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ТЕМА 1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ОШИБОК 

Классификация ошибок измерений 

В курсе «Теория математической обработки геодезических изме-

рений» изучаются свойства, закономерности распределения случай-

ных ошибок, способы их учета и оценки точности полученных резуль-

татов измерений искомой величины. Основными задачами курса явля-

ются следующие:  

• определение наиболее вероятного значения искомой вели-

чины по результатам ее измерений; 

• оценка точности результата определения искомой величины 

и его достоверность. 

Свойства случайных ошибок, проявляющиеся в их общей массе, 

положены в основу обработки измерений и наблюдений различных 

назначений. 

Ошибки геодезических измерений подразделяют на грубые, си-

стематические и случайные. 

К грубым ошибкам относят ошибки, вызванные промахами и про-

счётами наблюдателя, неисправностями приборов, резким ухудше-

нием внешних условий и др. С целью их обнаружения измерения вы-

полняются многократно (не менее двух раз). Результаты измерений, 

содержащие грубые ошибки, необходимо выявлять и исключать из об-

работки. 

К систематическим относят ошибки, которые входят в резуль-

таты измерений по тому или иному закону как функции источников 

возникновения ошибок. В практике геодезических измерений приме-

няют следующие способы уменьшения влияния систематических оши-

бок: 

1. Устанавливают закон появления систематических ошибок, 

после чего ошибки уменьшают введением поправок в результаты из-

мерений; 
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2. Применяют соответствующую методику измерений для 

того, чтобы систематические ошибки действовали не односторонне, а 

изменяли знаки; 

3. Используют определённую методику обработки результа-

тов измерений. 

Случайные ошибки являются наиболее ярким примером случай-

ной величины. Их закономерности обнаруживаются только в массовом 

проявлении. Случайные ошибки неизбежны при измерениях и не мо-

гут быть исключены из единичного измерения. Влияние их можно 

лишь ослабить, повышая качество и количество измерений, а также 

надлежащей математической обработкой результатов измерений. При-

чин возникновения случайных ошибок измерений много: влияние 

внешних условий, неточности изготовления и юстировки приборов, 

неточности выполнения операций наблюдателем и т.д. Очевидно, что 

случайные ошибки являются результатом суммирования большого 

числа независимых элементарных ошибок. На основании центральной 

предельной теоремы Ляпунова можно считать, что случайные ошибки 

измерений подчиняются нормальному закону распределения. 

Основные понятия теории вероятности 

Случайным называют такое явление, которое при неоднократном 

воспроизведении одного и того же опыта протекает каждый раз не-

сколько по-иному. Всякое осуществление определённых условий и 

действий, при которых наблюдается изучаемое явление, называют 

опытом. Любая качественная характеристика опыта называется собы-

тием. Количественная характеристика опыта называется случайной ве-

личиной.  Примерами случайных величин могут служить результаты 

измерений некоторой величины. 

При выполнении определённого комплекса условий различают 

события достоверные, невозможные и случайные. Достоверным назы-

вают событие, которое обязательно произойдёт, например, событие 

появления белого шара при взятии одного шара из урны, содержащей 

только белые шары. Невозможным называют событие, которое 

file:///C:/Марина/Занятия/Глоссарий.docx
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никогда не происходит, например, событие появления чёрного шара 

при взятии одного шара из урны с белыми шарами. Случайным назы-

вают событие, которое при осуществлении определённого комплекса 

условий может или произойти, или не произойти. Виды случайных со-

бытий: совместные – события, которые при испытании могут проис-

ходить одновременно (например, попадание в цель и разрыв снаряда – 

события совместные); несовместные – события, которые не могут про-

изойти вместе (например, появление герба и цифры при одном броса-

нии монеты); равновозможные – события, имеющие одинаковую объ-

ективную возможность появления (например, выпадение герба и вы-

падение цифры при бросании монеты – события равновозможные); 

полная группа событий – такие события, одно из которых обязательно 

произойдёт при выполнении определённого комплекса условий 

(например, события выпадения граней с цифрами 1,2, … ,6 образуют 

полную группу, так как в результате бросания игральной кости одно 

из них обязательно произойдёт); противоположные – два несовмест-

ных события, образующих полную группу (событие, противополож-

ное событию А, обозначают через 𝐴̄, например, А – событие "попада-

ние при выстреле", 𝐴̄  − "промах при выстреле"); независимые – собы-

тия, имеющие возможность появления, не зависящую от того, появи-

лись или не появились другие события (например, событие "выпаде-

ние герба" на первой монете не зависит от того, какая сторона монеты 

выпала на второй монете, если опыт состоит в одновременном подбра-

сывании двух монет); зависимые – события, у которых возможность 

появления зависит от того, произошли или не произошли другие собы-

тия (например, если поражение цели достигается двумя попаданиями, 

то поражение цели при втором выстреле есть событие зависимое, так 

как оно может произойти лишь при условии первого попадания в 

цель). 

С каждым событием связывают определённое число, называемое 

вероятностью. Вероятность – это численная мера степени объектив-

ной возможности появления события. Если достоверному событию 
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приписать вероятность, равную единице, а невозможному событию – 

вероятность, равную нулю, то диапазон изменения вероятностей лю-

бых событий будет определяться выражением 

0 ≤ 𝑃(𝐴) ≤ 1. (1.1) 

Существуют события, вероятности которых можно определить из 

условий самого опыта, не производя его. Для этого необходимо, чтобы 

элементарные события, составляющие полную группу, были попарно 

несовместными и равновозможными. Для таких событий возможен 

непосредственный подсчёт вероятностей, основанный на оценке доли 

"благоприятных" случаев.  

Вероятность события вычисляют по формуле 

𝑃(𝐴) =
𝑀

𝑁
, (1.2) 

где N – общее число случаев, М – число случаев, благоприятствующих 

появлению события А. Формулу (1.2) называют также классическим 

определением вероятности. 

Относительной частотой события называют отношение числа 

появлений этого события к числу всех произведенных опытов: 

𝑄 =
𝑚

𝑛
. (1.3) 

При неограниченном увеличении числа опытов с вероятностью 

сколь угодно близкой к единице можно ожидать, что относительная 

частота события Q приближается к вероятности Р его появления в от-

дельном испытании. 

Математическую формулировку этой закономерности ("устойчи-

вости частоты") впервые дал Я. Бернулли в теореме, которая пред-

ставляет собой простейшую форму Закона больших чисел и может 

быть записана в виде 

вер. 𝑙𝑖𝑚
𝑛→∞

𝑄 = 𝑃. (1.4) 

Относительную частоту часто называют статистической веро-

ятностью события. 
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Если необходимо определить вероятность того, что при n незави-

симых многократных испытаниях событие А появится ровно k раз, то 

применяют формулу Бернулли: 

𝑃𝑛(𝑘) = 𝐶𝑛
𝑘 × 𝑝𝑘 × 𝑞𝑛−𝑘, (1.5) 

где 𝑃𝑛(𝑘) −  искомая вероятность; p – вероятность появления события 

А в каждом отдельном испытании (постоянная для всех испытаний); q 

– вероятность непоявления события А в отдельном испытании (оче-

видно, что 𝑝 + 𝑞 = 1); 𝐶𝑛
𝑘 — число сочетаний из n по k. 

𝐶𝑛
𝑘 =

𝑛!

𝑘!(𝑛−𝑘)!
; 

𝐶𝑛
0 = 𝐶𝑛

𝑛 = 1; 𝑛! = 𝑛 × (𝑛 − 1)!; 0! = 1. 

Если k придавать значения от 0 до n (т.е. 0,1,2, … , 𝑛), а вероятно-

сти 𝑃𝑛(𝑘) вычислять по формуле Бернулли, то получится совокупность 

вероятностей: 𝑃𝑛(0), 𝑃𝑛(1), 𝑃𝑛(2), … , 𝑃𝑛(𝑛), которая носит название би-

номиального распределения вероятностей. Заметим, ∑ 𝑃𝑛(𝑘) = 1𝑛
𝑘=0 . 

Вероятнейшим числом появлений события А при n многократных 

испытаниях называют число k0, соответствующее наибольшей при 

данных условиях вероятности, т.е. 𝑃𝑛(𝑘0) = 𝑚𝑎𝑥, находится как 

𝑛 ⋅ 𝑝 − 𝑞 ≤ 𝑘0 ≤ 𝑛 ⋅ 𝑝 + 𝑝. (1.6) 

Следует заметить, что левая и правая части неравенства отлича-

ются на единицу.  

Случайные величины принято обозначать большими буквами 

конца латинского алфавита: X, Y, Z, а их возможные значения – малыми 

буквами с индексами, например: 𝑥1, 𝑥2, … , 𝑥𝑛. Случайные величины 

могут быть дискретными (прерывными) и непрерывными. 

Дискретной называют такую случайную величину, возможные 

значения которой можно заранее указать (например, число попаданий 

при n выстрелах; число выпадений герба при бросании монеты и т.д.). 

Непрерывной называют случайную величину, возможные значе-

ния которой непрерывно заполняют некоторый промежуток и не могут 

быть перечислены заранее (например, координаты точек попадания 

при стрельбе; ошибки результатов измерений). 
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Всякое соотношение, устанавливающее связь между возмож-

ными значениями случайной величины и соответствующими им веро-

ятностями, называют законом распределения вероятностей. 

Таблица (ряд) распределения – простейшая форма задания закона 

распределения дискретных случайных величин (табл. 1). 

Таблица 1. 

Таблица распределения дискретной случайной величины 

 

    х х1 х2 х3 хn 

    P p1 p2 p3 pn 

∑  𝑝𝑖 = 1𝑛
𝑖=1 . 

Многоугольник распределения. При графическом изображении 

ряда распределения в прямоугольной системе координат по оси абс-

цисс откладывают все возможные значения случайной величины, а по 

оси ординат – соответствующие им вероятности. Затем наносят точки 

(𝑥𝑖; 𝑝𝑖) и соединяют их прямолинейными отрезками. Полученная фи-

гура – многоугольник распределения также является формой задания 

закона распределения дискретной случайной величины. 

Функция распределения – вероятность того, что случайная вели-

чина Х примет значение, меньшее некоторого заданного х, т.е 

𝐹(𝑥) = 𝑃(𝑋 < 𝑥). (1.7) 

 С геометрической точки зрения 𝐹(𝑥) можно рассматривать как 

вероятность попадания случайной точки Х на участок числовой оси, 

расположенный левее фиксированной точки х. 

Свойства функции распределения: 

1)  0 ≤ 𝐹(𝑥) ≤ 1; 

2)  𝐹(−∞) = 0; 𝐹(+∞) = 1; 

3)  𝐹(𝑥2) ≥ 𝐹(𝑥1), если 𝑥2 > 𝑥1. 

 

xi - возможные значения случайной  величины X, 

pi - соответствующие им вероятности, причем 
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Числовые характеристики случайной величины 

Закон распределения характеризует полностью случайную вели-

чину с вероятностной точки зрения. Однако при решении ряда задач 

достаточно бывает указать только отдельные числовые параметры, ха-

рактеризующие основные черты распределения; например, какое-то 

среднее значение (центр распределения), около которого группиру-

ются возможные значения случайной величины, или, например, число, 

характеризующее степень разброса этих значений относительно сред-

него, и т.д. 

Математическое ожидание служит характеристикой центра рас-

пределения случайной величины. Применяют обозначения: 𝑀( 𝑋), 𝑀𝑋. 

Математическим ожиданием дискретной случайной величины Х назы-

вают сумму произведений её возможных значений на их вероятности 

𝑀( 𝑋) = 𝑥1𝑝1 + 𝑥2𝑝2 + ⋯ + 𝑥𝑛𝑝𝑛 = ∑ 𝑥𝑖𝑝𝑖
𝑛
𝑖=1 . (1.8) 

Математическое ожидание непрерывной случайной величины Х 

определяется по формуле 

𝑀( 𝑋) = ∫ 𝑥𝜑(𝑥)𝑑𝑥
+∞

−∞
. (1.9) 

Свойства математического ожидания: 

1. 𝑀( 𝐶) = 𝐶, где С – постоянная величина; 

2. 𝑀( 𝐶𝑋) = 𝐶 𝑀( 𝑋), 

3. 𝑀( 𝑋1 ± 𝑋2 ± ⋯ ± 𝑋𝑛) = 𝑀( 𝑋1) ± 𝑀( 𝑋2) ± ⋯ ± 𝑀( 𝑋𝑛) =

∑ 𝑀( 𝑋𝑖)𝑛
𝑖=1 ; 

4. 𝑀( 𝑋1 × 𝑋2 × … × 𝑋𝑛) = 𝑀( 𝑋1) × 𝑀( 𝑋2) × … × 𝑀( 𝑋𝑛) =

∏ 𝑀( 𝑋𝑖)𝑛
𝑖=1 , где 𝑋1, 𝑋2, … , 𝑋𝑛 – независимые случайные величины. 

В теории вероятностей для характеристики основных свойств 

распределения часто применяют моменты. 

Начальным моментом k-го порядка случайной величины Х назы-

вают математическое ожидание k-й степени этой случайной величины 

𝛼𝑘 = 𝑀( 𝑋𝑘). (1.10) 

Для дискретной случайной величины начальные моменты k-го 

порядка вычисляют по формуле 
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𝛼𝑘 = ∑ 𝑥𝑖
𝑘𝑝𝑖

𝑛
𝑖=1 , (1.11) 

для непрерывной величины – по формуле 

𝛼𝑘 = ∫ 𝑥𝑘𝜑(𝑥)𝑑𝑥
+∞

−∞
. (1.12) 

При 𝑘 = 1 имеем 𝛼1 = 𝑀( 𝑋), т.е. приходим к математическому 

ожиданию случайной величины Х. 

Центральным моментом порядка k случайной величины Х назы-

вают математическое ожидание k-й степени, соответствующей центри-

рованной случайной величине [𝑋 − 𝑀( 𝑋)] 

𝜇𝑘 = 𝑀[(𝑋 − 𝑀𝑋)𝑘]. (1.13) 

Центральные моменты дискретной случайной величины вычис-

ляют по формуле 

𝜇𝑘 = ∑ (𝑥𝑖 − 𝑀𝑋)𝑘𝑝𝑖
𝑛
𝑖=1 , (1.14) 

для непрерывной величины – по формуле 

𝜇𝑘 = ∫ (𝑋 − 𝑀𝑋)𝑘𝜑(𝑥)𝑑𝑥
+∞

−∞
. (1.15) 

Особое значение имеет центральный момент второго порядка, 

называемый дисперсией. Применяют обозначения: 𝐷( 𝑋) и 𝐷𝑋. 

𝜇2 = 𝐷( 𝑋) = 𝑀[(𝑋 − 𝑀𝑋)2]. (1.16) 

Дисперсия характеризует степень разброса значений случайной 

величины относительно математического ожидания. 

Свойства дисперсии: 

а) 𝐷( 𝐶) = 0; 

б) 𝐷( 𝐶 × 𝑋) = 𝐶2 × 𝐷( 𝑋); 

в) 𝐷(𝐶1𝑋1 + 𝐶2𝑋2 + ⋯ + 𝐶𝑛𝑋𝑛) = 𝐶1
2𝐷(𝑋1) + 𝐶2

2𝐷(𝑋2) + ⋯ +

𝐶𝑛
2𝐷(𝑋𝑛), если 𝑋1, 𝑋2, … , 𝑋𝑛 – независимые случайные величины. 

Дисперсия имеет размерность квадрата случайной величины. Для 

наглядной характеристики рассеивания удобнее пользоваться средним 

квадратическим отклонением  

𝜎(𝑋) = +√𝐷( 𝑋) (1.17) 

или средней квадратической ошибкой (СКО), положительной величи-

ной корня квадратного из дисперсии. 
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Нормальный закон распределения и его параметры 

Случайная величина X с плотностью распределения вида 

𝜑(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝑎)2

2𝜎2  (1.18) 

и графиком плотности (кривая Гаусса), представленным на рис. 1, счи-

тается распределённой по нормальному закону. 

 

Рис. 1. Кривая плотности нормального закона 

 

Кривая распределения по нормальному закону имеет симметрич-

ный колоколообразный вид. Величины а и 2, входящие в выражение 

(1.18), являются основными параметрами нормально распределённой 

случайной величины X: 𝑎 = 𝑀( 𝑋), 𝜎2 = 𝐷( 𝑋). При изменении пара-

метра a кривая 𝜑(𝑥), не изменяя своей формы, перемещается вдоль оси 

абсцисс. При изменении параметра 𝜎 форма кривой изменяется (если 

𝜎1 > 𝜎2, то параметру 𝜎2 соответствует более узкая в направлении оси 

ординат кривая, то есть меньший разброс значений xi относительно па-

раметра 𝑎 = 𝑀( 𝑋) и более высокое положение вершины кривой). 

Теоремы, устанавливающие условия, при которых возникает нор-

мальный закон, как предельный закон, известны в теории вероятностей 

под названием центральной предельной теоремы или теоремы А.М. 

Ляпунова. Эта теорема имеет большое значение для теории ошибок из-

мерений. Теорема может быть сформулирована так: если некоторая 

случайная величина есть сумма достаточно большого числа других 

случайных независимых величин, отклоняющихся от своих математи-

ческих ожиданий на малые величины по сравнению с отклонением 
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суммарной величины, то закон распределения этой суммарной случай-

ной величины будет близок к нормальному. 

Можно полагать, что ошибки измерений 𝛥𝑖 = 𝑥𝑖 − 𝑋
 
(хi – резуль-

тат измерения искомой величины, Х – ее истинное значение) склады-

ваются из большого числа элементарных ошибок, каждая из которых 

вызвана действием отдельной причины, не зависящей от остальных. 

Влияние элементарных ошибок на результаты измерений мало по 

сравнению с влиянием суммарной ошибки . На основании теоремы 

Ляпунова закон такой суммарной случайной величины (ошибки ) 

стремится к нормальному распределению. 

Свойства случайных ошибок нормального закона распределения 

При большом числе измерений случайные ошибки ∆ обнаружи-

вают свойства, которые определяются кривой Гаусса (рис. 1). 

1. Для ряда результатов измерений с известным законом распре-

деления абсолютные величины случайных ошибок с заданной вероят-

ностью Р не превзойдут определенного предела (свойство ограничен-

ности): 

Р(|∆| ≤ σ) = 0,683;    P(|∆| ≤ 2σ) = 0,954;     P(|∆| ≤  3σ) = 0,997. 

2. Положительные и отрицательные случайные ошибки, равные 

по абсолютной величине, равновозможны (свойство симметричности):  

Р(∆ > 0) = Р(∆ < 0) = 0,5. 

3. Малые по абсолютной величине случайные ошибки измерений 

встречаются чаще, чем большие (свойство унимодальности):   

Р(|∆| ≤ σ) = 0,683;   Р(σ ≤ |∆| < 2σ) = 0,271;     Р(2σ ≤ |∆| < 3σ) = 0,043. 

4. Среднее арифметическое случайных ошибок измерений по ве-

роятности стремится к нулю с увеличением числа измерений, то есть 

математическое ожидание случайной ошибки измерения равно нулю 

(свойство компенсации):  

вер. lim [∆] /n = М(X) = 0, где n → ∞. 

Кроме среднего квадратического отклонения  (или средней 

квадратической ошибки m), иногда применяют другие характеристики 
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разброса случайной величины: среднее, предельное и вероятное откло-

нения (ошибки). 

Среднее отклонение (средняя ошибка) 𝜈1 – это центральный аб-

солютный момент первого порядка 

                              𝜈1 = 𝑀(|𝑋 − 𝑀( 𝑋)|).                               (1.19) 

Предельное отклонение (предельная ошибка)  равна 

                            |𝛥пред.| = 2𝜎   или   |𝛥пред.| = 3𝜎.              (1.20) 

На основании этих теоретических расчетов устанавливают до-

пуски в инструкциях, назначают предельные ошибки по правилу три 

сигма: результаты измерений, у которых ошибки превышают предель-

ную, равную 2 (или 3), бракуют, и измерения либо отбрасывают (не 

берут в обработку) или переделывают заново. 

Вероятным отклонением r называют величину, равную половине 

длины участка, симметрично расположенного относительно математи-

ческого ожидания, вероятность попадания на который равна 0,5. Веро-

ятное отклонение находят из условия:  

𝑃(|𝑋 − 𝑀(𝑋)| < 𝑟) = 0,5. 

Для нормального закона распределения случайной величины Х 

имеют место следующие соотношения:  

                                𝜈1 = 0,80𝜎  и   𝑟 = 0.                              (1.21) 

Выполнение этих соотношений свидетельствует о близости за-

кона распределения исследуемого статистического ряда к нормаль-

ному закону распределения. 

Задача 1.1. В ящике находится 10 бракованных и 15 стандартных 

изделий. Найти вероятность того, что извлечённая наугад деталь будет 

стандартной. 

Решение. Общее число случаев 𝑁 = 25; число случаев, благопри-

ятствующих появлению стандартной детали 𝑀 = 15. Искомая вероят-

ность равна (формула 1.2) 

𝑃(𝐴) =
15

25
 = 0,6. 

Задача 1.2. По цели произведено 20 выстрелов, причём отмечено 

18 попаданий. Найти относительную частоту попадания в цель (1.3). 
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Решение:  

𝑄 =
𝑚

𝑛
=

18

20
= 0,9. 

Задача 1.3. Случайная величина Х задана функцией  

𝐹(𝑥) = {

0   при 𝑋 < 0,

𝑥2 при 0 ≤ 𝑋 ≤ 1,
1   при 𝑋 > 1.

 

Найти плотность 𝜑(𝑥), а также вероятность того, что в результате 

испытания случайная величина Х примет значение, заключённое в ин-

тервале (0,25; 0,75) 

Решение: 

𝜑(𝑥) = 𝐹′(𝑥) = {

0   при 𝑋 < 0,
2𝑥  при 0 ≤ 𝑋 ≤ 1,
0   при 𝑋 > 1.

 

Вероятность попадания случайной величины Х в интервал 

(0,25;  0,75) определяем по формуле (1.12). Принимая 𝛼 = 0,25 и     

𝛽 = 0,75, находим 

𝑃(0,25 < 𝑋 < 0,75) = ∫ 2𝑥𝑑𝑥 = 𝑥2 |
&0,75

&0,25

0,75

0,25

= 0,752 − 0,252 = 0,5, 

𝑃(0,25 < 𝑋 < 0,75) = 𝐹(0,75) − 𝐹(0,25) = 0,752 − 0,252 =

0,50. 

Задача 1.4. Случайная величина Х задана в виде табличного рас-

пределения (табл. 2). Найти параметры: 𝑀( 𝑋), 𝐷( 𝑋), 𝜎(𝑋). 

 

Таблица 2. 

Исходные данные задачи 1.4. 

 

x 0 1 2 3 

p 0,34 0,44 0,19 0,03 

 

Решение: применяя формулы (1.14), (1.22) и (1.23), имеем 
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𝑀( 𝑋) = ∑ 𝑥𝑖𝑝𝑖 =𝑛
𝑖=1 0 × 0,34 + 1 × 0,44 + 2 × 0,19 + 3 × 0,03 =

0,91; 

𝐷( 𝑋) = ∑(𝑥𝑖 − 𝑀𝑋)2𝑝𝑖

𝑛

𝑖=1

= (0 − 0,91)2 × 0,34 + (1 − 0,91)2 × 0,44 + 

    + (2 − 0,91)2 × 0,19 + (3 − 0,91)2 × 0,03 = 0,64. 

Дисперсию также можно найди и по формуле связи центральных и 

начальных моментов: 

𝜇2 = 𝐷( 𝑋) = 𝛼2 − 𝛼1
2: (1.16) 

𝛼2 = ∑ 𝑥𝑖
2𝑝𝑖 = 02 × 0,34 + 12 × 0,44𝑛

𝑖=1 + 22 × 0,19 +

32 × 0,03 = 1,47; 

𝛼1 = 𝑀( 𝑋) = 0,91; 𝐷( 𝑋) = 1,47 − 0,912 = 0,64. 

Находим СКО: 𝜎(𝑋) = √𝐷( 𝑋) = √0,64 = 0,8. 

Задача 1.5. Найти основные параметры непрерывной случайной 

величины Х, закон распределения которой задан в задачи 1.1.3. 

Решение: находим 

𝑀( 𝑋) = ∫ 𝑥𝜑(𝑥)𝑑𝑥 =
1

0
∫ 𝑥 × 2𝑥𝑑𝑥 =

1

0

2𝑥3

3
|

0

1

=
2

3
, 

𝐷( 𝑋) = 𝛼2 − 𝛼1
2; 𝛼2 = ∫ 𝑥2𝜑(𝑥)𝑑𝑥 =

1

0 ∫ 𝑥2 × 2𝑥𝑑𝑥 =
1

0

2𝑥4

4
|

0

1

=
1

2
, 

𝛼1 = 𝛭(𝑋) =
2

3
; 𝐷( 𝑋) =

1

2
− (

2

3
)

2
=

1

18
, тогда 

 𝜎(𝑋) = √𝐷( 𝑋) =
1

3√2
. 

Контрольные вопросы по теме 1 

1. Случайные события. Классификация случайных событий. Ве-

роятность события.  

2. Случайные величины. Закон распределения случайной вели-

чины. Формы задания закона распределения случайной величины 

(дать общую характеристику). 

3. Числовые характеристики случайной величины и их свойства. 

4. Числовые характеристики рассеяния. Дисперсия случайной ве-

личины, ее свойства. 
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5. Приведите формулы определения математического ожидания 

случайной величины. Перечислите свойства математического 

ожидания. 

6. Приведите формулы определения дисперсии случайной вели-

чины и ее свойства. 

7. Как вычисляется вероятность попадания случайной величины 

при нормальном законе распределения в заданный интервал? 

8. Перечислите и запишите свойства случайных ошибок (погреш-

ностей) результатов измерений. 

9. Запишите равномерный закон распределения и его основные 

характеристики. 

 

ТЕМА 2. ИЗМЕРЕНИЯ МНОГОКРАТНЫХ ПРЯМЫХ  

РАВНОТОЧНЫХ ИЗМЕРЕНИЙ ОДНОЙ ВЕЛИЧИНЫ 

Вычисление наиболее вероятного значения искомой величины 

Равноточными называют измерения, полученные одним и тем же 

прибором, одним и тем же методом, одинаковым числом приёмов или 

в одинаковых условиях. Предположим, что некоторая величина А, ис-

тинное значение которой Х, измерена равноточно непосредственно n 

раз. В результате измерений получены значения х1, х2, … хn. Случайные 

ошибки измерений  равны: 

                                        1 = х1–Х, 

                                       2  = х2–Х,                                                       (2.1а) 

                                          … 

                                  n =  хn – Х. 

Суммируя (квадратные скобки используем как знак суммы) ле-

вые и правые части уравнений, получим: 

                                      [] =[x] n∙X                                       (2.1б) 

                                     Х =[x]/n –[]/n. 

Последнее слагаемое на основании свойства компенсации слу-

чайных ошибок при большом числе  n  стремится к нулю, поэтому               

                                      Х* = [x]/n.                                            (2.2) 
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Формула (2.2) показывает, что наиболее вероятным значением 

искомой величины А является среднее арифметическое результатов 

равноточных измерений. Определение наиболее надёжного значения 

измеряемой величины можно найти по другой формуле: 

Х* =
[𝑥]

𝑛
= 𝑥0 +

[𝜀]

𝑛
, (2.3) 

где x0 – наименьшее значение из всех измерений хi , тогда  𝜀𝑖 = 𝑥𝑖 − 𝑥0. 

Абсолютные оценки точности искомой величины 

Оценить точность полученного значения Х* – это значит опреде-

лить, насколько близко найденное наиболее вероятное значение Х ис-

комой величины  А к ее истинному значению. Для оценки точности 

применяют несколько критериев или параметров оценки точности, но 

все их можно разделить на две группы – абсолютные и относительные 

оценки точности. 

Абсолютные оценки точности применяют тогда, когда точность 

измерения величины А не зависит от самого истинного ее значения.   

Основным критерием точности результатов измерений является 

средняя квадратическая ошибка – оценка среднего квадратического 

отклонения, определяемая по формуле: 

𝑚 = 𝜎∗(𝑥) = √𝐷∗( 𝑥) = √
∑ (𝑥𝑖−𝑀𝑥)2𝑛

𝑖=1

𝑛
.       (2.4) 

Для ряда истинных ошибок {𝛥𝑖} (формулы 2.1а, 2.1б) при извест-

ном 𝑋 = 𝑀( 𝑥) формула (2.4) принимает вид (2.5а) и называется фор-

мулой Гаусса: 

𝑚 = √
[𝛥2]

𝑛
, (2.5а) 

где 𝛥𝑖 = 𝑥𝑖 − 𝑋;  [𝛥2] = 𝛥1
2 + 𝛥2

2 + ⋯ + 𝛥𝑛
2  (квадратные скобки обозна-

чают знак суммирования значений). 

В случае, если истинное значение Х искомой величины неиз-

вестно, то применяется формула Бесселя:  
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𝑚 = √
[𝜐2]

𝑛−1
, (2.5б) 

где величина i  =  хi –X*. 

Средняя квадратическая ошибка среднего арифметического: 

                                          М =m/√𝑛.                                       (2.6)  

Средней ошибкой 𝜗∗ называют оценку среднего отклонения 1 

(центрального абсолютного момента первого порядка (1.19)) и вычис-

ляют по формуле: 

𝜗∗ =
[|𝛥|]

𝑛
. (2.7) 

Вероятной ошибкой 𝑟∗ называют оценку вероятного отклонения 

r (1.20). 𝑟∗ − это такое значение случайной ошибки , больше или 

меньше которого, по абсолютной величине, ошибки равновозможны 

𝑃(|𝛥| < 𝑟∗) = 𝑃(|𝛥| > 𝑟∗) = 0,5. 

На практике 𝑟∗ определяется величиной, которую находят, распо-

ложив все ошибки i в ряд в порядке возрастания их абсолютных ве-

личин. Вероятная ошибка 𝑟∗ расположена в середине такого ряда. 

Опытным путем установлено, что случайные ошибки  и m взаи-

мозависимы. При нормальном законе распределения случайных оши-

бок имеют место соотношения: 

𝑚 = 1,25𝜗∗;      𝑚 = 1,48𝑟∗. (2.8) 

Соотношения (2.8) называют критериями нормального закона 

распределения случайных ошибок (тема 1, формулы (1.21). 

Предельной ошибкой 𝛥пред. называют такую ошибку, больше ко-

торой в ряде измерений ошибок не должно быть. В качестве предель-

ных выбирают величины, определяемые по правилу (1.20) 

𝛥пред. = 2𝑚  и   𝛥пред. = 3𝑚. 

Если взять интегральное распределение случайных ошибок, то 

число случайных ошибок i, имеющих значение от 0 до m, будет со-

ставлять 68,3%, от 0 до 2m – 95,4% и от 0 до 3m – 99,7%. Следова-

тельно, число ошибок i со значением 3m составляет всего 0,3% от 

всех ошибок (с вероятностями 0,954 и 0,997 соответственно). 



20 
 

Измерения с ошибкой больше, чем 3m не берут в обработку, так как 

ошибки таких измерений относят к грубым ошибкам. Для повышения 

точности результатов иногда исключают измерения, ошибки которых 

больше, чем 2m.  

Относительные оценки точности искомой величины 

Рассмотренные выше критерии точности 𝛥𝑖, m, 𝜗∗, 𝑟∗, 𝛥пред. назы-

вают абсолютными ошибками. 

Относительной ошибкой называют отношение абсолютной 

ошибки к наиболее вероятному значению X искомой величины А. Та-

ким образом, относительная ошибка записывается в виде дроби: 

М/X – относительная средняя ошибка, 

m/X – относительная средняя квадратическая ошибка, 

пред /X – относительная предельная ошибка, и т.д. 

Относительные оценки точности применяют тогда, когда точ-

ность измерения величины А зависит от самого ее истинного значения 

Х. Принято относительные ошибки выражать в виде дроби, в числи-

теле стоит единица 

                                          m/X = 1/(X:m);    

                                      М/X  =  1/(X:М);                                  (2.9) 

пред /X = 1/(X:пред). 

При этом знаменатель округляется до целого значения. Напри-

мер, при 𝑥 = 145,68 м и 𝑚𝑥 = 5,8 см относительная средняя квадрати-

ческая ошибка равна 
𝑚𝑥

𝑥
=

5,8

145,68
≈

1

2500
. 

Интервальные оценки точности искомой величины 

Интервальная оценка точности – это доверительный диапазон 

значений, в который с заданной вероятностью попадает истинное зна-

чение параметра исследуемой генеральной совокупности. Выше был 

рассмотрен вопрос об оценке неизвестного параметра одним числом – 

точечной оценке. В ряде задач требуется не только найти точечную 

оценку, но и оценить ее надежность, а также прогнозировать, с какой 

степенью уверенности можно ожидать, что эти оценки не выйдут за 
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известные пределы. Такого рода задачи особенно актуальны при ма-

лом числе наблюдений. Построение доверительного интервала осно-

вано на задании доверительной вероятности t, накрывающей, напри-

мер, неизвестное истинное значение X 

x t M X x t M −   + . (2.10) 

с использованием статистического критерия Стьюдента (Приложение 

А). Входными данными критерия Стьюдента являются значения  веро-

ятности р и числа степеней свободы 1r n= − , например, р = 0.9, r = n-1 

= 10 (n =11 – число измерений), тогда по таблице (Приложение А) 

находим коэффициент 1,8t =  и по формуле (2.10) записываем гра-

ницы интервала: 

Х∗ − 𝑡𝛽𝑀 < 𝑋 < Х∗ + 𝑡𝛽𝑀, 

где М – СКО среднего арифметического (2.6). Пусть наиболее вероят-

ное значение угла равно Х* = 67о 33'44,7'', М = 0,75'', тогда при р = 0.9, 

r = 10 имеем 

67 33 44,7 1,8 0,75 67 33 44,7 1,8 0,75X  −        +   , 

67 33 43,3 67 33 46,1X        . 

Ширина диапазона отражает, что более узкие интервалы указы-

вают на более точные значения, а более широкие интервалы – на боль-

шую неопределённость. 

Задача 2.1. Даны результаты равноточных независимых много-

кратных измерений одного и того же угла (табл. 3). Определить следу-

ющие величины: 𝑥̄, m, M, 𝑚𝑚, 𝑚𝑀.  
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Таблица 3. 

Исходные данные и промежуточные вычисления задачи 2.1. 

 

№ 

 

Резуль-

таты 

измере-

ний 

𝜀𝑖 𝜀𝑖
2 𝜐𝑖 𝜐𝑖

2 
примеча-

ния 

1 67°33′44″ +4 16 –0,7 0,49 

𝛥окр. = 𝑥̄окр. − 𝑥̄

= +0,03″ 

Контроль: 

а)[𝜐] = −12 ×

0,03″ = −0,4″; 

б) [𝜐2] = 334 −
562

12
= 72,7. 

2 40″ +0 0 –4,7 22,1 

3 43″ +3 9 –1,7 2,89 

4 45″ +5 25 +0.3 0,09 

5 46″ +6 36 +1,3 1,69 

6 43″ +3 9 –1,7 2,89 

7 48″ +8 64 +3,3 10,9 

8 45″ +5 25 +0,3 0,09 

9 48″ +8 64 +3,3 10,9 

10 46″ +6 36 +1,3 1,69 

11 47″ +7 49 +2,3 5,29 

12 41″ +1 1 –3,7 13,7 

  +56 334 –0,4 72,72  

 

Решение. 

1. Вычисление среднего арифметического  

𝑥̄ = 𝑥0 +
[𝜀]

𝑛
= 67°33′40″ +

56″

12
= 67∘33′44,67″. 

В качестве наиболее надёжного значения принимаем среднее 

арифметическое, округлённое до десятых долей секунды 

𝑥̄окр. = 67°33′44,7″. 

2.  Вычисление уклонений 𝜐𝑖 = 𝑥𝑖 − 𝑥̄окр., а также сумм [𝜐], [𝜐2], 

[𝜀2] непосредственно в таблице 3.1 и по контрольным формулам: 

a) [𝜐] = −𝑛𝛥окр., 
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b) [𝜐2] = [𝜀2] −
[𝜀]2

𝑛
. 

Расхождение между суммой [𝜐2], которую получили непосред-

ственно в таблице, и её контрольным значением допускается в преде-

лах 2–3% от величины [𝜐2]. Как видно, контроль выполнен. 

3.  Вычисление средней квадратической ошибки отдельного ре-

зультата измерений по формуле Бесселя: 

𝑚 = √
[𝜐2]

𝑛−1
= √

72,7

11
= 2,6″. 

4.  Вычисление средней квадратической ошибки наиболее надёж-

ного значения измеряемого угла: 

𝑚𝑥̄ = 𝑀 =
𝑚

√𝑛
=

2,6″

√12
= 0,75″. 

5. Оценим точность полученных значений самих ошибок m  и M  

𝑚𝑚 =
𝑚

√2(𝑛−1)
=

2,6″

√22
= 0,55″, 

𝑚𝑀 =
𝑀

√2𝑛
= 0,15″. 

 

Ответ:  𝑥̄ ± 𝑀 = 67°33′44,7″ ± 0,8″. 

Задача 2.2. Прямым способом при одних и тех же условиях мно-

гократно измерена длина линии. Определить наиболее вероятное зна-

чение длины линии и оценить точность. 

Таблица 4. 

Исходные данные и промежуточные вычисления задачи 2.2. 

 

№ D (м) v=Di- D* 

(см) 

v2 (см2) 

1 455, 35 -1 1 

2 455, 35 -1 1 

3 455, 30 -6 36 

4 455, 38 2 4 

5 455, 41 5 25 

 [2276,79]  [67] 
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Решение. 

1. Наиболее вероятное значение измеряемой величины: 

[D] = 2276,79 (м);   D* = [D]/n = 2276,79/5 = 455,36 (м). 

2. Средняя квадратическая ошибка измерения: 

m =√
67

5−1
 = √

67

4
 = 4 (см) = 0,04 (м). 

3. Средняя квадратическая ошибка среднего арифметического: 

М = 4/√5 = 2 (см) = 0,02 (м). 

4. Предельная ошибка: 

∆пред = 2·m = 8 (см) = 0,08 (м). 

5. Относительная средняя квадратическая ошибка: 

1/(455,36:0,04) =1/11384 =1/10000. 

6. Оценим точность значений самих ошибок m и M: 

𝑚𝑚 =
𝑚

√2(𝑛−1)
=

4

√8
= 1,4  (см), 

𝑚𝑀 =
𝑀

√2𝑛
=

2

√10
= 0,6 (см). 

Вычислим интервальную оценку наиболее вероятного значения 

D* с вероятностью р = 0,95 и степенью свободы r = 5-1 = 4 (Приложе-

ние 1). Получаем следующие результаты: 

tβ∙M = 3,2·0,02 м = 0,064 м; 

455,36 - 0,06 м < 455,36 м < 455,36 м+0,06 м. 

Ответ: 𝐷 ± 𝑀 = 455,36 ± 0,02 (м). 

Задача 2.3. В табл. 5 даны невязки суммы горизонтальных углов 

β, измеренных в треугольниках сети триангуляции. Выполнить иссле-

дование ряда невязок на нормальный закон распределения на основе 

анализа выполнения свойств случайных ошибок. 
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Таблица 5. 

Исходные данные задачи 2.3. 

 

№ 

треуг

. 

невязки 

i 

№ 

треу

г. 

невязки 

i 

№ 

треуг

. 

невязки 

i 

№ 

треуг. 

не-

вязки 

i 

1 –0,76″ 9 +1,29″ 17 +0,71″ 25 +0,22″ 

2 +1,52″ 10 +0,38″ 18 +1,04″ 26 +0,06″ 

3 –0,24″ 11 –1,03″ 19 –0,38″ 27 +0,43″ 

4 +1,31″ 12 +0,00″ 20 +1,16″ 28 –1,28″ 

5 –1,27″ 13 –1,23″ 21 –0,19″ 29 –0,41″ 

6 –1,88″ 14 –1,38″ 22 +2,28″ 30 –2,50″ 

7 +0,01″ 15 –0,25″ 23 +0,07″ 31 +1,92″ 

8 –0,69″ 16 –0,73″ 24 –0,95″ 32 –0,62″ 

 

Решение. 

Невязки, вычисленные как (∑ 𝛽 − 180∘) для каждого из 32-х тре-

угольников, можно считать истинными ошибками i, так как известно 

истинное значение суммы углов в треугольнике, равное 180 .  

1. Найдём значения ошибок (в секундах): 

       0 12,40  = + ;   0 15,79  = − ;    3,39 = − ;   28,19   =  ; 

          2 38,75 = ;   3 ( 34,41 30,03) 4,38 = − + = − ;   4 120,70 = . 

2. Вычисление оценок параметров нормального распределения M  ,

 (математическое ожидание и среднее квадратическое отклонение 

величины ) 

  3,39
0,106

32
M

n



 −
= = = − , 

       
 2 38,75

1,10
32

m
n





 = = = =  . 

3. Вычисление средней ошибки *  (2.7) 

28,19 32 0,88 = = ; 
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практ.1 1,10 0,88 1,25k m =  =   = ; 
теор.1 1,25k = . 

Проверка выполнения условия 

𝑚

𝜗∗ =
1,10″

0,88″
 = 1.25, соотношение (2.8) выполняется. 

4. Определение вероятной ошибки r  . 

Располагаем истинные ошибки в ряд по возрастанию их абсолют-

ных величин: 

+0,00; +0,01; +0,06;+0,07; –0,19; +0,22; –0,24; –0,25; +0,38; –

0,38; –0,41; +0,43; –0,62; –0,69; +0,71; –0,73; –0,76; –0,95; –1,03; 

+1,04; +1,16; –1,23; –1,27; –1,28; +1,29; +1,31; –1,38; +1,52; –1,88; 

+1,92; +2,28; –2,50. 

Находим значение вероятной ошибки: 

16 17
2 (0,73 0,76 ) 2 0,74( )  +  = +  = =r . 

Проверяем выполнение условия 

𝑚

𝑟∗ =
1,10″

0,74″
  = 1,49 примерно равно 1,48. 

5. Определение предельной ошибки (1.20) 

𝛥пред. = 3𝑚 = 3 · 1,10 = 3,30″ 

ни одна из истинных ошибок ряда 32-х треугольников (см. табл.) не 

превышает по модулю значения предельной ошибки. 

Ответ: рассматриваемый ряд истинных ошибок невязок суммы 

углов в треугольниках является действительно рядом случайных оши-

бок, подчиняющихся приближенно нормальному закону, так как вы-

полняются свойства случайных ошибок: 

а) среднее арифметическое M ( )   практически равно нулю; 

б) положительные и отрицательные ошибки, равные по абсолютной 

величине, равновероятны, примерно одинаково встречаются в ряду; 

в) малые по абсолютной величине ошибки встречаются чаще, чем 

большие, так выполняется соотношение  
𝑚

𝜗∗ = 1,25; 

г) случайные ошибки  ряда не превышает значение предельной 

ошибки, следовательно, отсутствуют грубые ошибки в измерениях; 
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д) приближенное распределение случайных ошибок измерений по нор-

мальному закону также разрешает предположить, что систематические 

ошибки отсутствуют или являются незначительными. 

Контрольные вопросы по теме 2 

1. Какие ошибки исключают из обработки измерений на этапе 

предварительной обработке? 

2. Что такое относительная ошибка? 

3. Для чего используют предельную ошибку? 

4. Запишите основные формулы, применяемые при обработке 

равноточных измерений одной величины. 

5. В чем принципиальное различие формул Гаусса и Бесселя, 

применяемых для оценки точности однородных измерений? 

 

ТЕМА 3. МНОГОКРАТНЫЕ ПРЯМЫЕ НЕРАВНОТОЧ-

НЫЕ 

ИЗМЕРЕНИЯ ОДНОЙ ВЕЛИЧИНЫ 

Понятие веса измерения 

Неравноточными называют измерения, которые имеют различ-

ные дисперсии. Это имеет место, когда измерения производят при раз-

личных внешних погодных условиях, по разной методике, с помощью 

разных приборов. Средние квадратические ошибки mi неравноточных 

измерений не равны между собой. Для совместной обработки неравно-

точных измерений вводят понятие веса. Весом называется величина, 

обратно пропорциональная дисперсии или квадрату   среднего квад-

ратического отклонения 

𝑝𝑖 =
𝑐

𝜎𝑖
2. (3.1) 

Значение величины c постоянно для всех измерений и выбирается 

произвольно. Для удобства вычислений значение коэффициента с (3.1) 

выбирают таким образом, чтобы значения весов были близкими к еди-

нице. Согласно (3.1) вес всегда величина положительная и не равная 

нулю. Значение веса выражает степень надежности измерения и по-

этому является величиной безразмерной. 
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Ошибка единицы веса 

При 𝑝 = 1  𝑐 = 𝜎𝑖
2 = 𝜎0

2 и формула веса принимает вид 

𝑝𝑖 =
𝜎0

2

𝜎𝑖
2, (3.2) 

где 𝜎0
2 — дисперсия такого измерения, вес которого равен единице. 

Дисперсии результатов измерений 𝜎𝑖
2, как правило, неизвестны, 

поэтому их заменяют квадратами средних квадратических ошибок как 

𝑝𝑖 =
𝑐

𝑚𝑖
2, (3.3) 

𝑝𝑖 =
𝜇2

𝑚𝑖
2, (3.4) 

где  – ошибка единицы веса, то есть средняя квадратическая ошибка 

измерения, вес которого равен единице.  

Если известна средняя квадратическая ошибка единицы веса  и 

вес i-го измерения, то можно вычислить среднюю квадратическую 

ошибку i-го измерения по формуле  

𝑚𝑖 =
𝜇

√𝑝𝑖
. (3.5) 

Значение веса измерения можно назначить, не зная величины m 

этого измерения, на основе анализа причин возникновения ошибок 

различных геодезических измерений (длин, углов, превышений). Ос-

новой определения весов может быть выбран критерий числа приемов 

измерений, в этом случае величина веса будет прямо пропорциональна 

числу приемов. В нивелирной сети веса измеренных превышений 

назначают в зависимости, например, от длины нивелирного хода как 

𝑝𝑖 =
𝑐

𝐿𝑖
, (3.6) 

где Li – длина хода в км, при этом величина рi безразмерная. 

Таким образом, вес измерения выражает степень доверия к ре-

зультатам измерения, выраженную числом. Чем больше вес измере-

ния, тем точнее, надежнее его результат.  
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Математическая обработка прямых неравноточных  

измерений одной величины 

Пусть имеется ряд многократных прямых неравноточных изме-

рений одной и той же величины 𝑥1, 𝑥2, … , 𝑥𝑛, истинное значение Х ко-

торой неизвестно. Известны веса результатов измерений р1, р2, … рn. Ма-

тематическая обработка ряда неравноточных измерений имеет следу-

ющий алгоритм действий. 

1.  Определение наиболее надёжного значения измеряемой вели-

чины – среднего весового (средневзвешенного) или общей арифмети-

ческой средины (наилучшей оценки неизвестного истинного значения 

искомой величины): 

𝑥̄ =
[𝑝𝑥]

[𝑝]
= 𝑥0 +

[𝑝𝜀]

[𝑝]
, (3.7) 

где x0 – наименьшее значение из ряда {𝑥𝑖}, а 𝜀𝑖 = 𝑥𝑖 − 𝑥0. 

2.  В случае, если истинное значение Х искомой величины не из-

вестно, то определение по формуле Бесселя средней квадратической 

ошибки измерения с весом, равным единице: 

𝜇 = √
[𝑝𝜐2]

𝑛−1
, (3.8) 

где 𝜐𝑖 = 𝑥𝑖 − 𝑥̄ – уклонения от среднего весового, которые обладают 

свойствами: 

а)  [𝑝𝜐] = 0, 

б) [𝑝𝜐2] = 𝑚𝑖𝑛. 

Если истинное значение Х искомой величины известно, то исполь-

зуют формулу Гаусса (в формуле (3.8) знаменатель будет равен n). 

3.  Определение средней квадратической ошибки наиболее 

надёжного значения измеряемой величины: 

𝑚𝑥̄ = 𝑀 =
𝜇

√𝑝𝑥̄
=

𝜇

√[𝑝]
. (3.9) 

4. Вычисление ошибок самих ошибок, относительных ошибок 

при оценке точности линейных измерений и при необходимости ин-

тервальных оценок точности измерений. 
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Задача 3.1. Вес угла равен 9. Найти среднюю квадратическую 

ошибку этого угла, если ошибка единицы веса равна 15″. 

Решение. Находим среднюю квадратическую ошибку угла (3.5) 

𝑚𝑖 =
𝜇

√𝑝𝑖
,   𝑚𝑖 =

15″

√9
= 5″. 

Задача 3.2. Отметка узлового репера получена по шести нивелир-

ным ходам (табл. 6), известны средние квадратические ошибки по каж-

дому ходу 𝑚𝑖 (в мм). Найти наиболее надёжное значение отметки ре-

пера и произвести оценку точности. 

 

Таблица 6. 

Исходные данные и промежуточные вычисления задачи 3.2. 

 

№ 𝐻𝑖 (м) 
𝑚𝑖 

(мм) 

𝑝𝑖

=
𝑐

𝑚𝑖
2 

𝜀𝑖 

(мм) 
𝑝𝑖𝜀𝑖 𝑝𝑖𝜀𝑖

2 
𝜐𝑖 

(мм) 
𝑝𝑖𝜐𝑖 𝑝𝑖𝜐𝑖

2 

1 196,529 6,3 0,25 +12 +3,00 +36,0 +1 +0,25 00,2 

2    ,522 8,4 0,14 +5 +0,70 +3,5 –6 –0,84 05,0 

3    ,517 9,1 0,12 +0    +0 +0 –11 –1,32 14,5 

4    ,532 4,3 0,54 +15 +8,10 121,5 +4 +2,16 08,6 

5    ,530 5,2 0,37 +13 +4,81 +62,5 +2 +0,74 01,5 

6    ,520 7,5 0,18 +3 +0,54 +1,6 –8 –1,44 11,5 



 

  1,60  17,15 225,1  –0,45 41,3 

 

Решение: 

Веса вычисляем по формуле (3.3), принимая с = 10, 

𝑝𝑖 =
𝑐

𝑚𝑖
2. 

1. Вычисление наиболее надёжного значения отметки репера: 

𝑥̄ = 𝑥0 +
[𝑝𝜀]

[𝑝]
= 196,517 м+

17,15мм

1,60
= 196,53 м, 

𝑥̄окр. = 196,528м, 𝛥окр. = 𝑥̄окр. − 𝑥̄ = +0,3 мм. 



31 
 

Вычисление уклонений от среднего весового 𝜐𝑖 = 𝑥𝑖 − 𝑥̄окр., а 

также сумм [𝑝𝜀2], [𝑝𝜐], [𝑝𝜐2] непосредственно в таблице. 

Контроль вычислений: 

a) [𝑝𝜐] = −𝛥окр.[𝑝]; [𝑝𝜐] = −0,3 × 1,60 = −0,48; 

b) [𝑝𝜐2] = [𝑝𝜀2] −
[𝑝𝜀]2

[𝑝]
; [𝑝𝜐2] = 225,1 −

17,152

1,60
= 41,3. 

2. Вычисление средней квадратической ошибки (СКО) измерения с 

весом, равным единице: 

                           𝜇 = √
[𝑝𝜐2]

𝑛−1
= √

41,3

5
= 2,9мм. 

3. Вычисление средней квадратической ошибки наиболее надёжного 

значения по формуле 

𝑚𝑥̄ = 𝑀 =
𝜇

√[𝑝]
=

2,9

√1,6
= 2,3 мм. 

4. Оценим надёжность определения ошибок  и 𝑚𝑥̄: 

𝑚𝜇 =
𝜇

√2(𝑛−1)
= 0,92 мм; 

𝑚𝑚𝑥̄
=

𝑚𝜇

√[𝑝]
=

0,92

√1,6
= 0,73 мм. 

Ответ: 𝑥̄ ± 𝑚𝑥̄ = 196,528 м ± 2,3 мм. 

Задача 3.3. По прямым неравноточным измерениям горизон-

тального угла (табл. 7) найти средние квадратические ошибки (СКО) 

измерений, имеющих минимальный и максимальный веса. 

Решение. 

1. Определение весов. Значения весов примем пропорциональными 

числу приемов измерений в каждой серии. Чем больше число приемов, 

тем надежнее результат измерения угла, меньше его ошибка и, следо-

вательно, больше его вес,  

                                                 рi =N /20,    

при этом согласно (3.1) примем значение постоянного коэффициента с 

равным 1/20, чтобы веса принимали значения, близкие к единице. 
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Таблица 7. 

Исходные данные и промежуточные вычисления задачи 3.3. 

 

№         xi         Число приемов, N   pi      xi ∙pi    ∆i
2=( X- xi)2   ∆i

2∙pi 

1      71о 38' 03’’           4               0,2      2,6            25            5,0 

2      71о 38' 06’’         12               0,6      3,6              4            2,4 

3      71о 38' 02’’           2               0,1      0,2            36            3,6 

4      71о 38' 10’’         10               0,5      5,0              4            2,0 

5      71о 38' 12’’           4               0,2      2,4            16            3,2 

6      71о 38' 05’’           8               0,4      2,0              0             0 

Сумма                                            [2,0]        [15,8]                  [16,2] 

 

2. Наиболее вероятное значение угла (используем только секунды, так 

как градусы и минуты не изменяются) вычисляем по формуле: 

𝑥̄ =
[𝑝𝑥]

[𝑝]
, 

͠х = 15,8 / 2,0 = 8,0'', 

х = 71o 38' 08''. 

3. Ошибку единицы веса μ вычисляем как 

                                𝜇 = √
[𝑝𝜐2]

𝑛−1
= √

16,2

5
= 1,8′′. 

4.  Cредняя квадратическая ошибка среднего арифметического M 

𝑚𝑥̄ = 𝑀 =
𝜇

√[𝑝]
=

1,8

√2
= 1,3′′. 

5.  СКО для измерения с минимальным весом (измерение № 3, получен-

ное по минимальному числу приемов N = 2 имеет наибольшую 

ошибку) вычисляем по формуле (3.5) 

𝑚3 =
𝜇

√𝑝3
,   𝑚3 =

1.8″

√0,1
= 5,7″. 
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6.  СКО для измерения с максимальным весом (измерение № 2, полу-

ченное по максимальному числу приемов N = 12, имеет наименьшую 

ошибку) равно: 

𝑚2 =
𝜇

√𝑝2
,    𝑚2 =

1.8″

√0,6
= 1,4″. 

Контрольные вопросы по теме 3 

     1. Определите понятие веса.  

2. Рассмотрите зависимость точности измерений в зависимости от 

условий проведения угловых, линейных, нивелирных измерений.  

3. В каких случаях невозможно вычислить вес измерения и как при 

этом назначают веса. 

4. Перечислите свойства веса. 

5. Приведите примеры неравноточных геодезических измерений 

при проведении нивелирных работ. 

6. Приведите примеры неравноточных геодезических измерений 

при проведении угломерных работ. 

7. Приведите примеры неравноточных геодезических измерений 

при проведении линейных работ. 

8. Можно ли по величине веса измерения вычислить его СКО? 

 

ТЕМА 4. МНОГОКРАТНЫЕ ДВОЙНЫЕ ИЗМЕРЕНИЯ 

ОДНОРОДНОЙ ВЕЛИЧИНЫ 

В геодезии часто приходится измерять большие группы однород-

ных величин (превышений, углов, длин), причём каждую величину для 

контроля измеряют дважды. Такой класс измерений называют двой-

ными измерениями однородной величины. Например, к такому классу 

относятся измерения превышений по черной и красной стороне рейке, 

выполненные на каждой станции, или измерение различных длин ли-

ний в прямом и обратном направлении. Все двойные измерения одно-

родной величины объединяются и оценка точности выполняется по 

разностям каждого двойного измерения. 
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Математическая обработка равноточных двойных измерений 

Пусть однородные величины 𝑋1, 𝑋2, … , 𝑋𝑛 измерены равно-

точно дважды и получены результаты измерений: 

𝑥1
′ ,  𝑥2

′ , … , 𝑥𝑛
′ , 

𝑥1
″ ,  𝑥2

″ , … ,  𝑥𝑛
″ . 

Составим разности по формуле 

𝑑𝑖 = 𝑥𝑖
′ − 𝑥𝑖

″. (4.1) 

Наиболее надёжные значения определяемых величин в каждой паре 

находим по формуле: 

𝑥̄𝑖 =
𝑥𝑖

′ +𝑥𝑖
″

2
. (4.2) 

Для оценки точности используем разности (4.1) применяют сле-

дующий алгоритм действий. 

При отсутствии систематических ошибок разности di можно рас-

сматривать как истинные ошибки самих разностей, так как истинное 

значение разностей равно нулю 𝑀( 𝑑) = 0. Применяя к ряду {𝑑𝑖} фор-

мулу Гаусса (2.5 а), находим: 

𝑚𝑑 = √
[𝑑2]

𝑛
. (4.3) 

Тогда средняя квадратическая ошибка отдельного результата измере-

ний будет определяться по формуле: 

𝑚𝑥 =
𝑚𝑑

√2
= √

[𝑑2]

2𝑛
. (4.4) 

Оценка точности наиболее надёжных значений определяется как сред-

нее арифметическое из двух измерений по формуле: 

𝑚𝑥̄ =
𝑚𝑥𝑖

√2
= 0,5√

[𝑑2]

𝑛
. (4.5) 

Если в результатах измерений присутствуют систематические ошибки, 

то величина математического ожидания суммы разностей 

𝑀∗( 𝑑) = 𝑑̄ =
[𝑑]

𝑛
 (4.6) 
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существенно отличается от нуля. В этом случае из каждой разности 

необходимо исключить остаточное влияние систематических ошибок, 

т. е. получить разности 

𝑑𝑖
′ = 𝑑𝑖 − 𝑑̄окр.. (4.7) 

Рассматривая разности 𝑑𝑖
′ как уклонения от среднего 𝑑̄окр., приме-

няем формулу Бесселя  для оценки точности разности (2.5 б) 

𝑚𝑑 = √
[𝑑′2]

𝑛−1
. (4.8) 

Средние квадратические ошибки отдельного результата измере-

ний и наиболее надёжных значений измеряемых величин находим по 

формулам: 

𝑚𝑥 =
𝑚𝑑

√2
= √

[𝑑′2]

2(𝑛−1)
,    (4.9) 

𝑚𝑥̄ =
𝑚𝑥

√2
= 0,5√

[𝑑′2]

𝑛−1
.   

  

(4.10) 

Заметим, что в этом случае необходимо выполнить контроль вычисле-

ний по формулам 

[𝑑′] = −𝑛𝛥окр., где 𝛥окр. = 𝑑̄окр. − 𝑑̄; 

[𝑑′2] = [𝑑2] −
[𝑑]2

𝑛
. 

(4.11) 

Критерий выявления систематических ошибок 

двойных измерений 

Для определения значимости отклонения 𝑑̄ от нуля применяют 

неравенство 

|[𝑑]| ≤ 2,5
[|𝑑|]

√𝑛
. 

Иногда применяют более жёсткий критерий обнаружения систе-

матических ошибок 

|[𝑑]| ≤ 0,25[|𝑑|], (4.12) 

который получен исходя из требования 𝑑̄ = 𝛿сист. ≤
1

5
𝑚𝑑. 
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Как правило, обработку двойных измерений начинают с про-

верки условия (4.12) на наличие систематических ошибок. Если нера-

венство (4.12) выполняется, то делают вывод о том, что систематиче-

скими ошибками можно пренебречь и оценку точности следует выпол-

нять по формулам (4.4 и 4.5). Если неравенство (4.12) не выполняется, 

то делают заключение о том, что систематические ошибки необходимо 

учесть и выполнить обработку по формулам (4.7, 4.9, 4.10). 

Математическая обработка неравноточных двойных измерений 

Пусть каждая из однородных величин Хi (𝑖 = 1, 2, … , 𝑛) измерена 

дважды и независимо, причём измерения в каждой паре равноточны, а 

пары между собой неравноточны. Известны веса  рi каждой пары ре-

зультатов измерений и получены разности di с весами 𝑝𝑑𝑖
=

𝑝𝑖

2
. 

Наиболее надёжные значения измеряемых величин в каждой паре 

измерений находит по формуле (4.2). 

Критерий обнаружения систематических ошибок для неравно-

точных двойных измерений имеет вид: 

|[𝑑√𝑝]| ≤ 0,25[|𝑑√𝑝|]. (4.13) 

Если неравенство выполняется, то делают заключение о том, что 

систематическими ошибками можно пренебречь и обрабатывают из-

мерения по следующему алгоритму. 

1. Определяют среднюю квадратическую ошибку измерения с ве-

сом, равным единице, 

𝜇 = √
[𝑝𝑑2]

2𝑛
. (4.14) 

2. Вычисляют средние квадратические ошибки наиболее надёж-

ных значений по формулам 

𝑚𝑥̄𝑖
=

𝜇

√2𝑝𝑖
. (4.15) 

Если условие (4.13) не выполняется, то необходимо найти остаточное 

влияние систематических ошибок 

𝑑̄ =
[𝑝𝑑]

[𝑝]
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и исключить его из каждой разности. Получают разности, свободные 

от влияния систематических ошибок 

𝑑𝑖
′ = 𝑑𝑖 − 𝑑̄окр.. (4.16) 

Оценка точности выполняется следующим образом. 

1. Определяется средняя квадратическая ошибка измерения с ве-

сом, равным единице 

𝜇 = √
[𝑝𝑑′2]

2(𝑛−1)
. (4.17) 

2. Вычисляются средние квадратические ошибки наиболее 

надёжных значений 

𝑚𝑥𝑖
=

𝜇

√2𝑝𝑖
. (4.18) 

Задача 4.1. Длина каждой из линий измерена дважды (туда и об-

ратно) равноточно (табл. 8). Выполнить оценку точности по разностям 

двойных равноточных измерений. 

 

Таблица 8. 

Исходные данные и промежуточные вычисления задачи 4.1. 

 

№ 𝑥𝑖
′  (м) 𝑥𝑖

″ (м) 𝑑𝑖 (мм) 𝑑𝑖
2 𝑑𝑖

′  𝑑′
𝑖
2
 

1 120,389 120,380 +9 81 +6,3 39,7 

2 136,468 136,462 +6 36 +3,3 10,9 

3 133,223 132,229 –6 36 –8,7 75,7 

4 124,536 124,537 –1 1 –3,7 13,7 

5 140,457 140,449 +8 64 +5,3 28,1 

6 143,682 143,688 –6 36 –8,7 75,7 

7 139,158 139,149 +9 81 +6,3 39,7 

    335 0,1 283,5 

            [(𝑑 > 0)] = +32                  [|𝑑|] = 45 

            [(𝑑 < 0)] = −13                  [𝑑] = +19 
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Решение: 

1. Составим ряд разностей 𝑑𝑖 = 𝑥𝑖
′ − 𝑥𝑖

″. 

2. Согласно критерию обнаружения систематических ошибок 

(4.12) вычисляем левую и правую части неравенства:  

         |[𝑑]| = 19;      0,25[|𝑑|] = 0,25 × 45 = 11,2. 

Вывод: левая часть неравенства  оказалась больше его правой части, 

следовательно, систематическими ошибками пренебрегать нельзя. 

3. Находим остаточное влияние систематических ошибок 

𝑑̄ =
[𝑑]

𝑛
=

+19

7
= +2,71 мм;   𝑑̄окр. = +2,7 мм 

и исключаем его из каждой разности, находим 𝑑𝑖
′ и суммы [𝑑2], [𝑑′], 

[𝑑′2] по формулам (4.11): 

[𝑑′] = −𝑛𝛥окр.: 

𝛥окр. = 𝑑̄окр. − 𝑑̄ = −0,01мм, 

[𝑑′] = −7 × (−0,01) ≈ +0,1мм, 

[𝑑′2] = [𝑑2] −
[𝑑]2

𝑛
, 

[𝑑′2] = 335 −
192

7
 =  283,4, 

результат вычислений записываем в табл. 8. 

4. Находим среднюю квадратическую ошибку одного измерения 

      𝑚𝑥 = √
[𝑑′2]

2(𝑛−1)
= √

283,5

12
= 4,86 мм ≈ 4,9 мм. 

5. Определяем среднюю квадратическую ошибку наиболее 

надёжных значений измеряемых величин 

𝑚𝑥̄ = 0,5√
[𝑑′2]

𝑛−1
= 3,43 мм ≈ 3,4 мм. 

6. Находим относительные средние квадратические ошибки: 
𝑚𝑥

𝑆ср.
=

4,9

134000
=

1

27000
, 

𝑚𝑥̄

𝑆ср.
=

3,4

134000
=

1

39000
. 
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Контрольные вопросы по теме 4 

1. Раскройте понятие равноточные двойные измерения. Приве-

дите примеры. 

2. Раскройте понятие неравноточные двойные измерения. Приве-

дите примеры. 

3. В какой последовательности, по каким формулам выполняется 

оценка точности по разностям двойных равноточных измерений? 

4. В какой последовательности, по каким формулам выполняется 

оценка точности по разностям двойных неравноточных измерений? 

5. Запишите неравенство, при выполнении которого можно при-

нять гипотезу об отсутствии в разностях (di) систематической 

ошибки. 

 

ТЕМА 5. КОСВЕННЫЕ ИЗМЕРЕНИЯ И ИХ ОБРАБОТКА 

Ошибка искомой величины как функции  

измеренных параметров 

В геодезии часто искомые величины находят в результате вычис-

лений как функции измеренных величин (аргументов). Очевидно, что 

ошибка функции будет зависеть как от ошибок измеренных аргумен-

тов, так и от вида самой функции. Пусть величина у есть  функция па-

раметров 𝑥1, 𝑥2, … , 𝑥𝑛 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), (5.1) 

где величины 𝑥1, 𝑥2, … , 𝑥𝑛 измерены независимо. Известны их средние 

квадратические ошибки 𝑚𝑥1
, 𝑚𝑥2

, … , 𝑚𝑥𝑛
. Тогда средняя квадратиче-

ская ошибка функции (5.1) вычисляется по формуле: 

𝑚𝑦
2 = (

𝜕𝑓

𝜕𝑥1
)

0

2
𝑚𝑥1

2 + (
𝜕𝑓

𝜕𝑥2
)

0

2
𝑚𝑥2

2 + ⋯ + (
𝜕𝑓

𝜕𝑥𝑛
)

0

2
𝑚𝑥𝑛

2 =

∑ (
𝜕𝑓

𝜕𝑥𝑖
)

0

2
𝑚𝑥𝑖

2𝑛
𝑖=1 . 

   

(5.2) 

Если величины 𝑥1, 𝑥2, … , 𝑥𝑛 коррелированы, т.е. коэффициенты 

попарной корреляционной связи отличны от нуля, 𝑟𝑥𝑖𝑥𝑗
≠ 0, то средняя 

квадратическая ошибка функции вычисляется по формуле: 
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𝑚𝑦
2 = ∑ (

𝜕𝑓

𝜕𝑥𝑖
)

0

2
𝑚𝑥𝑖

2𝑛
𝑖=1 + 2 ∑ (

𝜕𝑓

𝜕𝑥𝑖
)𝑖<𝑗

0
(

𝜕𝑓

𝜕𝑥𝑗
)

0

𝑟𝑥𝑖𝑥𝑗
𝑚𝑥𝑖

𝑚𝑥𝑗
. (5.3) 

В формулах (5.2), (5.3) величины (
𝜕𝑓

𝜕𝑥𝑖
)

0
 – частные производные 

функции, взятые по точным значениям величин Хi, но вычисленные по 

их приближённым значениям, в качестве которых принимают изме-

ренные значения хi. 

Вес искомой величины как функции измеренных параметров 

Пусть дана функция 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), 

где параметры 𝑥1, 𝑥2, … , 𝑥𝑛 – независимо измеренные величины с из-

вестными весами 𝑝𝑥1
, 𝑝𝑥2

, … ,  𝑝𝑥𝑛
. Используя формулы (5.2) и (3.3), по-

лучаем следующую формулу для вычисления обратного веса функции: 

1

𝑝𝑦
= (

𝜕𝑦

𝜕𝑥1
)

0

2 1

𝑝𝑥1

+ (
𝜕𝑦

𝜕𝑥2
)

0

2 1

𝑝𝑥2

+ ⋯ + (
𝜕𝑦

𝜕𝑥𝑛
)

0

2 1

𝑝𝑥𝑛

=

∑ (
𝜕𝑦

𝜕𝑥𝑖
)

0

2 1

𝑝𝑥𝑖

𝑛
𝑖=1 . 

(5.4) 

Если величины 𝑥1, 𝑥2, … , 𝑥𝑛 коррелированы, то есть коэффици-

енты попарной корреляционной связи отличны от нуля, 𝑟𝑥𝑖𝑥𝑗
≠ 0, то 

обратный вес функции вычисляется по формуле: 

1

𝑝𝑦
= ∑ (

𝜕𝑦

𝜕𝑥𝑖
)

0

2 1

𝑝𝑥𝑖

𝑛
𝑖=1 + 2 ∑ (

𝜕𝑦

𝜕𝑥𝑖
)

0
(

𝜕𝑦

𝜕𝑥𝑗
)

0
𝑖<𝑗

𝑟𝑥𝑖𝑥𝑗

√𝑝𝑥𝑖
𝑝𝑥𝑗

.       

(5.5) 

Примеры математической обработки косвенных измерений  

Задача 5.1. В треугольнике измерены два угла, известны их сред-

ние квадратические ошибки 𝑚𝑥1
= 3,0″, 𝑚𝑥2

= 4,0″. Найти среднюю 

квадратическую ошибку третьего угла. 

Решение. Составляем функцию 𝑦 = 180° − 𝑥1 − 𝑥2; тогда част-

ные производные по каждому измеренному аргументу: 

𝜕𝑦

𝜕𝑥1
= −1;      

𝜕𝑦

𝜕𝑥2
= −1; 
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180° – постоянное число; x1 и x2 – независимо измеренные углы. Тогда 

по формуле (5.2) имеем: 

𝑚𝑦
2 = (−1)2 · 32 + (−1)2 · 42 = 25;      

𝑚𝑦 = 5″. 

Задача 5.2. Найти веса следующих функций: 

1. 𝑦 = 2𝑥1 − 0,4𝑥2 + 0,5𝑥3; 

2. 𝑦 = 3𝑥1
2, 

если 𝑝𝑥1
= 2; 𝑝𝑥2

= 0,2; 𝑝𝑥3
= 0,5; 𝑥1 = 1, 𝑟𝑥𝑖𝑥𝑗

= 0. 

Решение: 

1. 
1

𝑝𝑦
= 22 1

𝑝𝑥1

+ (−0,4)2 1

𝑝𝑥2

+ (0,5)2 1

𝑝𝑥3

= 3,3;   𝑝𝑦 =
1

3,3
= 0,30; 

2. 
1

𝑝𝑦
= (6𝑥1)2 1

𝑝𝑥1

= 18; 𝑝𝑦 =
1

18
= 0,06. 

Задача 5.3. Угол  измерен со средней квадратической ошибкой 

m = 5,0''. Определите среднюю квадратическую ошибку утроенного 

значения этого угла.  

Решение:  

Функция имеет вид: f = 3 .  По формуле (5.2) вычисляем: 

mf = 3·m = 15,0''. 

Задача 5.4. Определить среднюю квадратическую ошибку превы-

шения, вычисленного по формуле 

ℎ = 𝑆 · 𝑡𝑔 𝜈, 

где S – горизонтальное проложение,  – угол наклона.  

Имеем 𝑆 = 143,5 м;   𝜈 = +2∘30′;     𝑚𝑆 = 0,5 м;   𝑚𝜈 = 0,5′; 

𝜌′ = 3438′ = 3,44 · 103 (число минут в радианах) 

Решение. Находим превышение 

ℎ = 𝑆 𝑡𝑔 𝜈 = 6,2653 м 

затем по формуле (5.2) среднюю квадратическую ошибку по двум 

независимо измеренным аргументам S и v  

𝑚ℎ
2 = (

𝜕ℎ

𝜕𝑆
)

2
𝑚𝑆

2 + (
𝜕ℎ

𝜕𝜈
)

2
𝑚𝜈

2), 

где 
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𝜕ℎ

𝜕𝑆
= 𝑡𝑔 𝜈;         

𝜕ℎ

𝜕𝜈
=

𝑆

𝑐𝑜𝑠2 𝜈
, 

тогда 

𝑚ℎ
2 = 𝑡𝑔2 𝜈 ⋅ 𝑚𝑆

2 + (
𝑆

𝑐𝑜𝑠2 𝜈
)

2 𝑚𝜈
2

𝜌2 . 

 

𝑡𝑔2 𝜈 = 0,043662;  𝑐𝑜𝑠4 𝜈 = 0,99904;   𝑆2 = 143, 52 м2;  𝜌2 =

34382. 

Окончательно получаем: 

𝑚ℎ = 3,0 × 10−2м = 3,0 см. 

Ответ: ℎ ± 𝑚ℎ = 6,27 м ± 0,03 м. 

Примечание. Для того чтобы оба слагаемых в этом выражении 

имели одинаковую размерность (в м2), необходимо во втором слагае-

мом величину 𝑚𝜈
2 разделить на 2 (т.е. выразить 𝑚𝜈 в радианной мере). 

Известно, что величина mh должна быть получена с двумя (или 

тремя, если число начинается с единицы) значащими цифрами. Чтобы 

это требование обеспечить, необходимо в промежуточных вычисле-

ниях по формуле (5.2) удерживать в числах на одну значащую цифру 

больше, т.е. оставлять три (или четыре) значащие цифры, а сами числа 

следует представлять в стандартной форме. Например, число 0,043662 

необходимо записать так: 4,372 × 10−4; число 34382 следует записать 

так: 3,442 × 106. Такие действия позволят упростить вычисления и, 

кроме того, дадут представление о величине влияния каждого источ-

ника ошибок на общую среднюю квадратическую ошибку функции.  

Контрольные вопросы по теме 5 

1. Раскройте понятие класс равноточных косвенных измерений. 

2. Раскройте понятие неравноточных косвенных измерений. 

3. Приведите примеры косвенных измерений в геодезии. 

4. Что вы понимаете под функциональной зависимостью между 

определяемыми величинами? 

5. Выведите формулу для вычисления веса функции средне взве-

шенного значения неравноточно измеренных величин. 
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6. Выведите формулу для вычисления средней квадратической 

ошибки функции средне взвешенного значения неравноточно 

измеренных величин. 

7. Выведите формулу средней квадратической ошибки арифме-

тической средины равноточно измеренных величин. 

8. Запишите формулу оценки СКО высоты репера, полученного 

по семи превышениям разомкнутого нивелирного хода с при-

вязкой к твердому реперу. 

 

ТЕМА 6. ПРЕДРАСЧЕТ НЕОБХОДИМОЙ ТОЧНОСТИ  

ИЗМЕРЕНИЯ АРГУМЕНТОВ ПРИ ЗАДАННОЙ  

ТОЧНОСТИ ИСКОМОЙ ВЕЛИЧИНЫ 

Постановка обратной задачи теории ошибок измерений 

Оценка искомой величины как функции измеренных параметров 

(аргументов) является прямой задачей теории ошибок. При решении 

обратной задачи  рассчитывают точность измерений аргументов по за-

данному значению средней квадратической ошибки функции. Обрат-

ная задача теории ошибок – это расчет точности измерений аргумен-

тов по заданному значению средней квадратической ошибки функции. 

Предрасчет точности аргументов – определение необходимой точ-

ности измеряемых величин при заданной точности исходной вели-

чины. Задача предрасчета точности измеряемых параметров имеет ме-

сто на этапе планирования геодезических измерений на основе техни-

ческого задания и заданного класса точности определяемых искомых 

величин. 

Пусть известна средняя квадратическая ошибка функции mу: 

у = f (x1,  x2, …, xn) 

независимых аргументов xi, задана ее средняя квадратическая ошибка 

my, необходимо определить значения mх1, mх2, …, mхn  в  формуле: 
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   𝑚𝑦
2 =   (

𝜕𝑓

𝜕𝑥1
)

0

2
𝑚𝑥1

2 + (
𝜕𝑓

𝜕𝑥2
)

0

2
𝑚𝑥2

2 + ⋯ + (
𝜕𝑓

𝜕𝑥𝑛
)

0

2
𝑚𝑥𝑛

2 =

                                          ∑ (
𝜕𝑓

𝜕𝑥𝑖
)

0

2
𝑚𝑥𝑖

2𝑛
𝑖=1 .                                     (6.1) 

В формуле (6.1) неизвестных величин n и возможно множество реше-

ний. Для выбора единственного решения данную задачу решают при 

установлении дополнительного условия.  

Принцип равного влияния ошибок аргументов 

Предполагают, что слагаемые правой части формулы (6.1) равны, 

то есть равновозможно влияют на точность значения искомой функ-

ции. Поэтому применяют так называемый принцип равных влияний – 

требование, что влияние каждого источника ошибок на общую ошибку 

функции было одинаковым. Тогда имеем 

(
𝜕𝑓

𝜕𝑥𝑖
)

0

2
𝑚𝑥𝑖

2 =
𝑚𝑦

2

𝑛
, 

𝑚𝑥𝑖
=

𝑚𝑦

|(
𝜕𝑓

𝜕𝑥𝑖
)

0
|√𝑛

. 
(6.2) 

Все величины 𝑚𝑥𝑖
 находят из решения уравнений (6.2), вычисляя 

значения частной производной функции по каждому измеренному ар-

гументу. Принцип равных влияний применяют в случаях, когда изме-

ряемые параметры, по которым вычисляется значение функции, неод-

нородны (неоднозначны по своей величине, например, длина линии и 

превышение, или имеют разные единицы размерности, например, гра-

дусы и метры).  

Принцип равных среднеквадратических ошибок аргументов 

Предполагают, что средние квадратические ошибки аргументов в 

формуле (6.1) равны между собой: 

                                       m1 = m2 = … = mn = m.  

Тогда средняя квадратическая ошибка аргумента равна: 

      𝑚𝑦
2 = 𝑚𝑥𝑖

2 ∑ (
𝜕𝑓

𝜕𝑥𝑖
)𝑛

𝑖=1
0

2
, 
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                    𝑚𝑥𝑖
=

𝑚𝑦

√   ∑ (
𝜕𝑓

𝜕𝑥𝑖
)𝑛

𝑖=1  0
2
   .                             (6.3) 

Этот принцип применяют тогда, когда измерения однородны 

(например, только углы, только превышения) или только значения од-

ного порядка по величине.  

Расчет ожидаемой точности измеряемых аргументов по задан-

ному значению средней квадратической ошибки функции имеет боль-

шое прикладное значение при планировании будущих измерений и по-

строения опорных сетей заданного класса точности. 

Примеры расчета ожидаемой точности измеряемых величин 

Задача 6.1. С какой точностью нужно измерить расстояние S и 

длину отрезка на рейке l, чтобы определить коэффициент дальномера 

со средней квадратической ошибкой mc = 0,5;  S =100 м,  l =1 м. 

Решение: 

Функция имеет вид   с = S/l  

Частные производные от функции с по аргументам S и l равны 

( с/ l) = – S/l2, 

 (c/S) = 1/l. 

Cредние квадратические ошибки аргументов определяем на основе 

принципа равных влияний по формуле: 

ml  = (mc∙ l2)/(S∙2) = (0,5∙104)/(104∙2) = 0,35 cм, 

mS  = (mc∙ l)/(2) = (0,5∙102)/(2) = 35 cм. 

Задача 6.2. Cредняя квадратическая ошибка (СКО) единицы веса 

 нивелирования по 10 ходам получилась равной 6,0 мм. Вес превы-

шения каждого нивелирного хода определялся как 100/N, где N – число 

станций в ходе. Вычислите СКО превышения на одну станцию и на 

один условный километр, считая в нем в среднем 10 станций. 

Решение: СКО превышения на одну станцию.  

Так как р = 100/N, то ошибка единицы веса – это ошибка превышения 

хода, который включает 100 станций 

                              р =100/100 = 1;       100 = 6 мм. 
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Поэтому СКО превышения на одну станцию определяем при 

весе, равном  

                              N = 1,    р = 100/1 = 100;     

тогда                         ст = 100 /100 = 6/10 = 0,6 мм. 

СКО превышения на один условный километр, считая в нем 10 

станций, равна:  

                                    N = 10,     р = 10;          

тогда                           км = 100 /10 = 6/3,2 = 1,9 мм. 

Задача 6.3. Подсчитайте количество станций в нивелирном ходе 

II класса, если СКО отметки нивелирного хода не должна превышать 

5 мм в наиболее слабом месте хода (середина нивелирного хода). Для 

нивелирования II класса СКО превышения на одну станцию не должно 

превышать 1 мм. 

Решение: отметка репера является функцией измеренных превы-

шений h и определяется по формуле: 

                              H = f(h1, h2, …hn) = h1 + h2 + …+ hn, 

тогда СКО отметки репера как функции измеренных превышений бу-

дет равна 

√𝑚𝑦
2 = (

𝜕𝑓

𝜕𝑥1
)

0

2
𝑚𝑥1

2 + (
𝜕𝑓

𝜕𝑥2
)

0

2
𝑚𝑥2

2 + ⋯ + (
𝜕𝑓

𝜕𝑥𝑛
)

0

2
𝑚𝑥𝑛

2 = ∑ (
𝜕𝑓

𝜕𝑥𝑖
)

0

2
𝑚𝑥𝑖

2𝑛
𝑖=1 . 

Так как величины ошибок измеренных превышений m1, m2, …,  mn  за-

даны и равны 1 мм, а mH равна 5 мм, то число станций n рассчитываем  

     mH
2 = m1

2 + m2
2 + m3

2 +… + mn
2 = n√m1

2, 

                                            mH
 = m√n,                                  

тогда                                      n = mH
 /m =5/1;    

                                             n = 25. 

С учетом определения СКО нивелирного хода в наиболее слабом его 

месте имеем 

n = 25/2 ~12. 
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Такой же результат можно получить, если использовать принцип рав-

ных средних квадратических ошибок (6.3), так как измерения однород-

ные и по величине, и по размерности. 

Задача 6.4. Рассчитайте наибольшую длину нивелирного хода, 

если СКО превышения на 1 км не превышает 2 мм. Предельно допу-

стимая СКО для III класса нивелирования в наиболее слабом месте 

хода равна 10 мм. 

Решение: число станций в нивелирном ходе зависит от длины 

хода L, следовательно, чем больше длина хода, тем больше станций. 

Тогда имеем 

mH
  = mкм√L; 

                                   L = mH
 /mкм = 10/5;    

  L = 25. 

С учетом СКО нивелирного хода в наиболее слабом его месте  

L = 25/2  13 км. 

Контрольные вопросы по теме 6 

1. Приведите примеры необходимости предварительного расчета 

точности измеряемых аргументов при геодезических измерениях. 

2. В чем принципиальная разность применимости между принци-

пом равных влияний и принципом равных средних квадратиче-

ских ошибок. 

3. Запишите формулы средней квадратической  ошибки коррелиро-

ванных и некоррелированных результатов измерений. 

4. В чем состоит «принцип равных влияний» и когда он использу-

ется в геодезической практике? Приведите примеры применения.  

5. В чем состоит «равных средних квадратических ошибок» и для 

чего он используется в геодезической практике? Приведите при-

меры его применения. 
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ТЕМА 7. ОЦЕНКА ТОЧНОСТИ ИЗМЕРЕНИЙ ПО НЕВЯЗКАМ 

В ПОЛИГОНАХ И ХОДАХ 

Оценка точности измерения горизонтальных углов по 

угловым невязкам в полигонах 

В результате измерений n горизонтальных углов в опорной 

сети полигонометрии получены f  невязки углов в N полигонах. Тогда 

точность измерения одного угла определяется по формуле: 

                                       
N

n

f













=

2



 .                                   (7.1) 

В результате измерений горизонтальных углов в сети триангуля-

ции получены f  невязки углов в N треугольниках, тогда формула (7.1) 

преобразуется к виду: 

                                  
 
N

f
m

3

2



 = .                                (7.2) 

Оценка точности измерения превышений по невязкам  

в нивелирных полигонах и ходах 

В результате измерений превышений получены fh невязки в N по-

лигонах геометрического нивелирования, причем ходы могут быть как 

замкнутые, так и разомкнутые ходы.  

СКО измерения превышения, если в нивелирном ходе одна стан-

ция, то есть n = 1 

                                         
N

n

f h









=

2

                                         (7.3) 

 

СКО измерения превышения, если длина L нивелирного хода 

равна 1 км, то есть L = 1 км 

                                         
N

L

f h









=

2

                                         (7.4) 
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где ni – число станций в ходах; Li – длина ходов, км. 

При измерении превышения h тригонометрическим методом 

превышение вычисляется по формуле: 

h = d tg(v). 

Тогда в результате измерений превышений получены fh невязки в N 

полигонах тригонометрического нивелирования (полигоны) 

                                          
N

D

f h









=

2

2

 ,                                          (7.5) 

где d – длина линии, км, v – значение вертикального угла, Di – пери-

метры полигонов, км.  

Задача 7.1. В результате измерений превышений в 6 разомкнутых 

ходах с различным значением станций получены значения невязок (fh) 

(табл. 9) методом геометрического нивелирования. 

 

Таблица 9. 

Исходные данные и промежуточные вычисления задачи 7.1. 

 

№ хода fh ,  (мм) Число станций, n       fh 
2/n 

1 -13 10 16,9 

2 -16 15 17,1 

3 +15 12 18,7 

4 +13  9 18,8 

5 -17 14 20,6 

6 +15 17 13,2 

сумма  77 105,3 

 

Решение. 

Вычисляем согласно формулы (7.3) СКО измерения превышения на 

одной станции 
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                                         𝜇 = √
105,3

77
  = 1 мм.                                      

Контрольные вопросы по теме 7 

1. Нарисуйте схему измерений горизонтальных углов в 5 полигонах, 

в каждом из которых различное n число горизонтальных углов (n1 

= 3, n2 = 6,   n3 = 4, n4 = 8, n5 = 5), запишите для данного примера 

формулу (7.1).  

2. Нарисуйте схему измерений горизонтальных углов в 4 триангуля-

ционных звеньях, запишите для данного примера формулу (7.2). 
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