
1. Ортогональные многочлены

Далее Pn означает множество алгебраических полиномов степени не вы-
ше n, (a, b) будем считать либо ограниченным, либо неограниченным ин-
тервалом. Напомним, что весовая функция ρ(x), определенная на (a, b),
предполагается почти всюду положительной и интегрируемой. В случае
неограниченного интервала (a, b) дополнительно предположим, что аб-
солютно сходятся интегралы∫ b

a

ρ(x)xn dx, n = 0, 1, 2, . . . (1)

Далее под скалярным произведением функций p и q понимается скаляр-
ное произведение в L2,ρ(a, b),

(p, q) =

∫ b

a

ρ(x) p(x) q(x) dx . (2)

Отметим следующее очевидное, но важное свойство этого скалярного
произведения: (rp, q) = (p, rq) для любых функций p, q, r.

Пусть дана последовательность алгебраических многочленов

P0(x), P1(x), P2(x), . . . , Pn(x), . . . . (3)

Определение 1. Cистема многочленов (3) называются ортогональ-
ной, если для всех n и m: 1) Pn ∈ Pn; 2) (Pn, Pm) = 0 при n ̸= m.

Через P̃n будем обозначать соответствущу ортонормированную систему:

P̃n = hnPn, hn = 1/(Pn, Pn)
1/2 . (4)

Лемма 1. Для любого заданного интервала (a, b) и веса ρ система ор-
тогональных многочленов существует.

Доказательство. Искомую систему многочленов (3) построим, при-
меняя метод ортогонализации Грама–Шмидта к системе степеней неза-
висимой переменной: 1, x, x2, . . . , xn, . . .. �

Следующая лемма утверждает, что первые k + 1 ортогональных по-
линома P0, P1, . . . , Pk образует базис в пространстве Pk.
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Лемма 2. Любой многочлен pk ∈ Pk степени k представдяется линей-
ной комбинацией ортогональных многочленов Pi(x), i = 0 : k. Точнее

pk(x) =
k∑

i=0

ciPi(x), ci = (pk, Pi)/(Pi, Pi). (5)

Доказательство. Разложение (5) имеет смысл, т. к. его правая часть,
как и левая, является полиномом степени k. Формула для ci получается,
если обе части (5) скалярно умножить на Pj, j = 0, 1, . . . , k, и восполь-
зоваться ортогональностью системы многочленов. �

Лемма 3. Ортогональный многочлен Pn(x) ортогонален произвольно-
му полиному меньшей степени, т.е. (Pn, q) = 0, для любого полинома
q степени не выше n− 1. Верно и обратное утверждение.

Доказательство. Согласно лемме 2 имеем

q(x) =
n−1∑
i=0

ciPi(x), ci = (q, Pi)/(Pi, Pi). (6)

Умножая обе части этого разложения на Pn, получим (Pn, q) = 0. Об-
ратное утверждение очевидно. �

Лемма 4. Система ортогональных многочленов определяется един-
ственным образом с точностью до нормировки, т. е., если {Pn} и {Qn}
две ортогональные системы на (a, b) с одним и тем же весом ρ, то
Qn = cnPn, где cn ∈ R.

Доказательство. Согласно лемме 2 имеем

Qn(x) =
n∑

i=0

ciPi(x), ci = (Qn, Pi)/(Pi, Pi). (7)

Но все ci в этом разложении равны нулю, кроме cn, т. к. (Qn, Pi) = 0 при
i = 0 : n− 1, согласно лемме 3. �

Способ нормировки ортогональных многочленов принято называть их
стандартизацией. Например, Pn можно определить так, чтобы выполня-
лось условие Pn(c) = dn, где c = a или c = b, а dn — заданные числа.
В этом случае ортогональная система {Pn} определяется единственным
образом.

2



Свойства ортогональных многочленов

Теорема 1. Нули ортогонального полинома Pn степени n ≥ 1 простые
и лежат в интервале (a, b).

Доказательство. Поскольку ρ почти всюду положительна, а

(Pn, 1) =

∫ b

a

ρ(x)Pn(x) dx = 0,

то Pn обязательно меняет знак на (a, b), т. е. имеет хотя бы один нуль
нечетной кратности, лежащий в (a, b). Пусть x1, x2, . . . , xm есть все раз-
личные нули нечетной кратности полинома Pn, лежащие на (a, b). Тре-
буется доказать, что m = n. Положим ωm(x) = (x−x1) . . . (x−xm) ∈ Pm

и представим Pn в виде Pn(x) = ωm(x)qn−m(x). По определению ωm, мно-
гочлен qn−m не меняет знака на (a, b). Имеем

(Pn, ωm) =

∫ b

a

ρ(x)Pn(x)ωm(x) dx =

∫ b

a

ρ(x)ω2
m(x)qn−m(x) dx ̸= 0, (8)

т.е. m = n, т.к. при m < n левая часть (8) равна нулю. �

Теорема 2. Пусть {P̃n} есть ортонормированная система, соответ-
ствующая ортогональной системе {Pn} согласно (4). Тогда

xP̃n(x) = βnP̃n−1(x) + αn+1P̃n(x) + βn+1P̃n+1(x) , n = 0, 1, ... , (9)

где P̃−1(x) = 0, αn+1 = (xP̃n, P̃n), βn+1 =
(
xP̃n, P̃n+1

)
. Как следствие,

ортогональные многочлены {Pn} удовлетворяют трехчленным рекур-
рентным соотношениям

Pn+1(x) =
(
anx− bn

)
Pn(x)− cnPn−1(x) , P−1(x) = 0 , n > 0 . (10)

Доказательство. Согласно лемме 2 имеем

xP̃n(x) = s0P̃0(x) + ...+ snP̃n(x) + sn+1P̃n+1(x) ,

где sj = (xP̃n, P̃j) = (P̃n, xP̃j) = 0 при n > j+1, т. е. при j ≤ n−2. Пола-
гая αn+1 = sn, βn+1 = sn+1, получим (9), т. к. sn−1 = βn. Произведем в (9)
замену P̃n = hnPn, hn = (Pn, Pn)

−1/2 и, после очевидных преобразований,
придем к (10) с соответствующими постоянными an, bn, cn. �

Приведем матричную запись соотношений (9).
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Следствие 1. Выполняется соотношение

x


P̃0(x)

P̃1(x)

· · ·
P̃n−2(x)

P̃n−1(x)

 =


α1 β1

β1 α2 β2
. . . . . . . . .

βn−2 αn−1 βn−1

βn−1 αn




P̃0(x)

P̃1(x)

· · ·
P̃n−2(x)

P̃n−1(x)

+ βnP̃n(x)


0

0
...
0

1


Полагая в этом матричном равенстве x = xj, где xj есть j-тый корень

Pn(x), получим следующее

Следствие 2. Многочлен Pn(x) имеет n простых корней x1, . . . , xn,

совпадающих с собственными значениями симметричной трехдиаго-
нальной матрицы из следствия 1. Векторы [P̃0(xj), P̃1(xj), . . . , P̃n−1(xj)]

T ,
j = 1, . . . , n, являются собственными векторами (ненормированными).

Это следствие служит основой алгоритма Голуба–Уэлша поиска кор-
ней ортогональных многочленов.

Приведем примеры ортогональных многочленов.

2. Ортогональные многочлены Якоби

Многочлены Якоби {P (α,β)
n (x)} определяются на отрезке [a, b] = [−1, 1] и

зависят от двух вещественных параметров α, β > −1. Они ортогональны
на [−1, 1] с весом ρ(x) = (1− x)α (1 + x)β.

Теорема 3. С точность до нормировки справедлива формула Родриго:

P (α,β)
n (x) =

1

ρ(x)

dn

dxn

(
(1− x)α+n (1 + x)β+n

)
. (11)

Доказательство. Докажем, что (11) действительно определяет ор-
тогональный многочлен с весом ρ. Простое применение формулы Лейб-
ница показывает, что правая часть (11) действительно есть многочлен
степени n. Пусть g есть многочлен. Учтем, что при x = ±1 имеет место
равенство

(
(1−x)α+n (1+x)β+n

)(k)
= 0 для всех k = 0, 1, . . . , n−1. Тогда
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n раз интегрируя по частям, получим:

(P (α,β)
n , g) =

∫ 1

−1

(
(1− x)α+n (1 + x)β+n

)(n)

g(x) dx =

= −
∫ 1

−1

(
(1− x)α+n (1 + x)β+n

)(n−1)

g′(x) dx =

= ... = (−1)n
∫ 1

−1

(1− x)α+n (1 + x)β+n g(n)(x) dx. (12)

Если g ∈ Pn−1, тогда g(n)(x) = 0 и (P
(α,β)
n , g) = 0. Следовательно, соглас-

но лемме 3, P (α,β)
n искомый ортогональный многочлен. �

При фиксированных значениях α и β мы получаем конкретные си-
стемы ортогональных многочленов. Под отдельными именами известны
следующие системы.

1) Многочлены Лежандра Pn(x) совпадают с многочленами Яко-
би при α = β = 0 (весовая функция ρ ≡ 1). При стандартизации
Pn(1) = 1, Pn(−1) = (−1)n, они представляются формулой

Pn(x) =
1

2n n!

dn

dxn

(
(x− 1)n(x+ 1)n

)
. (13)

Нормированные многочлены Лежандра

P̃n(x) = hn Pn(x), hn = (n+ 0.5)1/2,

удовлетворяют трехчленным соотношениям

xP̃n(x) = βnP̃n−1(x) + βn+1P̃n+1(x) , n = 0, 1, ... , (14)

где βn = n/(4n2 − 1)1/2, n = 1, 2, . . . , P̃−1(x) ≡ 0.
2) Многочлены Чебышева Tn(x) совпадают с многочленами Якоби

при α = β = −1/2 (весовая функция ρ = 1/
√
1− x2). На отрезке [−1, 1]

справедливы также формулы: Tn(x) = cos(n arccos(x)),

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1, T0(x) = 1, T1(x) = x.

В самом деле, это следует из легко проверяемых равенств∫
−1

cos(n arccos(x)) cos(m arccos(x))√
1− x2

dx = 0, m ̸= m. (15)
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3. Ортогональные многочлены Лагерра и Эрмита

Многочлены Лагерра {L(α)
n (x)} определяются на полуоси [a, b) = [0,∞)

и зависят от вещественного параметра α > −1. Они ортогональны на
(0,∞) с весом ρ(x) = xα e−x. С точностью до нормировки

L(α)
n (x) = x−αex

dn

dxn
(xα+ne−x) . (16)

Это проверяется также, как формула Родриго для многочленов Якоби.
Многочлены Эрмита {Hn(x)} определяются на оси, (a, b) = Rn.

Они ортогональны на с весом ρ(x) = e−x2

. С точностью до нормировки

Hn(x) =
1

ρ(x)

dn ρ(x)

dxn
. (17)
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