

Modules close to the automorphism-invariant and coinvariant

Truong Cong Quynh*,¶, Adel Nailevich Abyzov^{†,||}, Nguyen Thi Thu Ha^{‡,**} and Tülay Yildirim^{§,††}

*Department of Mathematics The University of Danang – University of Science and Education 459 Ton Duc Thang, Danang City, Vietnam [†]Department of Algebra and Mathematical Logic Kazan (Volga Region) Federal University 18 Kremlyovskaya Street, Kazan 420008, Russia [‡]Industrial University of Ho Chi Minh City 12 Nguyen Van Bao, Go Vap District, Ho Chi Minh City, Vietnam [§]Department of Mathematics, Gebze Technical University 41400 Gebze, Kocaeli, Turkey [¶]tcquynh@ued.udn.vn [¶]Adel. Abyzov@kpfu.ru ^{**}nguyenthithuha8282@gmail.com ^{††}tyildirim@gtu.edu.tr

> Received 20 July 2019 Accepted 31 July 2019 Published 30 August 2019

Communicated by A. Facchini

The aim of this paper is to introduce a general setting where some well-known results on essentially injective modules, automorphism-(co)invariant modules and small projective modules can be obtained by developing a general theory of modules which are (co)invariant under automorphisms of their covers and envelopes.

Keywords: Essentially injective module; small projective module; automorphism-invariant module; automorphism-coinvariant module.

Mathematics Subject Classification 2010: 16D50, 16D60, 16D80

1. Introduction

Throughout this paper, all rings will be associative rings with identity and our modules will be unitary right modules unless otherwise is stated. We will use the notation $N \leq M$, $N \leq^e M$, $N \ll M$ to stress that N is the submodule of M, N is the essential submodule of M and N is the small submodule of M, respectively. We write $J(R), J(M), \operatorname{Soc}(R_R), \operatorname{Soc}(M), Z(R_R)$ for the Jacobson radical of the ring

¶Corresponding author.