography (silica gel, acetone) to afford
amine 5 (0.086 g, 47% yield) as amorphous, yellow crystals. [α]23

D = 24.4◦ (c 0.86; CHCl3).
NMR 1H (CDCl3) δ, ppm: 0.85 (s, 3H), 1.16 (d, 1H, J = 8.7 Hz), 1.31 (s, 3H), 2.11 (br.s,
2H), 2.22–2.34 (q, 2H), 2.39–2.44 (m, 1H), 2.74–2.78 (m, 2H), 3.15 (br.q, 2H, J = 1.8 Hz),
3.66 (t, 2H, J = 5.3 Hz), 5.4 (m, 1H). NMR 13C {1H} (CDCl3) δ, ppm: 21.29, 26.08, 31.66, 31.82,
38.34, 40.47, 44.20, 49.20, 52.74, 57.95, 126.11, 139.82. HRMS-ESI: m/z [M + H]+ calcd for
C12H22NO: 196.1701; found: 196.1701.

2.2. Platelet Aggregation Assays

The blood aggregation assays were performed as described in [13]. The venous blood
was obtained by cubital vein puncture from healthy volunteers (average 30 ± 6-year-old) tak-
ing no drugs affecting clotting factors or platelet function for at least 7–10 days before. All
participants gave informed consent from all subjects and approval by the Ethical Committee
of Kazan State Medical University. All procedures were carried out following the approved
guidelines. All subjects have been provided with the written informed consent following
the Declaration of Helsinki. The blood was stabilized with a 3.8% sodium citrate solution
and pooled. Then, for the platelet-rich plasma preparation, the blood was centrifuged
(10 min, 1000 rpm), the upper layer of plasma was moved into another tube and the remain-
ing portion of the blood was centrifuged (20 min, 3000 rpm) to obtain platelet-poor plasma
(further used for dilution of platelet-rich plasma if required). The aggregating activity of
platelets was determined by a “Chrono-Log Corporation” analyzer (Havertown, PA, USA)
according to the Born approach (1962). Briefly, 0.05 mL of compound (20 mM solution in
the water solution of ethyl alcohol) was added to 0.45 mL of plasma and incubated for
5 min at 37 ◦C. The final concentration in human blood plasma of all compounds was 2 mM.
As a control, the solvent (3% water solution of ethyl alcohol) was added to the plasma.
The platelet aggregation was started by adding ADP (5 µM), adrenaline (10 µM), collagen
(2 µg/mL), arachidonic acid (0.5 mM), and ristocetin (1 mg/mL).

2.3. Molecular Docking

To define the most probable binding site of compounds 3–5 and ticagrelor active
metabolite (AM) with P2Y12, a “blind” docking by using AutoDock 4.2 [14] was per-
formed. The structure of the human P2Y12 receptor was taken from the Protein Data
Bank (No. 4NTJ). The compounds 3–5 and ticagrelor AM structures were fully optimized
by CAMB3LYP/def2-TZVP [15,16] in PC GAMESS v.12 [17]. In AutoDock, the grid box
90 Å × 126 Å × 120 Å with step in 0.7 Å was chosen to study the possibility of ligands’
localization within the protein. For each calculation, 50 separate runs were made using
Lamarck’s genetic algorithm, which were stopped after a maximum of 25 million energy
calculations. Ligand-receptor complexes were sorted by root-mean-square deviation. For
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each complex, the conformation with the lowest energy was chosen as the most stable.
Molecular plots were made via UCSF Chimera [18].

To refine the binding sites and energy parameters, specific docking was performed
in the GOLD v. 2021 software. All atoms within a radius of 20 Å from the ligand were
selected. For all ligands, 50 separate runs were performed as in the case of blind docking.
GoldScore with rescoring by ChemScore was chosen as an approach to evaluate the binding
efficiency. In the GA settings, the highest search efficiency of 200% was chosen to get the
most accurate results [19].

The algorithm selected for molecular docking was tested on the basis of docking
«P2Y12 (PDB: 4NTJ)-AZD1283» [20], «P2Y12 (PDB: 4PXZ)-2MeSATP» [21], and «P2Y12 (PDB:
4PY0)-2MeSADP» [21] systems. The test results showed that chosen docking algorithm
reproduces well the experimentally obtained (X-Ray) structural features of the P2Y12
binding sites with antagonists.

2.4. NMR Experiments

Solution state NMR experiments were carried out on the Bruker AVANCE III HD
NMR spectrometer operating at 700 MHz (1H) frequency equipped with a 5 mm probe,
employing standard Bruker TOPSPIN-NMR software at T = 300 K. 1H NMR spectra were
recorded using 90◦ pulses with a duration of 7.0 µs delay between pulses of 2 s, a spectrum
width of 12 ppm and a minimum of sixteen scans. Complete assignment of the 1H NMR
spectrum of the compound was accomplished by 2D 1H-1H COSY, 1H-13C HSQC, and
1H-13C HMBC NMR experiments. Chemical shifts were given in values of ppm, referenced
to a residual solvent signal (1H in D2O—4.78 ppm; 1H in CDCl3—7.26 ppm). The sam-
ples were prepared by dissolving in D2O with concentrations of 5.09, 4.71, and 5.12 mM
respectively. The solution volume was 0.6 mL. Micelles of dodecyl phosphocholine (DPC)
were obtained by dissolving DPC in D2O to a final concentration of 45.4 mM. 2D NOESY
experiments were performed with phase-sensitive techniques with presaturation. The
relaxation delay was set to 2 s. The mixing time value in the 2D NOESY experiment was
0.3 s. 2D DOSY experiments were carried out through the pulse sequence with bipolar
gradients pulse longitudinal eddy current delay (LEDBPGP2S). The pulse gradients length
was enhanced for each diffusion delay in an attempt to obtain a 2% residual signal at 95%
of the maximum gradient strength.

2.5. Cells Viability MTS Assay

BJ tert fibroblasts were seeded in 96-well flat-bottomed plates (Corning Inc., Corning,
NY, USA) and cultured for 24 h. The cells were further treated with tested compounds
at concentrations as indicated or DMSO as a control for 48–72 h. To assess the viability
of cells, the MTS reagent (Promega, Madison, WI, USA) was added to the culture in
concentrations as recommended by the manufacturer, and incubation was followed for 1 h.
The MTS reduction product was measured using a MultiScan FC plate reader (Thermo
Fisher Scientific, Waltham, MA, USA) at 492 nm. IC50 was calculated as the concentration
of the compound inhibiting the cell growth by 50% after 48–72 h. Data were normalized to
the DMSO-treated (control) group.

2.6. Statistic Analysis

All procedures were performed by using Graph Pad Prism 6. The results were ana-
lyzed with the Kolmogorov–Smirnov test and the Kruskal–Wallis test.

3. Results
3.1. Synthesis of Monoterpenoids and Their Effect on Platelet aggregation

Compounds 2–5 were synthesized based on (+)—myrtenol 1, which was prepared by
the oxidation of (+) α-pinene with tert-butyl hydroperoxide in the presence of catalytic
amounts of SeO2 according to a well-known procedure [22]. The synthesis and the physical
and chemical properties of bromide 2 and ether 3 were described earlier in [23–25] and all
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the characteristics of compound 3 were consistent with previously published data. Sulfide
4 and amine 5 were synthesized for the first time (Scheme 1).
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Scheme 1. Synthesis of compounds 2–5.

Firstly, myrtenyl bromide 2 was synthesized by using N-bromosuccinimide in the
presence of triphenylphosphine in methylene chloride. The reaction was carried out
for four hours at high temperature and the product yield after purification by column
chromatography on silica gel with hexane was 56%. Further, ether 3 was prepared from
bromide 2 using ethylene glycol and sodium hydride in DMF and the product yield was
37%. Next, sulfide 4 was synthesized in the presence of potash from bromide 2 and
mercaptoethanol in a THF/DMF mixture with a ratio of 70:30 (v/v) at room temperature
and the product yield reached 76%. Finally, amine 5 was obtained by alkylation of the
monoethanolamine nitrogen atom with myrtenyl bromide 2 in DMF at room temperature
with a yield of 47%. The synthesis of all compounds is described in detail in Materials and
Methods section.

Platelet aggregation was induced by their activation by various physiological or
pathological factors (ADP, adrenaline, arachidonic acid, collagen, ristocetin) as suggested
previously [8]. Compounds 3–5 significantly suppressed the platelet aggregation induced
by ADP, collagen, adrenaline, and ristocetin and completely abrogated platelet aggregation
induced by arachidonic acid (Figure 1, Table 1).
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Table 1. Influence of compounds 3–5 on platelets activation induced in vitro. The percent of induction
is shown.

Inductor Solely Inductor 3 4 5

ADP 66.5 ± 2.4 34.2 ± 1.2 * 30.4 ± 3.2 * 23.4 ± 2.8 *
adrenaline 53.8 ± 2.2 8.4 ± 3.8 * 10.2 ± 2.6 * 2.6 ± 1.8 *

arachidonic acid 61.6 ± 1.4 0 * 0 * 0 *
collagen 70.4 ± 4.2 11.6 ± 3.4 * 4.4 ± 2.8 * 0 *
ristocetin 72.7 ± 3.2 30.2 ± 2.4 * 20.8 ± 5.2 * 42.4 ± 3.8 *

* p < 0.001 in comparison with indicators without substance.

Arachidonic acid activates platelets directly by penetrating the cell membrane in con-
trast to other inducers acting via receptors and reduces cyclic adenine monophosphate
(cAMP) concentration. Therefore, the loss of platelet aggregation in the presence of com-
pounds 3–5 could be attributed to the changes in the permeability of platelet membranes,
which in turn could be associated with additional intermolecular interactions between
hydrophobic parts of the terpenes and the phospholipids of the membrane. As well, the
decrease of aggregation in the presence of terpenoids 3–5 seems to be associated with
increased intracellular cAMP formation due to membrane lipids peroxidation blocking. In
addition, integration of the hydrophobic part of compounds 3–5 into the cellular membrane
induces its stabilization and thereby prevents the utilization of the phosphatidylcholine
molecules from the external layer as a formation source of lipid peroxidation products,
which in turn will trigger the platelet aggregation mechanisms.

3.2. Molecular Docking

The P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine
and uracil nucleotides. Human platelets express P2Y1 and P2Y12 receptors, which bind
adenosine diphosphate (ADP), the first known low molecular weight platelet agonist.
Activation of both P2Y receptors is necessary for normal platelet responses to ADP [26],
whereas the P2Y12 receptor increases the sensitivity of platelets to agonists. Since the
aggregation induction by ADP and other effectors was significantly suppressed in presence
of monoterpenoids, we suggested their interaction with the P2Y12 receptor.
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The interaction of compounds 3–5 with the P2Y12 receptor (responsible for the platelet
aggregation process) was assessed by using the molecular docking approach. Blind molec-
ular docking results revealed that all compounds are located in the intracellular region of
the P2Y12 receptor closer to the C-terminal region of the receptor (Figure 1). All studied
compounds interact with P2Y12 via the hydrogen bonds formation by ether and hydroxyl
groups of ether 3, the hydroxyl group of sulfide 4, and the amino and hydroxyl groups of
amine 5. These groups are located close (distance from 1.7 Å to 2.1 Å) to side-chain groups
of amino acid residues (ARG128, THR132, GLU1004, ASP1005, GLU1008) forming binding
sites in the P2Y12 receptor (Figure 2, Table 2).
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To study the Gibbs free energy of terpenoids binding to P2Y12, at the next stage the
studied compounds were redocked by using the GOLD software tool. Interestingly, the
∆Gbind increased in series of heteroatom changes from sulphur to oxygen and nitrogen
(Figure 3), suggesting the most stable complex of P2Y12 with sulfide 4.
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These data allow assuming that compound 5 suppresses the platelet aggregation
rather via membrane stabilization than over the receptor blockage. The hydrophobic part is
incorporated into the phospholipid membrane, while the hydrophilic tail is weakly retained
by the intracellular region of P2Y12 receptor.
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To evaluate the potential use of compound 4 as a platelet aggregation suppressor,
we compared its affinity to P2Y12 with that of ticagrelor AM, a commercially available
agent preventing the platelet aggregation. Molecular docking of the ticagrelor AM–P2Y12
interaction demonstrated that ticagrelor AM is localized near the extracellular N-terminal
region of the P2Y12 receptor (Figure 4). The Ticagrelor AM has a significantly higher affinity
to the P2Y12 receptor (binding energy-40.1 kJ.mol−1) and the binding site does not fit with
those of compounds 3–5. This suggests that the mechanism of P2Y12 receptor blocking by
4 differs for Ticagrelor AM and compounds 3–5. By contrast, several researchers reported
series of P2Y12 inhibitors binding with various sites on the receptor molecule assuming
different possible pathways of P2Y12 receptor blocking.
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3.3. NMR Experiments

NMR spectroscopy was used to evaluate the interaction between compounds 3–5 and
the model cell membrane. The interaction of monoterpenoids with the cell membrane has
already been investigated in our previous studies [27–29]. Here, the dodecyl phospho-
choline (DPC) micelles solution in water were used as model systems mimicking the surface
of the cell membrane. DPC has the same zwitterionic head group as phosphatidylcholine
and can be used as a simple model for eukaryotic membranes. At the same time, DPC
micelles are much smaller than phospholipid bilayers and, therefore, more suitable for
NMR spectroscopy in solution [30–35].

1H NMR spectrum of compound 4 has been significantly changed after the addition of
DPC micelles (Figure 5). The signals of CH2-10 and CH2-11 protons have been narrowed.
Unfortunately, line shape changes of the signals CH3-8, 9, and CH2-12 could not be analyzed
due to overlap with DPC signals. However, shifts to the lower field of H-1, H-4, H-5, H-7
allowed the observation of signals. These differences between the 1H NMR spectra of the
compound in pure CDCl3 solvent and the D2O + DPC micelles system are caused by the
interaction of the studied monoterpenoid with the membrane model.
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To clarify the mechanism of the complex formation between compound 4 and DPC
micelle, 2D NOESY NMR experiments were carried out (Figure 6). Several non-trivial
intermolecular nuclear Overhauser effects (NOE) indicating the close spatial location of the
corresponding chemical groups of the studied compound and DPC micelle were observed.
The cross-peaks between the signals C, E, F, and H of DPC and the signals CH3-8, CH2-10,
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and CH2-11 of compound 4 serve as evidence of interaction of the studied compound with
the surface of DPC micelle.
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So that we could check whether compound 4 intercalates into the membrane mimetic,
2D DOSY NMR experiments were carried out (Figure 7). Insignificantly different diffusion
coefficients were observed for protons of DPC molecule (D = (9.281 ± 0.742) × 10−11 m2/s)
and for compound 4 (D = (9.798 ± 0.784) × 10−11 m2/s) indicating that compound 4 binds
to DPC micelles surface. Thus, solution-state NMR data confirm the stable complex
formation between DPC micelles and the studied compound 4.

To check if compounds 3 and 5 interact with the membrane model, 2D DOSY ex-
periments were also carried out. Significantly different diffusion coefficients were ob-
served for protons of DPC molecule (D = (9.566 ± 0.765) ×10−11 m2/s) and for compound
3 (D = (13.488 ± 1.079) × 10−11 m2/s). Furthermore, the 2D DOSY NMR experiment
showed that compound 5 and DPC micelles had rather different self-diffusion coefficients
in D2O solution ((16.360 ± 1.309) × 10−11 and (9.560 ± 0.765) × 10−11 m2/s, respectively)
suggesting that compounds 3 and 5 do not bind to DPC micelles.
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3.4. Cytotoxicity

The cytotoxic properties of the compounds 3–5 were evaluated in metabolic MTS assay.
For that, BJ tert human fibroblasts (ATCC, Manassas, VA, USA) were seeded in 96-well
culture plates (Corning Inc. Corning, NY, USA) and allowed to attach and grow for 24 h
before treatment. Then, compounds 3–5 were added and cultivation was followed for
72h and the viability of cells has been evaluated. Compounds 3–5 exhibited the cytotoxic
properties against BJ tert fibroblasts at concentrations higher than 300 µM (Figure 8A–C),
with IC50 values lying in the range of 300–600 µM (Table 3).
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Figure 8. The viability of BJ tert human fibroblasts treated compound 3–5 (A–C, respectively) for 72 h.
The data was normalized to solvent-treated controls. Values are the means ± standard deviation
(n = 3). Statistical analyses (Student’s t-test) were performed using Statistical software program
version 7.0 (S.A. Glantz, McGraw Hill Education, NY, USA). p < 0.05 was considered to indicate a
statistically significant difference. Half-inhibitory concentration (IC50) was determined by using
the IC50 Tool Kit (http://ic50.tk/, accessed on 15 February 2021). The IC50 value is graphically
represented as a proper sigmoid curve (A–C).
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Table 3. IC50 values for compounds 3–5 on BJ tert human fibroblasts.

Compound IC50 Value, µM

3 548 ± 52.7
4 314 ± 46.5
5 450 ± 71.6

4. Conclusions

Taken together, all studied monoterpenoid compounds suppressed the platelet aggre-
gation in vitro apparently via blocking their P2Y12 receptor activity. Molecular docking
indicated that the binding force with platelet P2Y12 receptor depends on heteroatom in
monoterpenoids and decreases in series from sulphur to oxygen and nitrogen atoms. De-
tailed NMR studies using dodecyl phosphocholine (DPC) as membrane model revealed
that only S-containing compound binds to DPC micelles surface. This binding reinforces
the mechanical properties of the cell membranes and prevents destabilizing and following
clot formation on the phospholipid surface. No confirmation of stable complex formation
between DPC micelles and O- and N-containing compounds were obtained from solution-
state NMR data. Most likely, for all the studied compounds, both mechanisms of action are
realized—receptor and membrane factors, but in the case of the S-containing compound,
both factors are more pronounced. On a wider lever, considering the low toxicity, the ability
to block induced-aggregation, S-containing monoterpenoids seem to be promising agents
for the blood products stabilization, treatment, and prevention of thrombophilia.
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