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1 Множества и операции над ними
Понятие множества относится к числу первичных в математике:

его нельзя определить через другие понятия. Можно дать следующее
неформальное определение множества. Множество — это совокуп-
ность определенных и различных между собой объектов, мыслимая
как единое целое. Объекты, из которых состоит множество, называ-
ют его элементами. Если x является элементом множества M , то
записывают x ∈M , если не является, то x /∈M .

Множество можно задать различными способами:
1) перечислением его элементов: M = {a1, a2, . . . , an};
2) предикатом (т.е. некоторым условием на элементы, выраженным
в форме логического утверждения): M = {x| P (x)};
3) порождающей процедурой:M = {an|an = f(an−1, an−2, . . . , an−k)}.

Два множества A и B считаются равными, если они состоят из
одних и тех же элементов. Если каждый элемент множества A явля-
ется элементом множества B, то множество A называется подмно-
жеством множества B и обозначается A ⊆ B. Значит, два множе-
ства A и B равны тогда и только тогда, когда A ⊆ B и B ⊆ A. Если
A ⊆ B и A 6= B, то A называется собственным подмножеством
B и обозначается A ⊂ B. Множество всех подмножеств множества
A обозначают P (A) или 2A. Множество, не содержащее ни одного
элемента, называется пустым и обозначается ∅. Пустое множество
является подмножеством любого множества.

Обычно предполагается, что существует универсальное множе-
ство U такое, что все рассматриваемые множества являются под-
множествами U .

Операции над множествами:
1) объединение множеств: A ∪B = {x|x ∈ A или x ∈ B};
2) пересечение множеств: A ∩B = {x|x ∈ A и x ∈ B};
3) разность множеств: A \B = {x|x ∈ A и x /∈ B};
4) симметрическая разность множеств: A4B = (A\B)∪ (B \A);
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5) дополнение множества: A = {x|x /∈ A} = U \ A;
6) декартово произведение множеств: A× B = {(x, y)|x ∈ A и y ∈
B};
7) декартова степень множества: произведение множества A са-
мого на себя n раз, т.е. An = (. . . ((A× A)× A)× . . .× A).

Свойства операций объединения, пересечения и дополнения мно-
жеств: для любых подмножеств A, B, C универсального множества
U выполняются следующие соотношения:

1) A ∪B = B ∪ A; 11) A ∪ ∅ = A;
2) A ∩B = B ∩ A; 12) A ∪ U = U ;
3) (A ∪B) ∪ C = A ∪ (B ∪ C); 13) A ∩ ∅ = ∅;
4) (A ∩B) ∩ C = A ∩ (B ∩ C); 14) A ∩ U = A;

5) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C); 15) (A) = A;
6) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C); 16) A ∪B = A ∩B;
7) A ∪ (A ∩B) = A; 17) A ∩B = A ∪B;
8) A ∩ (A ∪B) = A; 18) A ∪ A = U ;
9) A ∪ A = A; 19) A ∩ A = ∅.
10) A ∩ A = A;

1.1. Пусть U = {0, 1, 2, . . . , 9} — универсальное множество и A =
{1, 2, 5} и B = {2, 3, 4, 5} — его подмножества. Найти A ∪B, A ∩B,
A \B, B \ A, A4B, Ā, B̄, 2A.

1.2. Пусть U = {0, 1, 2, . . . , 9} — универсальное множество и A =
{x|2 < x ≤ 6}, B = {x|x — четно}, C = {x|x ≥ 4} и D = {x|x =
2y и y ∈ N} — его подмножества. Найти A ∪ B, C ∩ D, B 4 C,
(A \B) ∪ (C \D), Ā ∪ B̄ ∪ C̄, 2A ∩ 2B, 2D \ 2B.

1.3. Пусть A = {a, b, c} и B = {c, d}. Записать множества A×B,
B × A, A2, B2.

1.4. Пусть A = [0, 1] × R, B = R × [0, 1]. Изобразить на коорди-
натной плоскости множества A ∪B, A ∩B, A \B, B \ A.
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1.5. Построить диаграмму Эйлера-Венна для множеств:
1) A ∩B (если универсальное множество U = A ∪B);
2) (A ∪B) ∩ C (если универсальное множество U = A ∪B ∪ C).

1.6. Пусть M2, M3, M5 — подмножества множества натуральных
чисел, состоящие соответственно из всех чисел, кратных 2, 3, 5. С
помощью операций над множествами выразить через них множества
всех чисел:

1) делящихся на 6;
2) делящихся на 30;
3) взаимно простых с 30;
4) делящихся на 10, но не делящихся на 3.

1.7. Доказать следующие тождества:
1) A ∪ (A ∩B) = A;
2) A ∩ (A ∪B) = A;
3) A ∪ (A ∩B) = A ∪B;
4) A ∩ (A ∪B) = A ∩B;
5) A ∪B = A ∩B;
6) A ∩B = A ∪B;
7) (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C);
8) (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C);
9) A \ (B ∪ C) = (A \B) ∩ (A \ C);
10) A \ (B ∩ C) = (A \B) ∪ (A \ C);
11) A \ (A \B) = A ∩B;
12) A \B = A ∩ B̄;
13) B ∩ (A \B) = ∅;
14) B ∪ (A \B) = A ∪B;
15) (A ∪B) ∩ (B̄ ∪ A) = A;
16) (A \B) ∪ (A ∩B) = A;
17) A4 A = ∅;
18) A4 ∅ = A;
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19) A4 U = A;
20) A4 (A4B) = B;
21) (A4B)4 C = A4 (B 4 C);
22) A ∩ (B 4 C) = (A ∩B)4 (A ∩ C);
23) A ∪B = (A4B) ∪ (A ∩B);
24) A \B = A4 (A ∩B);
25) (A ∪B) \ (A ∩B) = A4B;
26) (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D);
27) (A ∪B)× C = (A× C) ∪ (B × C);
28) (A \B)× C = (A× C) \ (B × C);
29) A× (B \ C) = (A×B) \ (A× C).

1.8. Методом математической индукции доказать, что n-элементное
множество имеет 2n подмножеств.
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2 Элементы комбинаторики
Набор элементов {ai1, ai2, . . . , aik} из множества {a1, a2, . . . , an}

называется выборкой объема k из n элементов или (n,k)-выборкой.
Выборка называется упорядоченной, если в ней задан порядок следо-
вания элементов. Если порядок следования элементов в выборке не
существенен, то выборка называется неупорядоченной. Упорядочен-
ные выборки называются размещениями, неупорядоченные — соче-
таниями. Как в упорядоченных, так и в неупорядоченных выборках
могут допускаться или не допускаться повторения элементов. Каж-
дое (n,k)-сочетание без повторений представляет собой подмноже-
ство мощности k множества из n элементов.

При подсчете числа различных комбинаций используются следу-
ющие два правила:

Правило произведения. Если объект A может быть выбран n спо-
собами и после каждого из таких выборов объект B может быть
выбран m способами, то выбор “A и B” в указанном порядке может
быть осуществлен nm способами.

Правило суммы. Если объект A может быть выбран n способами,
а объект B — другимиm способами при условии, что одновременный
выбор A и B невозможен, то выбор “A или B” можно осуществить
n+m способами.

Имеют место следующие формулы (в этих формулах n! = 1 · 2 ·
3 · . . . · n и 0! = 1): 1) число (n, k)-размещений без повторений —
Ak
n = n!

(n−k)! ; 2) число (n, k)-размещений с повторениями — A
k
n = nk;

3) число (n, k)-сочетаний без повторений — Ck
n = n!

k!(n−k)! ; 4) число

(n, k)-сочетаний с повторениями — C
k
n = Ck

n+k−1 = (n+k−1)!
k!(n−1)! .

Числа Ck
n суть коэффициенты в разложении бинома Ньютона и

называются биномиальными коэффициентами, т. е. для произволь-
ных чисел a, b и целого положительного числа n справедливо следу-
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ющее равенство:

(a+ b)n =
n∑
k=0

Ck
na

kbn−k.

2.1. Сколькими различными способами можно расставить оценки
(2, 3, 4, 5) четверым студентам так, чтобы никакие два студента не
получили одну и ту же оценку?

2.2. Сколькими различными способами можно расставить оценки
4 и 5 десяти студентам?

2.3. Сколькими способами можно выбрать 3-х призеров из 10
участников соревнования?

2.4. Под словом понимаем последовательность заданных букв,
вне зависимости имеет или нет этот набор букв смысловое содер-
жание. Сколько трехбуквенных слов можно составить из букв слова
“логика”?

2.5. Перевертыш — это многозначное число, которое не поменяет
своего значения, если все его цифры записать в обратном порядке.
Сколько существует четырехзначных перевертышей? Сколько ше-
стизначных?

2.6. Сколько существует в десятичной системе счисления
1) двузначных чисел;
2) двузначных чисел, в которых нет одинаковых цифр;
3) нечетных трехзначных чисел;
4) пятизначных чисел, которые делятся на пять;
5) пятизначных чисел, у которых все цифры нечетные?

2.7. Сколькими способами можно составить список из 7 студен-
тов?
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2.8. Сколькими способами можно рассадить 7 гостей за круглый
стол? Тот же вопрос для случая n гостей?

2.9. Сколькими способами можно распределить 3 билета среди
20 студентов, если:

1) распределяются билеты в разные театры и каждый студент
может получить не более одного билета;

2) распределяются билеты в разные театры на разные дни и каж-
дый студент может получить любое (не превышающее трех) число
билетов;

3) распределяются равноценные билеты на вечер и каждый сту-
дент может получить не более одного билета?

2.10. Сколькими способами можно выстроить 9 человек:
1) в колонну по одному;
2) в колонну по три, если в каждой шеренге люди выстраиваются

по росту и нет людей одинакового роста?

2.11. Дано n предметов одного сорта и m предметов другого сор-
та. Найти число выборок, составленных из k предметов одного сорта
и l предметов другого сорта.

2.12. Имеется колода из 4n (n ≥ 5) карт, которая содержит карты
четырех мастей по n карт каждой масти, занумерованных числами
1, 2, . . . , n. Подсчитать, сколькими способами можно выбрать пять
карт так, что среди них окажутся:

1) пять последовательных карт одной масти;
2) четыре карты из пяти с одинаковыми номерами;
3) три карты с одним номером и две карты с другим;
4) пять карт какой-нибудь одной масти;
5) пять последовательно занумерованных карт;
6) в точности три карты из пяти с одним и тем же номером;
7) не более двух карт каждой масти.
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2.13. Найти число подмножеств X множества {0, 1, 2, . . . , 9}, об-
ладающих следующими свойствами:

1) |X| = 3;
2) |X| = 5, 1 ∈ X;
3) |X| = 6, 2 /∈ X;
4) |X| = 7, {0, 1} ⊂ X, 2 /∈ X;
5) множество X состоит из трех четных и двух нечетных чисел;
6) |X| ≤ 5.

2.14. На окружности отмечены точки A1, A2, . . . , A12, располо-
женные последовательно. Сколько существует:

1) хорд с концами в отмеченных точках;
2) треугольников с вершинами в отмеченных точках;
3) выпуклых четырехугольников с вершинами в отмеченных точ-

ках;
4) треугольников с вершинами в отмеченных точках, не имеющих

общих точек с прямой A2A8;
5) треугольников с вершинами в отмеченных точках, имеющих

общие точки с прямой A1A5?

2.15. Доказать следующие свойства биномиальных коэффициен-
тов:

1) Ck
n = Cn−k

n ;
2) Ck

nC
m−k
n−k = Ck

mC
m
n ;

3) Ck
n = Ck−1

n−1 + Ck
n−1;

4)
n∑
r=k

Ck
r = Ck+1

n+1.

2.16. Используя бином Ньютона, доказать следующие равенства:

1)
n∑
k=0

Ck
n = 2n;

2)
n∑
k=0

(−1)kCk
n = 0;
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3)
n∑
k=1

kCk
n = n2n−1;

4)
n∑
k=2

k(k − 1)Ck
n = n(n− 1)2n−2;

5)
n∑
k=0

1
k+1C

k
n = 1

n+1(2n+1 − 1);

6)
n∑
k=0

(2k + 1)Ck
n = (n+ 1)2n;

7)
n∑
k=0

(−1)k
k+1 C

k
n = 1

n+1 ;

8)
n∑
k=0

(Ck
n)2 = Cn

2n;

9)
n∑
k=0

(−1)k
k Ck

n = 1 + 1
2 + . . .+ 1

n .
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3 Булевы функции и способы их задания
Пусть B = {0, 1}. Функция, определенная на множестве Bn со

значениями в множестве B, называется булевой функцией от n пе-
ременных.

Булеву функцию f(x1, x2, . . . , xn) при n ≥ 1 можно задать таб-
лицей значений, в которой аргументы выписываются в порядке воз-
растания их номеров (сверху вниз):

x1 x2 . . . xn−1 xn f(x1, x2, . . . , xn−1, xn)
0 0 . . . 0 0 f(0, 0, . . . , 0, 0)
0 0 . . . 0 1 f(0, 0, . . . , 0, 1)
0 0 . . . 1 0 f(0, 0, . . . , 1, 0)
... ... . . . ... ... ...
1 1 . . . 1 1 f(1, 1, . . . , 1, 1)

Такая таблица называется таблицей значений булевой функции,
ее также называют таблицей истинности.

Подразумевая такое стандартное расположение наборов аргумен-
тов, булеву функцию f(x1, x2, . . . , xn) удобно задавать в виде векто-
ра значений αf = (α0, . . . , α2n−1), где αi = f(σi) и σi — это набор,
соответствующий двоичной записи числа i (i = 0, . . . , 2n − 1).

Приведем таблицы для некоторых булевых функций от 1 и 2 пе-
ременных:

x 0 1 f1 f2
0 0 1 0 1
1 0 1 1 0

x y f3 f4 f5 f6 f7 f8 f9
0 0 0 0 0 1 1 1 1
0 1 0 1 1 0 1 1 0
1 0 0 1 1 0 0 1 0
1 1 1 1 0 1 1 0 0

Эти функции имеют специальные обозначения и названия:
1) Функции 0 и 1 называются (тождественным) нулем и (тож-

дественной) единицей, соответственно.
2) Функция f1 — тождественной функцией и обозначается x.
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3) Функция f2 — отрицанием и обозначается x или ¬x.
4) Функция f3 — конъюнкцией и обозначается x1&x2, x1 ∧ x2,

x1 · x2, x1x2 или min(x1, x2).
5) Функция f4 называется дизъюнкцией и обозначается x1 ∨ x2

или max(x1, x2).
6) Функция f5 называется суммой по модулю 2 и обозначается

x1 ⊕ x2 или x1 + x2.
7) Функция f6 — эквиваленцией (эквивалентностью) и обозна-

чается x1 ∼ x2, x1 ≡ x2 или x1 ↔ x2.
8) Функция f7 — импликацией и обозначается x1 → x2.
9) Функция f8 — штрихом Шеффера и обозначается x1 | x2.
10) Функция f9 — стрелкой Пирса и обозначается x1 ↓ x2.
Функции 0 и 1 иногда рассматриваются как нульместные, т. е.

зависящие от пустого множества переменных.
Формулами над множеством связок {¬, ∨, ⊕, ↔, →, |, ↓} назы-

ваются только выражения, которые могут быть получены с помощью
следующих правил:

1) x — любая булева переменная,
2) если F и G — формулы, то F , (F ∧ G), (F ∨ G), (F ⊕ G),

(F ↔ G), (F → G), (F | G), (F ↓ G) — формулы.
Аналогично, можно определить множество формул над любым

множеством связок (булевых функций).
Для сокращения записи формул пользуются следующими согла-

шениями:
1) внешние скобки у формул опускают,
2) считают, что связка ¬ (т.е. )̄ сильнее любой двухместной связ-

ки; связка ∧ — сильнее, чем любая другая двухместная связка; связ-
ка ∨ — сильнее, чем любая другая двухместная связка, кроме ∧.

Каждой формуле по индукции сопоставляется булева функция,
которую она реализует:

1) x – сопоставляется тождественная функция f(x) = x,
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2) если формулам F и G сопоставлены булевы функции, то фор-
мулам F , (F ∧ G), (F ∨ G), (F ⊕ G), (F ↔ G), (F → G), (F | G),
(F ↓ G) сопоставляются, отрицание, конъюнкция, дизъюнкция, сум-
ма по модулю 2, эквивалентность, импликация, штрих Шеффера,
стрелка Пирса от булевых функций сопоставленных F и G, соответ-
ственно.

Поэтому, в дальнейшем, функцию будем обозначать тем же сим-
волом, что и реализующую ее формулу.

Формулы F (x1, x2, . . . , xn) и G(x1, x2, . . . , xn) называются эквива-
лентными, если на любом наборе (α1, α2, . . . , αn) значений перемен-
ных значения функций F (α1, α2, . . . , αn) и G(α1, α2, . . . , αn), реали-
зуемых соответствующими формулами, совпадают. Эквивалентные
формулы обозначаются: F = G или F ≡ G.

Построением таблицы значений можно убедиться в эквивалент-
ности следующих пар формул. Их обычно называют основными эк-
вивалентностями алгебры логики:

1. коммутативность: x ∧ y = y ∧ x, x ∨ y = y ∨ x, x ⊕ y = y ⊕ x,
x↔ y = y ↔ x, x|y = y|x, x ↓ y = y ↓ x;

2. ассоциативность: x∧(y∧z) = (x∧y)∧z, x∨(y∨z) = (x∨y)∨z,
x⊕ (y ⊕ z) = (x⊕ y)⊕ z, x↔ (y ↔ z) = (x↔ y)↔ z;

3. дистрибутивность: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x ∨ (y ∧ z) =
(x ∨ y) ∧ (x ∨ z), x ∧ (y ⊕ z) = (x ∧ y)⊕ (x ∧ z);

4. законы де Моргана: x ∧ y = x ∨ y, x ∨ y = x ∧ y;
5. правила поглощения: x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x;
6. x ∧ (x ∨ y) = x ∧ y, x ∨ (x ∧ y) = x ∨ y;
7. x ∧ x = 0, x ∧ 0 = 0, x⊕ x = 0;
8. x ∨ x = 1, x ∨ 1 = 1, x↔ x = 1, x→ x = 1;
9. x ∨ x = x, x ∧ x = x, x ∨ 0 = x, x ∧ 1 = x, x⊕ 0 = x;
10. x⊕ 1 = x, x→ 0 = x, x↔ 0 = x, x|x = x, x ↓ x = x;
11. x = x;
12. x→ y = x ∨ y = x ∧ y ⊕ x⊕ 1, x↔ y = (x→ y) ∧ (y → x) =

(x∨ y)∧ (x∨ y) = (x∧ y)∨ (x∧ y), x⊕ y = x↔ y = (x∧ y)∨ (x∧ y) =
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(x ∨ y) ∧ (x ∨ y);
13. x|y = x ∧ y = x ∨ y, x ↓ y = x ∨ y = x ∧ y.

3.1. Построить таблицы истинности булевых функций, реализу-
емых следующими формулами:

1) (x1 ⊕ x1 → x2) ∧ (x2 ↔ x1);
2) (x1 → x1x2) ∨ (x2 ↓ x1);
3) ((x1 → x2) ∨ (x1 ⊕ x3)) ∧ (x2|x3);
4) ((x1 ∧ x2) ↓ (x1|x2))→ (x3 → x2);
5) (x1 ↔ x2) ∨ (x2 → x3) ↓ ((x1 ⊕ x3) ∨ x2);
6) x1 → x2 ⊕ ((x1 → x3)↔ x2) ∧ x3;
7) (x1 ∨ x2)→ ((x1 ↓ x2)|x3) ↓ x2;
8) (x1 ↔ x2)→ ((x1 ∧ x3 → x2)→ x1 ∧ x3;
9) (((x1 ↓ x2)|x3)|x1) ↓ x2;
10) ((x1 → x2)⊕ (x1 → x2 ∧ x3))|(x1 ↓ x2);
11) (x1 ↔ x3 ∧ x4) ∨ (x4 ∨ x1)→ x2;
12) (x1 ∧ x4 → x2 ∧ x3)↔ (x1 ∨ x3);
13) x1 ∨ x2 ∨ x3 → ((x2 ∨ x3)→ x1 ∧ x4);
14) (((x2 ∨ x3 ∨ x4)→ x1) ∨ x1 ∧ x2)→ x4.

3.2. Построив таблицы истинности булевых функций, проверить
эквивалентны ли формулы, их реализующие:

1) (x1 → x2)⊕ ((x2 → x3)→ x1 ∧ x2) и x2 ∧ x3 → x1;
2) (x1 ∨ x2) ↓ (x1 → (x2 → x3)) и x2 → x1 ∨ x3;
3) x1 → ((x2 → x3)→ x2 ∧ x3) и (x1 ∨ (x2 → x3)) ∧ (x1 ⊕ x2);
4) (x1 ↓ x2) ∨ (x1 ↔ x3)|(x1 ⊕ x2 ∧ x3) и x1 ∧ (x2 ∧ x3) ∨ x1 → x3;
5) (x1 ∨ x2)→ ((x2 ↓ x3)→ (x1 ↔ x1 ∧ x3))

и x1 ∧ x2 ∨ (x1 → x1 ∧ x2 → x3);
6) (x1|x2)→ ((x2 ↓ x3)→ (x1 ⊕ x3)) и x1 ∧ (x2 ∧ x3) ∨ (x1 → x3).

3.3. Построив таблицы истинности соответствующих булевых функ-
ций, доказать основные эквивалентности алгебры логики, приведен-
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ные перед задачами.

3.4. Построив таблицы истинности соответствующих булевых функ-
ций, убедиться в справедливости следующих эквивалентностей:

1) x ∨ y = (x→ y)→ y;
2) x ∨ (y ↔ z) = x ∨ y ↔ x ∨ z;
3)x ∧ (y ↔ z) = (x ∧ y ↔ x ∧ z)↔ x;
4) x→ (y ↔ z) = (x→ y)↔ (x→ z);
5) x ∨ (y → z) = x ∨ y → x ∨ z;
6) x ∧ (y → z) = (x→ y)→ x ∧ z;
7) x→ (y ∨ z) = (x→ y) ∨ (x→ z);
8) x→ (y ∧ z) = (x→ y) ∧ (x→ z);
9) x→ (y → z) = (x→ y)→ (x→ z).

3.5. Используя основные эквивалентности алгебры логики, дока-
зать эквивалентность формул:

1) (x1 → x2)→ (x1 ∧ x2 ↔ (x1 ⊕ x2)) и (x1 ∧ x2 → x1)→ x2;
2) (x1 ∧ x2 ∨ (x1 → x2 ∧ x3))↔ ((x1 → x2)→ x3)

и (x1 → x2)⊕ (x2 ⊕ x3);
3) (x1 ⊕ x2 ∧ x3)→ (x1 → (x2 → x3)) и x1 → ((x2 → x3)→ x1);
4) (x1 ∨ x2 ∧ x3)→ ((x1 → x2)→ (x2 ∨ x3 → x1))

и (x1 → x2)→ (x2 → x1);
5) (x1∧x2∨x1∧x3)⊕((x2 → x3)→ x1∧x2) и (x1∧(x2∧x3)⊕x2)⊕x3;
6) (x1 ↔ x2)→ (x1 → x3) ∨ (x1 ⊕ x2 ∧ x3) и x1 ↔ (x3 → x2).

3.6. Используя основные эквивалентности алгебры логики, вы-
разить

1) отрицание, конъюнкцию, дизъюнкцию, сумму по модулю 2, эк-
вивалентность, импликацию, стрелку Пирса через штрих Шеффера;

2) отрицание, конъюнкцию, дизъюнкцию, сумму по модулю 2, эк-
вивалентность, импликацию, штрих Шеффера через стрелку Пирса.
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4 Нормальные формы
Литералом называется переменная или ее отрицание. Удобно обо-

значать литерал следующим образом:

xσ =

{
x, если σ = 1;

x, если σ = 0.

Элементарным конъюнктом называется конъюнкция несколь-
ких литералов xσ1i1 ∧ xσ2i2 ∧ · · · ∧ x

σk
ik
. Элементарный конъюнкт на-

зывается полным, если он содержит все переменные, входящие в
функцию. Дизъюнкция нескольких элементарных конъюнктов на-
зывается дизъюнктивной нормальной формой (ДНФ). Дизъюнкция
нескольких полных элементарных конъюнктов называется совершен-
ной дизъюнктивной нормальной формой (СДНФ).

Элементарным дизъюнктом называется дизъюнкция несколь-
ких литералов xσ1i1 ∨ xσ2i2 ∨ · · · ∨ x

σk
ik
. Элементарный дизъюнкт на-

зывается полным, если он содержит все переменные, входящие в
функцию. Конъюнкция нескольких элементарных дизъюнктов на-
зывается конъюнктивной нормальной формой (КНФ). Конъюнкция
нескольких полных элементарных дизъюнктов называется совершен-
ной конъюнктивной нормальной формой (СКНФ).

Простейший (но весьма громоздкий) способ построения дизъюнк-
тивных и конъюнктивных нормальных форм для булевых функций
состоит в использовании эквивалентных преобразований:

1) Сначала строится эквивалентная формула, содержащая только
операции ∧, ∨, ¬, используя эквивалентности из предыдущего пара-
графа: x→ y = x∨y, x↔ y = (x∧y)∨(x∧y), x⊕y = (x∧y)∨(x∧y),
x | y = x ∧ y, x ↓ y = x ∨ y.

2) С помощью законов де Моргана строится эквивалентная фор-
мула, содержащая только операции ∧, ∨, ¬, в которой отрицание
относится только к переменным.
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3) Раскрываются скобки по законам дистрибутивности: для по-
строения ДНФ используется первый закон дистрибутивности, для
построения КНФ — второй.

4) Для построения совершенных нормальных форм (из построен-
ных на третьем шаге ДНФ и КНФ) необходимо добавить недостаю-
щие переменные в конъюнкты и дизъюнкты. Если в элементарный
конъюнкт/дизъюнкт не входит переменная x, то добавляем ее сле-
дующим образом:

K = K∧1 = K∧(x∨x) = K∧x∨K∧x (для построения СДНФ),
D = D ∨ 0 = D ∨ (x ∧ x) = (D ∨ x) ∧ (D ∨ x) (для построения

СКНФ).
Совершенные дизъюнктивные и конъюнктивные нормальные фор-

мы можно также построить по таблице истинности функции:
СДНФ: f(x1, x2, . . . , xn) =

∨
(σ1,σ2,...,σn):f(σ1,σ2,...,σn)=1

xσ11 x
σ2
2 · · ·xσnn ,

СКНФ: f(x1, x2, . . . , xn) =
∧

(σ1,σ2,...,σn):f(σ1,σ2,...,σn)=0

(xσ11 ∨x
σ2
2 ∨· · ·∨xσnn ).

Здесь знак конъюнкции ∧ заменен на ·, который опускается при
записи формулы.

4.1. С помощью эквивалентных преобразований построить ДНФ
функции, заданной формулой:

1) f = (x̄1 ∨ x̄2 ∨ x̄3)(x1x2 ∨ x3);
2) f = (x̄1x2 ⊕ x3)(x1x3 → x2);
3) f = (x1 ≡ x2) ∨ (x1x3 ⊕ (x2 → x3));
4) f = (x1 ↓ x2x3) ↓ ((x̄1|x2) ↓ x3);
5) f = x1 → (x2 → x3)⊕ (x1|(x2 ⊕ x3));
6) f = x1x̄2 ∨ x3 ≡ (x1 → x2x̄3);
7) f = (x1 ∨ x2x̄3)(x1x̄2 ∨ x̄3)(x1x2 ∨ x3);
8) f = (x1 ∨ x2x̄3x̄4)((x̄1 ∨ x4)⊕ x2x3) ∨ x̄2(x3 ∨ x1x̄4);
9) f = (x1 → x2)(x2 → x̄3)(x3 → x1x̄4);
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10) f = (x1 ↓ x2)((x2|x3) ∨ x1x̄4)(x1 ↓ (x3|x4)).
4.2. С помощью эквивалентных преобразований построить КНФ

функции, заданной формулой:
1) f = ((x1 → x2)⊕ (x̄1|x2))(x1 ≡ x2(x1 → x2));
2) f = x1x2 ∨ (x1 ↓ (x2 ∨ (x̄1 → x2)));
3) f = x1x̄2 ∨ x̄2x3 ∨ (x1 → x2x3);
4) f = (x̄1 → (x2 → x3))⊕ x1x̄2x3;
5) f = (x1 ≡ (x2 → x3)) ∨ (x2 → x1x3);
6) f = x̄1x2 ∨ x̄2x3 ∨ x̄3x4 ∨ x1x̄4;
7) f = (x1 ≡ x2) ∨ (x1x3 ≡ x4) ∨ x2x̄3.
4.3. Используя дистрибутивный закон x(y ∨ z) = xy ∨ xz и экви-

валентности x · x = x, x · x = 0, x · 0 = 0, x ∨ 0 = x и x ∨ xy = x,
перейти от заданной КНФ функции к ее ДНФ:

1) f = (x̄1 ∨ x̄2)(x1 ∨ x3)(x̄2 ∨ x̄3);
2) f = x1(x1 ∨ x̄2 ∨ x̄3)(x2 ∨ x̄3);
3) f = (x1 ∨ x̄2)(x1 ∨ x̄3)(x̄1 ∨ x̄2 ∨ x3);
4) f = (x̄1 ∨ x2)(x̄1 ∨ x̄3)(x̄1 ∨ x3)(x2 ∨ x3);
5) f = (x1 ∨ x̄2 ∨ x3)(x̄1 ∨ x2 ∨ x̄3)(x1 ∨ x2 ∨ x3);
6) f = (x1 ∨ x̄2)(x2 ∨ x̄3)(x2 ∨ x4)(x3 ∨ x̄4);
7) f = (x̄1 ∨ x2 ∨ x̄3 ∨ x4)(x1 ∨ x̄2 ∨ x3)(x1 ∨ x4).
4.4. Используя дистрибутивный закон x ∨ yz = (x ∨ y)(x ∨ z) и

эквивалентности x∨x = x, x∨x = 1, x∨1 = 1, x·1 = x и x(x∨y) = x,
перейти от заданной ДНФ функции к ее КНФ:

1) f = x̄1x̄2 ∨ x3;
2) f = x1x̄2 ∨ x2x̄3 ∨ x̄2x3;
3) f = x̄1 ∨ x2x3 ∨ x̄2x̄3;
4) f = x̄1 ∨ x2 ∨ x1x̄2x3;
5) f = x̄1x̄2 ∨ x̄2 ∨ x2x̄3;
6) f = x1x2 ∨ x2x̄3 ∨ x̄2x4 ∨ x3x4;
7) f = x1 ∨ x2x̄3 ∨ x̄1x3x4 ∨ x̄2x3x̄4.
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4.5. Построить из заданной ДНФ функции ее СДНФ:
1) f = x1x2 ∨ x̄3;
2) f = x̄1x̄2 ∨ x2x̄3 ∨ x1x̄3;
3) f = x1 ∨ x2x3 ∨ x̄2x̄3;
4) f = x1 ∨ x̄2 ∨ x̄1x3;
5) f = x1x2x̄3 ∨ x1x3x̄4;
6) f = x1x2 ∨ x̄2x4 ∨ x3x̄4;
7) f = x1 ∨ x2x3 ∨ x̄1x4.
4.6. Построить из заданной КНФ функции ее СКНФ:
1) f = (x1 ∨ x̄2)x3;
2) f = (x1 ∨ x2)(x̄2 ∨ x3)x̄3;
3) f = (x̄1 ∨ x2)(x1 ∨ x̄3)(x2 ∨ x3);
4) f = x1x̄2(x̄1 ∨ x3)(x1 ∨ x̄3);
5) f = (x1 ∨ x2 ∨ x3)(x1 ∨ x̄2 ∨ x̄4);
6) f = (x1 ∨ x2)(x̄2 ∨ x3)(x̄3 ∨ x4);
7) f = x1x̄2x3(x̄1 ∨ x2 ∨ x̄3 ∨ x̄4).
4.7. С помощью эквивалентных преобразований построить СДНФ

функции, заданной формулой:
1) f = x1 ∨ x2 → x3;
2) f = (x1 → x2)⊕ (x1|x2x3);
3) f = (x1 → x2x3x4)(x3 → x1x̄2);
4) f = (x1 ⊕ x2)(x3 → x̄2x4).

4.8. С помощью эквивалентных преобразований построить СКНФ
функции, заданной формулой:

1) f = x1x̄2 ∨ x1x3 ∨ x̄2x3;
2) f = x1x2 ⊕ x3;
3) f = (x1 ∨ x2 ∨ x3)x4 ∨ x̄1x̄2x̄3;
4) f = x1 → (x2 → x3x4).

4.9. Построить СДНФ функции, заданной таблицей истинности:
1) f = (1101);
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2) f = (1110);
3) f = (0101 0001);
4) f = (0111 1000);
5) f = (1000 1111);
6) f = (0100 1000 1100 0010);
7) f = (1000 0111 0011 0001);
8) f = (1100 1000 1001 0011).

4.10. Построить СКНФфункции, заданной таблицей истинности:
1) f = (0110);
2) f = (1000);
3) f = (0101 1101);
4) f = (0010 1110);
5) f = (1001 1000);
6) f = (0101 1111 0111 0011);
7) f = (0110 1110 1110 0101);
8) f = (1100 0111 1110 1100).
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5 Сокращенные ДНФ
Импликантой функции f(x1, x2, . . . , xn) называется конъюнкт

K = xσ1i1 x
σ2
i2
. . . xσkik , где i1, i2, . . . , ik ∈ {1, 2, . . . , n} такой, что

K ∨ f = f (или K → f = 1). Импликанта функции f называется
простой импликантой, если после отбрасывания любого литерала
из K получается конъюнкт, не являющийся импликантой функции
f . Дизъюнкция всех простых импликант функции f называется со-
кращенной ДНФ функции f .

Также среди ДНФ, реализующих функцию f(x1, x2, . . . , xn), мож-
но выделить:

минимальную ДНФ — ДНФ, состоящую из наименьшего числа
литералов среди всех ДНФ функции f ;

кратчайшую ДНФ — ДНФ, состоящую из наименьшего числа
конъюнктов среди всех ДНФ функции f ;

тупиковую ДНФ — такую ДНФ, что отбрасывание любого конъ-
юнкта или литерала из нее приводит к ДНФ, не эквивалентной ис-
ходной ДНФ (функции f).

Число конъюнктов в ДНФ называют длиной ДНФ. Число ли-
тералов в конъюнкте называют рангом конъюнкта. Таким образом,
минимальная ДНФ — это ДНФ с минимальной суммой рангов, крат-
чайшая ДНФ — это ДНФ наименьшей длины.

Существует множество методов построения сокращенной ДНФ.
В этом параграфе приведем три метода.

Метод Блейка по произвольной ДНФ булевой функции стро-
ит сокращенную ДНФ. Он состоит в последовательном применении
двух правил-операций, которые применяются слева направо:

1) правило обобщенного склеивания: xK1 ∨ xK2 = xK1 ∨ xK2 ∨
K1K2. Операция обобщенного склеивания применяется до тех пор,
пока это возможно. Она применяется как для конъюнктов исходной
ДНФ, так и для конъюнктов, которые получились в ходе применения
этой операции.
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2) правило поглощения: K1 ∨K1K2 = K1. Операция поглощения
применяется только тогда, когда на первом шаге перестали полу-
чаться новые конъюнкты. Операция применяется до тех пор, пока
это возможно.

Построенная после второго шага ДНФ будет сокращенной.
Метод Квайна по данной СДНФ булевой функции строит со-

кращенную ДНФ. Он также состоит в применении двух правил-
операций, которые применяются слева направо:

1) правило неполного склеивания: xK ∨xK = xK ∨xK ∨K. Опе-
рация применяется к каждой паре конъюнктов ранга n из СДНФ, к
которой она применима. После этого переходим к шагу 2.

2) правило поглощения: K∨xσK = K (σ = 0, 1). С помощью опе-
рации поглощения удаляются конъюнкты ранга n с помощью конъ-
юнктов ранга n− 1.

После второго шага получается некоторая промежуточная ДНФ
D1. К конъюнктам ранга n− 1 в D1 снова применяются операции 1
и 2. Если проведено k ≥ 1 этапов применения операций 1 и 2, то на
(k+1)-ом этапе операции неполного склеивания и поглощения приме-
няются к конъюнктам ранга n−k ДНФ Dk. В результате получается
ДНФ Dk+1. Алгоритм заканчивает работу, когда Dk+1 = Dk. Сокра-
щенной ДНФ будет ДНФ построенная на последнем этапе: Dk+1.

Метод Нельсона строит сокращенную ДНФ по КНФ булевой
функции:

1) раскрываются скобки с использованием закона дистрибутив-
ности: x(y ∨ z) = xy ∨ xz,

2) полученная на первом шаге ДНФ упрощается с использовани-
ем эквивалентностей: xxK = 0, xxK = xK, K1 ∨K1K2 = K1.

После второго этапа получается сокращенная ДНФ.

5.1. Проверить, какие из конъюктов множества A являются им-
пликантами функции f ; проверить, какие из импликант являются
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простыми импликантами функции f :
1) A = {x1, x2, x1x2}, f = (1011);
2) A = {x1, x3, x1x2, x2x3}, f = (0010 1111);
3) A = {x1x2, x2x3, x1x2x3}, f = (0111 1110);
4) A = {x1x3, x1x3, x2}, f = (0011 1011);
5) A = {x1x2, x2x3, x2}, f = (0010 1111);
6) A = {x1, x4, x2x3, x1 x2 x4}, f = (1010 1110 0101 1110).

5.2. По заданной ДНФ D с помощью метода Блейка построить
сокращенную ДНФ:

1) D = x1 x2 ∨ x1x2x4 ∨ x2x3x4;
2) D = x1 ∨ x1x2 ∨ x1 x2x3 ∨ x1 x2 x3x4;
3) D = x1x2x4 ∨ x1 x2x3 ∨ x3 x4;
4) D = x3x4 ∨ x2x4 ∨ x1x4 ∨ x2x3x4;
5) D = x1x2x3 ∨ x1x2x4 ∨ x2 x3x4;
6) D = x3x4 ∨ x1x2 ∨ x3x4 ∨ x1x3;
7) D = x1x2x3 ∨ x3x4 ∨ x1x4 ∨ x2x4;
8) D = x1x2x3 ∨ x1x2x4 ∨ x2x3x4 ∨ x2x3x4 ∨ x1x2x3.
5.3. С помощью метода Квайна построить сокращенную ДНФ

для функции f , заданной вектором своих значений:
1) f = (0111 0110);
2) f = (0010 1111);
3) f = (1011 1101);
4) f = (1110 0100);
5) f = (0001 1011 1101 1011);
6) f = (0000 1111 1111 0110);
7) f = (0000 1111 0111 1111);
8) f = (1111 1111 0111 1110).

5.4. По заданной КНФ с помощью метода Нельсона построить
сокращенную ДНФ:

1) (x1 ∨ x2)(x1 ∨ x2 ∨ x3);
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2) (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3)(x2 ∨ x3);
3) (x1 ∨ x2 ∨ x3)(x1 ∨ x2)(x1 ∨ x2 ∨ x3);
4) (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x3);
5) (x1 ∨ x2)(x2 ∨ x3)(x3 ∨ x1);
6) (x1 ∨ x2)(x2 ∨ x3)(x3 ∨ x4)(x4 ∨ x1);
7) (x1 ∨ x2 ∨ x3)(x1 ∨ x2 ∨ x4)(x1 ∨ x2 ∨ x4);
8) (x1 ∨ x2)(x1 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3)(x3 ∨ x4).

26



6 Геометрическое представление булевых
функций

Множество Bn можно рассматривать как множество вершин еди-
ничного n-мерного куба. Зафиксируем набор чисел σi1, σi2, . . . , σir
из 0 и 1 такой, что 1 ≤ i1 < i2 < . . . < ir ≤ n. Множество вершин
(α1, α2, . . . , αn) ∈ Bn таких, что αi1 = σi1, αi2 = σi2, . . . , αir = σir
называется (n− r)-мерной гранью куба Bn.

Пусть f(x1, x2, . . . , xn) — булева функция от n переменных. Со-
поставим такой функции подмножество вершин Nf булева куба Bn

такое, что (α1, α2, . . . , αn) ∈ Nf ⇔ f(α1, α2, . . . , αn) = 1.
Очевидны следующие свойства указанного соответствия: если

f(x1, x2, . . . , xn) = g(x1, x2, . . . , xn) ∨ h(x1, x2, . . . , xn), то
1) Kg ⊆ Kf , Kh ⊆ Kf ;
2) Kf = Kg ∪Kh;
3) если K — элементарный конъюнкт, то NK — грань куба Bn.
В частности, если f(x1, x2, . . . , xn) имеет ДНФK1∨K2∨. . .∨Km,

то NKi
⊆ Nf (1 ≤ i ≤ m) и Nf = NK1

∪NK2
∪ . . . ∪NKm

.
Таким образом, каждой ДНФ функции f соответствует покры-

тие множества Nf гранями NK1
, NK2

, . . . , NKm
. Верно и обратное,

каждой грани N куба Bn соответствует некоторый элементарный
конъюнкт K, и, следовательно, каждому покрытию гранями мно-
жества Nf соответствует ДНФ функции f . Покрытие называется
минимальным, если из него нельзя удалить ни одной грани.

Грань NK ⊆ Nf называется максимальной (относительно Nf),
если она не является собственным подмножеством никакой другой
грани содержащейся в Nf , т.е. не существует грани NK ′ такой, что
NK ⊂ NK ′ ⊂ Nf и NK 6= NK ′. Элементарный конъюнкт K, со-
ответствующий максимальной грани NK относительно Nf , является
простым импликантом для f . Откуда следует, что покрытие Nf мак-
симальными гранями соответствует сокращенной ДНФ функции f .
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Еще один способ построения сокращенных ДНФ для функций, за-
висящих от небольшого числа переменных, состоит в использовании
минимизирующих карт Карно. Этим методом удобно пользовать-
ся при числе переменных функции не более четырех. Булева функ-
ция задается прямоугольной таблицей, в которой наборы значений
переменных на каждой из сторон прямоугольника расположены в
коде Грея (0-1 или 00-01-11-10). Значение функции в таблицу вно-
сится в соответствии с набором значений переменных, указанных
на пересечении строки и столбца (см. таблицу ниже для функции
от 4-х переменных). Простому импликанту функции соответствует
максимальный по включению прямоугольник из единиц, длина сто-
рон которого есть степень двойки (т.е. прямоугольники могут иметь
стороны: 1×1, 1×2, 1×4, 2×2, 2×4, 4×4). Кроме того, считается,
что каждая клетка таблицы, примыкающая к одной из сторон пря-
моугольной таблицы, является соседней к клетке, примыкающей к
противоположной стороне прямоугольной таблицы и расположен-
ной на той же горизонтали или вертикали. Каждый прямоуголь-
ник соответствует грани n-мерного куба Bn и задается условиями:
xi1 = σi1, xi2 = σi2, . . . , xir = σir . В этом случае ему соответствует
конъюнкт K = x

σi1
i1
x
σi2
i2
· · ·xσirir .

x3
x4

x1 x2

0
0

0
1

1
1

1
0

0 0
0 1
1 1
1 0

f(0, 0, 0, 0)
f(0, 1, 0, 0)
f(1, 1, 0, 0)
f(1, 0, 0, 0)

f(0, 0, 0, 1)
f(0, 1, 0, 1)
f(1, 1, 0, 1)
f(1, 0, 0, 1)

f(0, 0, 1, 1)
f(0, 1, 1, 1)
f(1, 1, 1, 1)
f(1, 0, 1, 1)

f(0, 0, 1, 0)
f(0, 1, 1, 0)
f(1, 1, 1, 0)
f(1, 0, 1, 0)

6.1. Построить сокращенную ДНФ функции f , используя геомет-
рическое изображение Nf в n-мерном кубе Bn:

1) f = (1111 0100);
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2) f = (1101 0011);
3) f = (0101 0011);
4) f = (1110 0111);
5) f = (1111 1000 0100 1100);
6) f = (1111 1111 1111 1000);
7) f = (1110 0110 0000 0111);
8) f = (0001 0111 1110 1111).

6.2. Найти все минимальные покрытия гранями множества Nf в
n-мерном кубе Bn для заданных булевых функций:

1) f = (1011 0100);
2) f = (1101 1011);
3) f = (0111 0011);
4) f = (1011 1101);
5) f = (1001 1000 0100 1100);
6) f = (1111 1011 1111 1000);
7) f = (0110 0010 0000 0111);
8) f = (1001 1111 1110 1111).

6.3. Построить сокращенную ДНФ функции f с помощью мини-
мизирующей карты Карно:

1) f = (0101 0111);
2) f = (1011 0000);
3) f = (1101 1011);
4) f = (1110 1111);
5) f = (0001 1011 1101 1111);
6) f = (0011 1101 1111 1101);
7) f = (0011 1101 1101 1110);
8) f = (0010 1011 1101 1111).
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7 Тупиковые, минимальные и кратчайшие
ДНФ

ДНФ функции f называется тупиковой, если отбрасывание лю-
бого литерала или любого элементарного конъюнкта дает ДНФ, не
эквивалентную функции f . Для построения всех тупиковых ДНФ
функции f можно воспользоваться таблицами Квайна. Строки таб-
лицы Квайна для функции f соответствуют простым импликантам
этой функции, а столбцы — наборам значений аргументов, при ко-
торых функция принимает значение 1. На пересечении строки, соот-
ветствующей простому импликанту K, и столбца, соответствующего
набору аргументов α, стоит значение K(α).

По таблице составляем КНФ, в которой каждый элементарный
дизъюнкт соответствует одному столбцу таблицы и включает в каче-
стве слагаемых символы тех простых импликант, для которых в рас-
сматриваемом столбце таблицы стоит “1”. Используя законы дистри-
бутивности, законы поглощения и соотношение x · x = x, приводим
КНФ к некоторой ДНФ, в которой упрощения вида x∨xy = x невоз-
можны. Каждому элементарному конъюнкту в полученной ДНФ со-
ответствует одна тупиковая ДНФ функции f , состоящая из простых
импликант, символы которых входят в рассматриваемый элементар-
ный конъюнкт.

Напомним, что кратчайшей ДНФ функции f называется ДНФ
имеющая наименьшее число элементарных конъюнктов среди всех
ДНФ эквивалентных функции f . Минимальной ДНФ функции f
называется ДНФ имеющая наименьшее число литералов среди ДНФ
эквивалентных функции f . Кратчайшие и минимальные ДНФ явля-
ются тупиковыми.

Тупиковые ДНФ можно искать, используя также геометрическо
представление булевой функции f . Покрытие множества Nf , состоя-
щее из максимальных (относительно Nf) граней, называется непри-
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водимым, если совокупность граней, получающаяся из исходной пу-
тем выбрасывания любой грани, не будет покрытием Nf . ДНФ, со-
ответствующая неприводимому покрытию множества Nf , является
тупиковой.

Аналогично, в случае минимизирующих карт Карно при постро-
ении тупиковой ДНФ функции отыскиваться “неприводимая” сово-
купность “прямоугольников”, покрывающая все единицы.

7.1. Привести пример булевой функции, у которой кратчайшая
ДНФ не является минимальной.

7.2. Привести пример булевой функции, у которой минимальная
ДНФ не является кратчайшей.

7.3. По заданной сокращенной ДНФ D построить все тупиковые,
кратчайшие и минимальные ДНФ:

1) D = xy ∨ x̄z̄ ∨ yz̄;
2) D = z̄w̄ ∨ ȳzw ∨ xȳw ∨ x̄ȳz ∨ xȳz̄ ∨ x̄ȳw̄;
3) D = xȳz ∨ xȳw̄ ∨ x̄yw̄ ∨ x̄z̄w̄ ∨ ȳz̄w̄;
4) D = z̄w̄ ∨ x̄ȳw̄ ∨ x̄ȳz̄ ∨ xyz ∨ xyw̄;
5) D = z̄w ∨ ȳw ∨ xw ∨ yzw̄ ∨ xyz;
6) D = xyz̄ ∨ xȳz ∨ x̄yz ∨ z̄w ∨ ȳw ∨ x̄w;
7) D = x̄z ∨ yz ∨ xy ∨ x̄ȳw ∨ ȳzw ∨ xzw;
8) D = x̄z ∨ ȳw ∨ xy ∨ yz ∨ xw ∨ zw.
7.4. C помощью таблицы Квайна построить все тупиковые, крат-

чайшие и минимальные ДНФ функции f , заданной своим вектором
значений:

1) f = (0111 1100);
2) f = (0111 1110);
3) f = (0001 1111);
4) f = (1111 1000 0100 1100);
5) f = (1110 1000 0110 1000);
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6) f = (1110 0110 0001 0101);
7) f = (0001 0111 1010 1110);
8) f = (0001 1011 1110 0111).

7.5. Используя геометрическое изображение Nf в n-мерном ку-
бе Bn, построить все тупиковые, кратчайшие и минимальные ДНФ
функций, заданных в номере 6.1.

7.6. С помощью минимизирующей карты Карно построить все
тупиковые, кратчайшие и минимальные ДНФ функций, заданных в
номере 6.2.
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8 Классы функций T0 и T1

Замыканием [K] множества (класса) функций K называется со-
вокупность функций, которые можно задать формулами над K. Ес-
ли [K] = K, то класс функций K называется замкнутым.

Функция f сохраняет константу 0 (константу 1 ), если выпол-
няетя f(0, 0, . . . , 0) = 0 (f(1, 1, . . . , 1) = 1, соответственно). Класс
функций, сохраняющих 0, обозначается T0, а сохраняющих 1 — T1.
Оба класса являются замкнутыми и предполными, т.е. не содержатся
ни в каком другом собственном замкнутом классе функций. Опреде-
ления данных классов накладывают ограничения на значения функ-
ции ровно на одном наборе аргументов, следовательно, всего суще-
ствует 22

n−1 функций от n переменных в каждом из классов.

8.1. Найти число булевых функций от n переменных, содержа-
щихся в T0 ∩ T1 и T0 ∪ T1.

8.2. Доказать, что классы функций T0 и T1 замкнуты.

8.3. Выяснить, принадлежит ли функция f классам T0 и T1:
1) f = (x1 → x2)(x2 → x3)(x3 → x1);
2) f = x1x2 ∨ x2x3 ∨ x1x3;
3) f = x1 → (x2 → (x3 → x1));
4) f = x1x2x3 ∨ x1x2 ∨ x2;
5) f = (x1 ∨ x2)x3 ∨ x1x2 ∨ x2;
6) f = x1x2x3 ∨ x1x2 ∨ x2 ∨ x1x2x3;
7) f = (1001 0110);
8) f = (1101 1001);
9) f = (1000 0111 1111 0111);
10) f = (0001 1101 1001 1011).

8.4. При каких n функция f принадлежит классам T0 и T1:
1) f = x1 ⊕ x2 ⊕ . . .⊕ xn;
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2) f =

(
n−1
⊕
i=1

xixi+1

)
⊕ xnx1;

3) f = ⊕
1≤i<j≤n

xixj;

4) f = ⊕
1≤i<j≤n

(xi ∨ xj);

5) f = 1⊕ (x1 → x2)(x2 → x3)(x3 → x4) . . . (xn−1 → xn)(xn → x1);

6) f =
n−2
⊕
i=1

(xi → (xi+1 → xi+2));

7) f =
n−2
⊕
i=1

((xi → xi+1)→ xi+2);

8) f =
n−2
⊕
i=1

(xi ⊕ xi+1xi+2);

9) f = ⊕
1≤i<j<k≤n

(xixjxk);

10) f = ⊕
1≤i<j<k≤n

(xixj ∨ xjxk ∨ xixk);

11) f =
n
⊕
i=1

ϕi, где ϕi ∈ T1 и самодвойственны, т.е. обладают

свойством ϕi(x1, . . . , xn) = ϕi(x1, . . . , xn).

8.5. Доказать, что
1) [{x ∨ y, x⊕ y}] = T0;
2) [{x ∨ y, x ≡ y}] = T1;
3) [{xy, x ≡ y}] = T1;
4) [{xy ⊕ z}] = T0;
5) [{xy ∨ yz ∨ xz, x⊕ y}] = T0.

8.6. Система функцийA называется базисом классаK, если [A] =
K и для любой собственной подсистемы A′ системы A не верно, что
[A′] = K. Верно ли, что множество A является базисом для K:

1) A = {xy ≡ z}, K = T1;
2) A = {xy ∨ z}, K = T0;
3) A = {x ∨ y, xy}, K = T0;
4) A = {x ≡ (yz ∨ zt ∨ ty)}, K = T1.
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9 Класс самодвойственных функций
Функция f(x1, x2, . . . , xn) называется самодвойственной, если вы-

полняется условие: f(x1, x2, . . . , xn) = f(x1, x2, . . . , xn). Другими
словами, функция самодвойственная тогда и только тогда, когда на
противоположных наборах значений переменных она принимает про-
тивоположные значения. Таким образом, самодвойственная функ-
ция полностью определяется своими значениями на 2n

2 = 2n−1 набо-
рах аргументов, и, следовательно, существует 22

n−1 самодвойствен-
ных функций от n переменных. Класс самодвойственных функций
обозначается S. Он является замкнутым и предполным. Имеет место
лемма о несамодвойственной функции.

Лемма 9.1 (О несамодвойственной функции) Если f /∈ S, то
подставляя вместо переменных функции x и x можно получить
константу.

9.1. Доказать, что класс самодвойственных функций замкнут.

9.2. Доказать лемму о несамодвойственной функции.

9.3. Выяснить, является ли функция f самодвойственной:
1) f = x1x2 ∨ x2x3 ∨ x1x3;
2) f = x1 ∨ x2;
3) f = x1 ⊕ x2 ⊕ x3 ⊕ 1;
4) f = (x ∨ y ∨ z)t ∨ xyz;
5) f = (x ∨ y ∨ z)t ∨ xyz;
6) f = x1 → x2;
7) f = x1 ⊕ x2;
8) f = x1x2 ⊕ x2x3 ⊕ x1x3 ⊕ x2 ⊕ x3;
9) f = x1x2 ∨ x3;
10) f = x1 ⊕ x2 ⊕ (x1x2 ∨ x2x3 ∨ x1x3);
11) f = x1x2 ⊕ x3(x1 ∨ x2);
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12) f = x1x2x3 ⊕ x1x2 ⊕ x2x3 ⊕ x1x3;
13) f = x1x2x3 ⊕ x1x2x3 ⊕ x2x3 ⊕ x1x3;
14) f = (x1 → x2)⊕ (x2 → x3)⊕ (x3 → x1)⊕ x3;
15) f = (x1 → x2)⊕ (x2 → x3)⊕ (x2 → x1).

9.4. Выяснить, является ли функция f самодвойственной:
1) f = (1010);
2) f = (1001);
3) f = (1001 0110);
4) f = (0110 0110);
5) f = (0111 0001);
6) f = (0100 1101);
7) f = (1100 1001 0110 1100);
8) f = (1110 0111 0001 1000);
9) f = (1000 0011 1000 1100);
10) f = (1001 1011 1011 1001);
11) f = (1100 0011 1010 0101);
12) f = (1100 0011 0011 1100);
13) f = (1001 0110 1001 0110);
14) f = (1101 0100 1011 0010);
15) f = (1010 0101 0101 1010).

9.5. Определить, какие из переменных функции f следует заме-
нить на x, а какие на x̄, чтобы получить константу, указанную в
лемме о несамодвойственной функции:

1) f = (1011 0110);
2) f = (1101 1000);
3) f = (1010 0100);
4) f = (1100 1110);
5) f = (0110 1000 1110 1011);
6) f = (1000 1101 0010 1100);
7) f = (1001 0110 1001 1010);
8) f = (0111 0001 0011 0001).
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9.6. При каких n ≥ 2 функция f является самодвойствнной:
1) f = x1 ⊕ x2 ⊕ . . .⊕ xn;
2) f =

∨
1≤i<j≤n

xixj;

3) f = ⊕
1≤i<j≤n

xixj;

4) f = (x1 ∨ x2)⊕ (x2 ∨ x3)⊕ . . .⊕ (xn−1 ∨ xn)⊕ (xn ∨ x1);
5) f = (x1 ∨ x2 ∨ x3) ⊕ (x4 ∨ x5 ∨ x6) ⊕ . . . ⊕ (xn−2 ∨ xn−1 ∨ xn),

n = 3k;
5) f = (x1x2 ∨ x2x3 ∨ x3x1)⊕ (x4x5 ∨ x5x6 ∨ x6x4)⊕ . . .

. . .⊕ (xn−2xn−1 ∨ xn−1xn ∨ xnxn−2), n = 3k;
6) f = (x1 → x2)(x2 → x3) . . . (xn−1 → xn)(xn → x1);
7) f = (x1 → x2)⊕ (x2 → x3)⊕ . . .

. . .⊕ (xn−1 → xn)⊕ (xn → x1)⊕ x1 ⊕ x2 ⊕ . . .⊕ xn.
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10 Многочлены Жегалкина и линейные
функции

Сумма по модулю 2 попарно различных элементарных конъюнк-
тов, не содержащих отрицаний, называется полиномом Жегалки-
на. Константа 1 считается по определению элементарным конъюнк-
том, не содержащим отрицаний. Сумма, содержащая 0 элементарных
конъюнктов, также считается полиномом Жегалкина, и, по опреде-
лению, этот полином равен константе 0. Наибольший из рангов, вхо-
дящих в полином, называется степенью этого полинома. Степень
полинома 0 считается неопределенной.

Теорема 10.1 (И.И. Жегалкин) Любая булева функция единст-
венным образом представима в виде полинома Жегалкина.

Здесь единственность понимается с точностью до порядка слагаемых
в сумме и порядка сомножителей в элементарных конъюнктах.

Приведем несколько методов построения полиномов Жегалкина.
Далее мы будем использовать следующую нумерацию элементар-

ных конъюнктов от n переменных: Ki содержит xj в качестве сомно-
жителя тогда и только тогда, когда в j разряде двоичного разложе-
нии числа i стоит 1.

Метод неопределенных коэффициентов. Пусть P (x) поли-
ном Жегалкина для некоторой булевой функции f(x) от n перемен-
ных. Его можно записать в виде:

P (x) = α0 · 1 + α1 ·K1 + . . .+ α2n−1K2n−1.

Для каждого набора α ∈ Bn составляется уравнение f(α) = P (α).
Получатся невырожденная система из 2n уравнений содержащая 2n

неизвестных α0, α1, . . . , α2n−1, которая имеет единственное решение.
Метод преобразования вектора значений. Индукцией по

n, определим операцию T над векторами из B2n.

38



Если n = 1 и α = (α0, α1), то T (α) = (α0, α0 ⊕ α1).
Пусть операция T уже определена для векторов изB2n определим

ее для векторов из B2n+1.
Если α = (α0, α1, . . . , α2n−1, β0, β1, . . . , β2n−1), и

T ((α0, α1, . . . , α2n−1)) = (γ0, γ1, . . . , γ2n−1),

T ((β0, β1, . . . , β2n−1)) = (δ0, δ1, . . . , δ2n−1),

то T (α) = (γ0, γ1, . . . , γ2n−1, γ0 + δ0, γ1 + δ1, . . . , γ2n−1 + δ2n−1).
Если αf — вектор значений функции f, a βP — вектор коэффици-

ентов полинома Жегалкина, то αf = T (βP ) и βP = T (αf).
Метод эквивалентных преобразований. Любую функцию f

можно задать в виде формулы над {&, ∨, }. Используя соотноше-
ние x ∨ y = x&y, следует избавиться от дизъюнкций в выражении.
Далее, используя эквивалентность x = x+1 необходимо избавится от
отрицаний. Затем, раскрыть скобки, воспользовавшись законом дис-
трибутивности x(y⊕ z) = xy⊕xz. И наконец, упростить полученное
выражение, используя соотношения x · x = x, x · 1 = x, x ⊕ x = 0,
x⊕ 0 = x.

Функция f(x) называется линейной, если она представима поли-
номом Жегалкина не выше первой степени, т.е.

f(x) = α0 ⊕ α1x1 ⊕ . . .⊕ αnxn.

Класс всех линейных функций обозначается через L. Число ли-
нейных функций от n переменных равно 2n. Класс L является за-
мкнутым и предполным. Если f /∈ L, то булева функция f называ-
ется нелинейной. Имеет место лемма о нелинейной функции.

Лемма 10.1 (О нелинейной функции) Для f /∈ L, подставляя
вместо переменных функции 0, 1, x, y, x, y можно получить xy
или xy.
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10.1. Методом неопределенных коэффициентов найти полиномы
Жегалкина для функций:

1) f = x1|x2;
2) f = (0100);
3) f = x1(x2 ∨ x3);
4) f = x1 → (x2 → x3);
5) f = (1001 0110);
6) f = (1110 1000);
7) f = (0000 0111);
8) f = (0110 0110);
9) f = (1000 0000 0000 0001);
10) f = (0001 0001 0010 0000).

10.2. Методом преобразования вектора значений найти полино-
мы Жегалкина для функций:

1) f = (1000);
2) f = (0010);
3) f = (0110 1110);
4) f = (1011 0111);
5) f = (1010 0110);
6) f = (1110 1000);
7) f = (0000 0100 0110 0111);
8) f = (1010 1010 1011 0110);
9) f = (0100 0000 0001 0001);
10) f = (0000 0001 0001 0001).

10.3. Методом эквивалентных преобразований найти полиномы
Жегалкина для функций:

1) f = x1 → (x2 → x1x2);
2) f = x1(x2 ≡ x3x2);
3) f = (x1 ↓ x2)(x2 ↓ x3);
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4) f = (x1 ∨ x2)(x2|x3);
5) f = x1 ↓ ((x1 → x2) ∨ x3);
6) f = (x1 → (x2 → x3))((x1 → x2)→ x3);
7) f = (x1 ⊕ x2)(x2 ↓ x3);
8) f = (x1 → x2)→ (x3 → x1x4);
9) f = x1 ∨ (x2 → ((x3 → x2)→ x4));
10) f = (x1 ∨ x2 ∨ x3)x4 ∨ x1x2x3.
10.4. Методом эквивалентных преобразований СДНФ найти по-

линомы Жегалкина для функций:
1) f = (1001);
2) f = (1101);
3) f = (0101 1010);
4) f = (0101 0111);
5) f = (1110 0001);
6) f = (1010 1111);
7) f = (0011 1100 1100 0011);
8) f = (0001 1000 1000 0001).

10.5. Доказать, что число линейных функций от n переменных
равно 2n.

10.6. Найти число линейных функций существенно зависящих от
n переменных.

10.7. Доказать, что класс линейных функций замкнут.

10.8. Доказать лемму о нелинейной функции.

10.9. Выяснить являются ли линейными функции:
1) f = (1001);
2) f = (1101);
3) f = (1001 0110);
4) f = (1100 0011);
5) f = (1010 0110);
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6) f = (1010 0101);
7) f = (1100 1001 0110 1001);
8) f = (1001 0110 0110 1001);
9) f = (0110 1001 0110 1001);
10) f = (1010 0101 1001 1100);
11) f = (1010 0101 0101 1010);
12) f = (1010 0110 0110 0101);
13) f = (0011 1100 1100 0011);
14) f = (1001 1001 0110 0110).

10.10. Подставляя на места переменных нелинейной функции f
функции 0, 1, x, y, x, y, получить при помощи леммы о нелинейной
функции одну из функций xy или xy:

1) f = x1 → x2;
2) f = x1x2 ∨ x2x̄3 ∨ x̄3x1;
3) f = x1 → (x2 → x3);
4) f = (x1x̄2 ∨ x̄1x2x3)⊕ x̄1x2x̄3;
5) f = (x1 ∨ x2 ∨ x3)(x̄1 ∨ x̄2 ∨ x̄3 ∨ x4);
6) 4) f = (x1 ∨ x̄2 ∨ x̄3 ∨ x̄4)(x̄1 ∨ x̄2 ∨ x3 ∨ x4)(x̄2 ∨ x3).
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11 Класс монотонных функций
Определим отношение частичного порядка на наборах из Bn.

Пусть α = (α1, α2, . . . , αn) и β = (β1, β2, . . . , βn) два набора из
Bn. Будем говорить, что α ≤ β, если соответствующее неравенство
выполняется покомпонентно, т.е. если αi ≤ βi для всех i от 1 до n.

Булева функция f называется монотонной если для любых двух
наборов аргументов α и β таких, что α ≤ β имеет место f(α) ≤
f(β). В противном случае функция f называется немонотонной.
Множество всех монотонных булевых функций обозначается через
M . Класс монотонных функций является замкнутым и предполным.
Справедлива лемма о немонотонной функции.

Лемма 11.1 (О немонотонной функции) Если f /∈ M , то под-
ставляя вместо переменных функции 0, 1 и x можно получить
x.

Проверку на монотонность булевой функции заданной своим век-
тором значений f = (f0, f1, . . . , f2n−1) удобно проводить следующим
образом. Разделим вектор f на две равные части, которые обозначим
f 0 = (f0, f1, . . . f2n−1−1), f 1 = (f2n−1, f2n−1+1, . . . , f2n−1−1) и сравним
их. Если не верно, что f 0 ≤ f 1, то функция f не является монотон-
ной, в противном случае продолжаем процедуру. На очередном шаге,
каждый вектор fσ полученный на предыдущем шаге делим на две
равные части fσ0, fσ1 и сравниваем их между собой. Если хотя бы
для одной из пар не верно, что fσ0 ≤ fσ1, то функция f не является
монотонной. Продолжаем процедуру до тех пор, пока получившиеся
вектора можно делить пополам. Если ни на одном из шагов не полу-
чим, что функция не является монотонной, т.е. если все проверяемые
неравенства верны, то функция f является монотонной.

11.1. Доказать, что класс монотонных функций замкнут.
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11.2. Доказать лемму о немонотонной функции.

11.3. Доказать, что функция монотонна тогда и только тогда,
когда у нее существует ДНФ не содержащая отрицаний.

11.4. Доказать, что функция монотонна тогда и только тогда,
когда у нее существует КНФ не содержащая отрицаний.

11.5. Доказать, что функция монотонна тогда и только тогда,
когда её сокращенная ДНФ не содержит отрицаний.

11.6. Выяснить, является ли данная функция f монотонной:
1) f = (0110);
2) f = (0011 0111);
3) f = (0101 0111);
4) f = (0110 0110);
5) f = (0001 0111);
6) f = (0101 0011);
7) f = (0010 0011 0111 1111);
8) f = (0001 0101 0111 0111).

11.7. Проверить, является ли данная функция f монотонной:
1) f = (x1 ⊕ x2)(x1 ≡ x2);
2) f = x1 → (x2 → x1);
3) f = x1 → (x1 → x2);
4) f = x1x̄2x̄3 ∨ x1x̄2x3 ∨ x1x2x̄3 ∨ x1x2x3 ∨ x̄1x2x3;
5) f = x1x̄2x̄3 ∨ x̄1x2x3 ∨ x1x2x̄3 ∨ x1x2x3 ∨ x̄1x̄2x3;
6) f = (x1 ⊕ x2)x1x2;
7) f = x1x2 ⊕ x1x3 ⊕ x2x3;
8) f = x1x2 ⊕ x2x3 ⊕ x3x1 ⊕ x1.
11.8. При каких n ≥ 1 данная функция является f монотонной:
1) f = x1 ⊕ x2 ⊕ . . .⊕ xn;
2) f =

⊕
1≤i<j≤n

xixj;
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3) f = x1x2 . . . xn → (x1 ⊕ x2 ⊕ . . .⊕ xn);
4) f = x1x2 . . . xn ⊕

⊕
1≤i≤n

x1 . . . xi−1xi+1 . . . xn;

5) f =
n⊕

m=1

⊕
1≤i1<i2<...<im≤n

xi1xi2 . . . xim.

11.9. Подставляя на места переменных немонотонной функции f
функции 0, 1, x, получить при помощи леммы о немонотонной функ-
ции x:

1) f = x1x2x3 ∨ x̄1x2;
2) f = x1 ⊕ x2 ⊕ x3;
2) f = x1x2 ⊕ x3;
2) f = x1 ∨ x2x̄3;
5) f = x1x3 ⊕ x2x4;
1) f = (x1x2x4 → x2x3)⊕ x4.
11.10. Найти число монотонных функций:
1) от 3-х переменных;
2) от 4-х переменных;
3) от 5-и переменных;
4) от 6-и переменных;
5) от 7-и переменных;
6) от 8-и переменных;
7) от 9-и переменных.
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12 Полнота и замкнутые классы
Система (множество) функций K называется полной если ее за-

мыкание совпадает со всем множеством булевых функций. Иначе го-
воря, суперпозицией функций из K можно получить любую булеву
функцию.

Для проверки множества функций на полноту можно воспользо-
ваться следующим критерием.

Теорема 12.1 (Э.Пост) Система булевых функций полна тогда
и только тогда, когда она целиком не содержится ни в одном из
классов T0,T1,L,S,M .

Пользоваться этим критерием удобно следующим образом. Для
системы функций составляется таблица в которой столбцы соответ-
ствуют пяти предполным классам, а строки — функциям исследу-
емой системы. На пересечении строки таблицы, соответствующей
функции f , и столбца, соответствующего классу K, ставится “+”
если f ∈ K, в противном случае ставится знак “−”. Согласно кри-
терию Поста, система функций полна тогда и только тогда, когда в
каждом столбце есть хотя бы один знак минус.

Система функций A называется базисом, если она полна, и ника-
кая собственная подсистема системы не является полной.

Если система A является полной, то описанная выше таблица
может использоваться для нахождения всех базисов содержащих-
ся в системе A. Не трудно видеть, что задача нахождения базиса
по указанной таблице аналогична задаче нахождения минимально-
го покрытия в разделе 7, и может быть решена аналогичным обра-
зом. А именно, по таблице составляем КНФ K, в которой каждый
элементарный дизъюнкт соответствует одному столбцу таблицы, и
включает в качестве слагаемых символы тех функций, для которых
в таблице стоит “−”, в рассматриваемом столбце. Используя зако-
ны дистрибутивности, законы поглощения и соотношение x · x = x
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приводим КНФ K к некоторой ДНФ D, в которой упрощения вида
x ∨ xy = x невозможны. Каждому элементарному конъюнкту в D
соответствует один базис, состоящий из функций символы которых
входят в рассматриваемый элементарный конъюнкт.

12.1. Выяснить является ли система функций полной:
1) F = {xy, x ∨ y, x⊕ y, xy ∨ yz ∨ zx};
2) F = {xy, x ∨ y, x⊕ y, xy ∨ yz ∨ zx};
3) F = {1, x, x(x ≡ y)⊕ x(y ⊕ z), x ≡ y};
4) F = {0, x, x(y ⊕ z)⊕ (yz)};
5) F = {x, x(y ≡ z) ≡ (y ∨ z), x⊕ y ⊕ z};
6) F = {x, x(y ≡ z) ≡ yz, x⊕ y ⊕ z};
7) F = {xy(x⊕ y), xy ⊕ y ⊕ z};
8) F = {1, xy(x⊕ z)};
9) F = {1, x→ y, x→ yx, x⊕ y ⊕ z};
10) F = {x→ y, x⊕ y}.
12.2. Выяснить является ли система функций полной:
1) F = {(0110), (1100 0011), (1001 0110)};
2) F = {(0111), (0101 1010), (0111 1110)};
3) F = {(0111), (1001 0110);
4) F = {(0101), (1110 1000), (0110 1001)};
5) F = {(1001), (1110 1000)};
6) F = {(11), (0111), (0011 0111)};
7) F = {(10), (0011 0111)};
8) F = {(11), (00), (0011 0101)};
9) F = {(0111), (1011), (1000 0001)};
10) F = {(0110), (1001), (1000 0001)}.
12.3. Является ли система функций базисом?
1) F = {x→ y, x⊕ y, x ∨ y};
2) F = {0, 1, x⊕ y ⊕ z, x ∨ y};
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3) F = {x⊕ y ⊕ yz, x⊕ y ⊕ 1};
4) F = {xy ≡ z, xy ⊕ z, xy ∨ z};
5) F = {x⊕ y ⊕ z, x⊕ y ⊕ z ⊕ 1, xy ⊕ yz ⊕ zx, x};
6) F = {x⊕ y ⊕ z, xy ⊕ yz ⊕ zx, 0, 1};
7) F = {x⊕ y, x ≡ yz};
8) F = {xy ⊕ yz ⊕ zt, 0, 1, x ∨ y}.
12.4. Выяснить является ли система функций полной. Если яв-

ляется полной, то найти все базисы содержащиеся в ней.
1) f1 = (x2 → x3x4)→ x1x3, f2 = (1001 1001 0110 0110),

f3 = (x1 ∨ x2x3)→ x2x3, f4 = (x3 ⊕ x1)x2;
2) f1 = x1 → (x3 → x2), f2 = (0011 1100 0011 1100),

f3 = (x1 → (x2 ⊕ x3 ⊕ x2x3))→ x2x4, f4 = x1x2;
3) f1 = (x1 ∨ x2x3)⊕ x1x2, f2 = (1100 1100 0011 0011),

f3 = (x2 ∨ (x1 ⊕ x3 ⊕ x1x3))→ x3x4, f4 = x1x2 → x1;
4) f1 = x1x2 ∨ (x2 ⊕ x1x3), f2 = (1001 1001 1001 1001),

f3 = (x2x1 ∨ x3)→ x2x4, f4 = x1x2 → x1.

12.5. Функция называется шефферовой, если она образует базис.
При каких n ≥ 2 функция является шефферовой:

1) f = 1⊕ x1x2 ⊕ . . .⊕ xixi+1 ⊕ . . .⊕ xn−1xn ⊕ xnx1;
2) f = 1⊕ x1x2 ⊕ . . .⊕ xixi+1 ⊕ . . .⊕ xn−1xn;
3) f =

∨
1≤i<j≤n

xixj;

4) f = 1⊕
∑

1≤i<j≤n
xixj;

5) f = 1⊕ (x1 → x2)⊕ (x2 → x3)⊕ . . .⊕ (xn−1 → xn)⊕ (xn → x1);

6) f = 1⊕ (x1 → x2)⊕ (x2 → x3)⊕ . . .⊕ (xn−1 → xn);
7) f = (x1|x2)⊕ (x2|x3)⊕ . . .⊕ (xn−1|xn)⊕ (xn|x1);
8) f = (x1|x2)⊕ (x2|x3)⊕ . . .⊕ (xn−1|xn);
9) f = x1x2 . . . xn ⊕ (x1 → x2)&(x2 → x3)& . . .

. . .&(xn−1 → xn)&(xn → x1).
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12.6. Выяснить, полна ли система функций:
1) F = (S ∩M) ∪ (L \M);
2) F = (L ∩ T0 ∩ T1) ∪ (S \ (T0 ∩ T1));
3) F = (L ∩ T1) ∪ (S ∩M);
4) F = (L ∩ T1) ∪ (S \ T0);
5) F = (M \ T0) ∪ (L \ S);
6) F = (M \ T0) ∪ (S \ L);
7) F = (L ∩M) ∪ (S \ T0);
8) F = ((L ∩M) \ T1) ∪ (S ∩ T1);
9) F = (M \ S) ∪ (L ∩ S);
10) F = (M ∩ S) ∪ (T0 \M) ∪ (T1 ∩ S).
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13 Простейшие свойства графов и поня-
тие изоморфизма

Графом называется пара множеств G = (V, E), где V — про-
извольное непустое множество и E — множество двухэлементных
подмножеств множества V . Элементы множества V называются вер-
шинами графа, элементы множества E называются ребрами графа.
Будем рассматривать графы только с конечным множеством вер-
шин. Если e = {u, v} — ребро графа, то вершины u и v называются
концами ребра e. В этом случае говорят, что ребро e соединяет вер-
шины u и v, а эти вершины называются смежными. Также говорят,
что ребро e инцидентно вершинам u и v, а вершины u и v инцидент-
ны ребру e. Отметим два крайних случая: граф называется полным,
если любые две его вершины смежны, и пустым, если множество его
ребер пусто. Полный граф c n вершинами обозначается Kn, пустой
граф c n вершинами — Nn.

Любой граф G = (V, E) может быть изображен на плоскости.
Вершины графа представляются точками, а любое ребро e, инци-
дентное вершинам u и v, изображается кривой, соединяющей точки,
соответствующие этим вершинам. Например, граф G = (V, E), где
V = {v1, v2, v3, v4, v5, v6} иE = {{v1, v2}, {v1, v4}, {v2, v4}, {v4, v5},
{v3, v6}}, и граф K5 могут быть изображены следующим образом.

v1 v2 v3

v4 v5 v6
а) граф G б) граф K5

Рис. 1. Примеры изображения графов
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Графы G = (V, E) и G′ = (V ′, E ′) называются изоморфными,
записывается как G ' G′, если существует такая биекция ϕ : V −→
V ′, что

{u, v} ∈ E ⇔ {ϕ(u), ϕ(v)} ∈ E ′.
Граф G′ = (V ′, E ′) называется подграфом графа G = (V, E), если

V ′ ⊆ V и E ′ ⊆ E. Другими словами, подграф — это часть графа,
которая сама является графом.

Маршрутом в графе G называется чередующаяся последова-
тельность вершин и ребер графа G

W = v1e1v2e2 . . . ekvk+1,

где ребра имеют вид ei = {vi, vi+1} (i = 1, k). Число k называется
длиной маршрута W . Если v1 = vk+1, то маршрут называется за-
мкнутым. Маршрут называется цепью, если все его ребра различны.
Цепь называется простой, если в ней все вершины, кроме, возможно,
первой и последней, различны. Замкнутая цепь называется циклом.
Замкнутая простая цепь называется простым циклом.

Вершины u и v называются связанными, если u = v или су-
ществует маршрут, их соединяющий. Граф G = (V, E) называется
связным, если для любых двух вершин u и v существует маршрут,
соединяющий эти вершины. То есть граф связный, если любые две
его вершины связаны. Компонентой связности графа G называется
максимальный связный подграф графа G.

Пусть G1 = (V1, E1) и G2 = (V2, E2) — графы, причем V1∩V2 = ∅.
Объединением графов G1 и G2 называется граф G1 ∪ G2 = (V1 ∪
V2, E1 ∪ E2). Суммой графов G1 и G2 называется граф G1 + G2 =
(V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2), то есть к E1 ∪ E2 добавляются все реб-
ра, соединяющие каждую вершину из V1 с каждой вершиной из V2.
Дополнением графа G = (V, E) называется граф G с множеством
вершин V , в котором вершины u и v смежны тогда и только тогда,
когда они несмежны в G.
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Реберным графом непустого графа G = (V, E) называется граф
L(G) c множеством вершин E, причем вершины e1 и e2 графа L(G)
смежны тогда и только тогда, когда ребра e1 и e2 графа G смежны.

Приведем еще несколько семейств графов. Полный двудольный
граф Km,n — граф, множество вершин которого может быть разби-
то на два подмножества, содержащих m и n вершин, причем лю-
бая пара вершин, лежащих в одном множестве, не смежна, а лю-
бая пара вершин, лежащих в разных множествах, смежна. То есть,
Km,n = Nm +Nn. Подграф графа Km,n называется двудольным гра-
фом. Циклический граф Cn — граф, содержащий n вершин и имею-
щий ровно один цикл, проходящий через все вершины. Колесо Wn —
граф, состоящий из Cn−1 и еще одной вершины, смежной со всеми
остальными вершинами. То есть, Wn = Cn−1 + N1. Граф, соответ-
ствующий n-мерному кубу, обозначается En.

13.1. Пусть Gn — граф с n вершинами, причем вершины i и j
смежны в точности тогда, когда НОД(i, j) = min(i, j). Изобразить
графы G4 и G6. Записать матрицы смежности графов G4 и G6. По-
казать, что при m ≤ n граф Gm является подграфом в Gn.

13.2. Найти матрицы смежности графов Kn, Nn и Cn.

13.3. Описать связь между матрицами смежности графа и его
дополнения.

13.4. Чем характерна матрица смежности двудольного графа?

13.5. Доказать “лемму о рукопожатиях”: сумма степеней всех вер-
шин любого графа равна удвоенному количеству его ребер.

13.6. Доказать, что в любом графе число вершин нечетной сте-
пени четно.

13.7. Доказать, что если в графе ровно две вершины нечетной
степени, то они лежат в одной компоненте связности графа.
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13.8. Найти количество ребер в графе Kn.

13.9. Доказать, что если граф с n вершинами изоморфен своему
дополнению, то n = 4k или n = 4k+1. Найти все графы, изоморфные
своему дополнению, для n = 4 и n = 5.

13.10. Доказать, что в любом графе c n ≥ 2 вершинами суще-
ствуют по крайней мере 2 вершины с одинаковыми степенями.

13.11. Доказать, что для всякого n ≥ 3 существует n-вершинный
связный граф, содержащий n − 1 вершин с неравными друг другу
степенями.

13.12. Для произвольного графа доказать, что граф и его допол-
нение не могут быть одновременно несвязными.

13.13. Доказать, что реберный граф связного графа связен.

13.14. Доказать, что для произвольных графов G и H справед-
ливы равенства:

1) G ∪H = G+H;
2) G+H = G ∪H.

13.15. Найти все неизоморфные друг другу графы, в которых:
1) 3 вершины;
2) 4 вершины;
3) 5 вершин и нет изолированных вершин.

13.16. Для графов из предыдущей задачи укажите связные и
не связные графы. Для не связных графов определите количество
компонент связности.

13.17. Найти все попарно не изоморфные 6-вершинные графы,
состоящие:

1) из 4 компонент связности;
2) из 3 компонент связности;
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3) из одной компоненты связности и имеющие 7 ребер и 2 висячие
вершины.

13.18. Если графы G и H изоморфны, то для каждого d ≥ 0
число вершин степени d в графах G и H одинаково. Доказать, что:

1) если в графах не более 4 вершин, то верно и обратное утвер-
ждение;

2) если в графах 5 и более вершин, то обратное утверждение не
верно.

13.19. Обозначим ni(G) число вершин степени i в графе G. По-
строить все попарно не изоморфные графы, у которых:

1) n2(G) = 1, n3(G) = n4(G) = 2 и ni(G) = 0 при i 6= 2, 3, 4;
2) n2(G) = 3, n3(G) = 2, n4(G) = 1 и ni(G) = 0 при i 6= 2, 3, 4.

13.20. Сколько существует попарно неизоморфных графов без
петель со следующими наборами степеней вершин:

1) (2, 2, 3, 3, 3, 5);
2) (3, 3, 3, 3, 3, 3);
3) (2, 2, 2, 4, 5, 5).

13.21. Среди графов изображенных на рисунках 2–6, указать все
пары изоморфных графов. Ответ обосновать.

Рис. 2. К задаче 13.20

13.22. Доказать, что если u 6= v, то всякий маршрут, соединяю-
щий u и v, содержит простую цепь их соединяющую.

54



Рис. 3. К задаче 13.20

Рис. 4. К задаче 13.20

Рис. 5. К задаче 13.20

Рис. 6. К задаче 13.20

13.23. Доказать, что любой цикл содержит простой цикл. При-
чем каждая вершина и каждое ребро цикла принадлежат некоторо-
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му простому циклу.

13.24. Доказать, что если в графе существуют две различных
простых цепи, соединяющие вершины u и v, то в графе существует
простой цикл.

13.25. Пусть Gn — граф с n ≥ 2 вершинами без петель и кратных
ребер и степень каждой вершины ≥ (n − 1)/2. Доказать, что граф
связен. Пояснить почему в условии нельзя заменить (n − 1)/2 на
[(n− 1)/2].

13.26. Доказать, что если из связного графа удалить произволь-
ное ребро, содержащееся в некотором цикле, то новый граф будет
также связным.

13.27. Показать, что если в графе степень каждой вершины боль-
ше 1, то в нем есть цикл.

13.28. Доказать, что если d > 1 и степень каждой вершины гра-
фа не меньше d, то в графе есть простой цикл длины не менее, чем
d+ 1.
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14 Эйлеровы и Гамильтоновы графы
Эйлеровы графы. Одной из первых задач теории графов бы-

ла задача о кенигсбергских мостах, решенная Л. Эйлером. В горо-
де Кенигсберге (ныне Калининград) было два острова, соединенных
семью мостами с берегами реки Прегель и друг с другом так, как
показано на рисунке. Задача состояла в следующем: найти маршрут
прохождения всех четырёх частей суши, который начинался бы с лю-
бой из них, кончался бы на этой же части и ровно один раз проходил
по каждому мосту. Общая задача теории графов поставленная и ре-
шенная Эйлером, формулируется так: при каких условиях связный
граф содержит цикл, проходящий через каждое его ребро?

Цикл, содержащий все ребра графа, называется эйлеровым. Граф,
содержащий эйлеров цикл, называется эйлеровым. Содержащая все
ребра графа незамкунутая цепь называется эйлеровой цепью. Граф,
содержащий эйлерову цепь, называется полуэйлеровым.

Рис. 7. Схема мостов в Кенигсберге

Гамильтоновы графы. Гамильтоновы путь, цикл и граф назва-
ны в честь ирландского математика У. Гамильтона, который впер-
вые определил эти классы, исследовав задачу “кругосветного путе-
шествия” по додекаэдру, узловые вершины которого символизирова-
ли крупнейшие города Земли, а рёбра — соединяющие их дороги.

Простой цикл называется гамильтоновым циклом, если он со-
держит все вершины графа. Граф называется гамильтоновым, если
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в нем есть гамильтонов цикл. Незамкунутая простая цепь, содержа-
щая все вершины графа, называется гамильтоновой цепью. Граф,
содержащий гамильтонову цепь, называется гамильтоновым. Для
связного графа возникает задача определить, содержит он гамильто-
нов цикл или нет и если содержит, то найти этот цикл. Выяснить га-
мильтонов граф или нет существенно сложнее, чем проверить явля-
ется ли он эйлеровым (в частности, эта задача являетсяNP -полной).
Более того, не существует хорошей характеризации (понятие “хоро-
шей характеризации”, в данном случае, может быть точно сформу-
лировано), позволяющей определить гамильтоновость графа.

14.1. Доказать, что связный граф эйлеров тогда и только тогда,
когда степени всех вершин четны.

14.2. Доказать, что связный граф содержит эйлерову цепь тогда
и только тогда, когда граф содержит ровно две вершины нечетной
степени

14.3. Найти все значения m и n, при которых являются эйлеро-
выми графы:

1) Kn;
2) Km,n;
3) Wn;
4) En.

14.4. При помощи алгоритма Флёри найдите эйлеровы циклы в
графах:

14.5. Доказать, что дополнение G эйлерова графа G с n верши-
нами является эйлеровым графом тогда и только тогда, когда граф
G — связный и n — нечeтно.

14.6. Доказать, что граф Nk + Nk+1 + . . . + Nk+l при l ≥ 1 не
является эйлеровым.
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14.7. Доказать, что реберный граф эйлерова графа эйлеров.

14.8. Найти все значения m и n, при которых являются гамиль-
тоновыми графы:

1) Kn;
2) Km,n;
3) Wn;
4) En.

14.9. Найти количество гамильтоновых циклов в графеKm,m при
m ≥ 2.

14.10. Доказать, что граф Nk + Nk+1 + . . . + Nk+l при l ≥ 2
гамильтонов.

14.11. Доказать, что реберный граф эйлерова графа и реберный
граф гамильтонова графа гамильтоновы.

14.12. Найти пример графа, который:
1) не эйлеров и не гамильтонов;
2) эйлеров, но не гамильтонов;
3) гамильтонов, но не эйлеров;
4) эйлеров и гамильтонов.

14.13. Решите предыдущее упражнение для полуэйлеровости и
полугамильтоновости, вместо эйлеровости и гамильтоновости.

14.14. Какие варианты реализуются, если рассматривать поня-
тия эйлеровости, полуэйлеровости, гамильтоновости и полугамиль-
тоновости?

14.15. Какие из следующих графов являются гамильтоновыми,
полугамильтоновыми:

14.16. Может ли 1) конь; 2) ладья; 3) ферзь; 4) король побывать
на каждой клетке доски 8 × 8 ровно один раз и последним ходом
вернуться в исходную клетку? Тот же вопрос для доски 7× 7?
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14.17. (Теорема Дирака). Доказать, что если в графе с n ≥ 3
вершинами степень каждой вершины не меньше чем n/2, то граф
содержит гамильтонов цикл.

14.18. (Теорема Оре). Доказать, что если в граф c n ≥ 3 верши-
нами сумма степеней для любых двух несмежных вершин не меньше
n, то граф гамильтонов.

14.19. Найти пример графа, который:
1) гамильтонов, но не удовлетворяет условиям теоремы Оре;
2) удовлетворяет условиям теоремы Оре, но не теоремы Дирака;
3) содержит n ≥ 3 вершин, степень ровно одной вершины равна

(n/2)− 1, степени остальных вершин не меньше, чем n/2, но при
этом граф не гамильтонов;

4) содержит n ≥ 3 вершин, сумма степеней любой пары несмеж-
ных вершин (кроме одной пары {u, v}) не меньше, чем n, сумма же
степеней u и v равна n− 1, но при этом граф не гамильтонов.

14.20. Пусть Gn – граф с вершинами {2, 3, . . . , n}, причем вер-
шины i и j смежны в точности тогда, когда НОД(i, j) = 1. Найти
все значения n, при которых граф Gn не гамильтонов.

14.21. Построить связный негамильтонов граф с 9 вершинами, в
котором степени всех вершин равны друг другу.

14.22. Граф называется k-связным, если граф, получающийся
удалением произвольных k вершин и инцидентных им ребер, явля-
ется связным. Докажите, что каждый 4-связный граф гамильтонов.

14.23. Пусть G — граф и d — натуральное число. Обозначим Gd

граф с тем же множеством вершин, в котором две вершины смежны
тогда и только тогда, когда кратчайший путь между ними в G имеет
длину d. Доказать, что если G — 2-связный граф, то G2 гамильтонов.
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15 Деревья и остовы
Граф без циклов называется лесом. Связный граф без циклов

называется деревом.

Рис. 8. Пример дерева

Ребро называется мостом, если при его удалении число компо-
нент связности графа увеличивается.

Остовом связного графа G = (V, E) называется подграф G′ =
(V, E ′) с тем же множеством вершин, что и у графа G, и являющий-
ся деревом. Последовательно удаляя ребра, принадлежащие циклам,
можно убедиться, что любой связный граф имеет остов. Более то-
го, если исходный граф не является деревом, то у него несколько
остовов.

Остов наименьшего веса. Рассмотрим следующую задачу. За-
дано множество городов и известны стоимости постройки дорог меж-
ду любой парой городов. Требуется построить сеть дорог минималь-
ной стоимости, позволяющую попасть из любого города в любой дру-
гой.

На языке теории графов эта задача формулируется следующим
образом. Весовой функцией (или, кратко, весом) на графеG = (V, E)
называется функция α : E −→ R+, ставящая в соответствие каждо-
му ребру графа G положительное вещественное число. Весом под-
графа G′ = (V ′, E ′) графа G называется α(G′) =

∑
e∈E′

α(e) — сумма

весов ребер графа G′.
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Задача. Пусть Gα — связный граф G = (V, E) вместе с некото-
рой весовой функцией α. Требуется найти остов графа G наимень-
шего веса.

Данную задача может быть решена алгоритмом Краскала или
алгоритмом Прима.

Алгоритм Краскала.
Шаг 1. Пусть e1 — ребро графа G наименьшего веса. Определим

E1 = {e1}.
Шаг i+1. После шага i определено множество Ei такое, что граф

Gi = (V, Ei) не содержит циклов. Определим Ei+1. Находим ребро
ei+1 графа G наименьшего веса такое, что ei+1 /∈ Ei и при добавлении
этого ребра в граф Gi получившийся граф Gi+1 = (V, Ei∪{ei+1}) не
содержит циклов. Полагаем Ei+1 = Ei ∪ {ei+1}.

Алгоритм останавливается после шага n − 1. Результатом алго-
ритма является граф T = (V, En−1).

Алгоритм Прима.
Шаг 1. Выбираем произвольную вершину и определяем дерево

T1 = ({v}, ∅).
Шаг i+1. Пусть Ti = (Vi, Ei) — дерево, построенное на предыду-

щем шаге. Находим ребро наименьшего веса e = {u, v} ∈ E такое,
что u ∈ Vi и v /∈ Vi. Определим Ti+1 = (V ∪ {v}, Ei ∪ {e}).

Алгоритм останавливается после шага n − 1. Результатом алго-
ритма является граф Tn−1 = (V, En−1).

Код Прюфера.
Каждому помеченному дереву с n вершинами можно взаимно од-

нозначно поставить в соответствие последовательность из n−2 чисел
[a1, a2, . . . , an−2], которую мы будем называть кодом Прюфера для
данного помеченного дерева.

Алгоритм кодирования дерева.
Пусть T1 — исходное дерево.
Шаг i. Пусть vi — висячая вершина дерева Ti с наименьшей мет-
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кой. Тогда ai — вершина, смежная с vi. Удаляем вершину vi и ин-
цидентное ей ребро из дерева Ti и обозначим получившееся дерево
Ti+1. Если в дереве Ti+1 больше двух вершин, то переходим к шагу
i+ 1. В противном случае, алгоритм заканчивает свою работу.

Алгоритм декодирования дерева.
Шаг 1. Пусть [a1, a2, . . . , an−2] — код Прюфера и B0 = {1, 2, . . . ,

n} — множество вершин помеченного дерева. Находим b1 — наимень-
шее число из B0, не встречающееся в коде Прюфера. Тогда дерево
содержит ребро (a1, b1). Полагаем B1 = B0 \ {b1} и переходим к
следующему шагу.

Шаг 1 < i < n − 1. В качестве элемента bi возьмем наименьшее
число из Bi−1, не входящее в [ai, . . . , an−2]. Тогда дерево содержит
ребро (ai, bi). Полагаем Bi = Bi−1 \ {bi} и переходим к следующему
шагу.

Шаг i = n − 1. Множество Bn−2 содержит 2 элемента bn−1 и bn.
Тогда дерево содержит ребро (bn−1, bn). Алгоритм заканчивает свою
работу.

15.1. Найти все попарно не изоморфные деревья с числом вер-
шин:

1) n ≤ 4;
2) n = 5;
3) n = 6.

15.2. Найти все значения m и n, при которых являются деревья-
ми графы:

1) Kn;
2) Km,n;
3) Wn;
4) En.

15.3. Описать все графы, являющиеся деревьями вместе со сво-

63



ими дополнениями.

15.4. Описать все деревья, реберные графы которых являются
деревьями.

15.5. Доказать, что всякое дерево с n > 1 вершинами является
двудольным графом.

15.6. Доказать, что ребро является мостом тогда и только тогда,
когда оно не принадлежит ни одному циклу.

15.7. Пусть T = (V, E) — граф с n вершинами. Доказать, что
утверждения 1) – 6) эквивалентны:

1) граф T является деревом;
2) граф T связный и имеет n− 1 ребро;
3) граф T не содержит циклов и имеет n− 1 ребро;
4) любые две вершины соединены единственной простой цепью;
5) граф связный и каждое ребро графа является мостом;
6) граф не содержит циклов, но добавление любого ребра дает

граф с единственным простым циклом.

15.8. Доказать, что в дереве с n ≥ 2 вершинами найдется по
крайней мере две висячие вершины.

15.9. Найти все значения m и n, при которых в полном двудоль-
ном графе Km,n существует остов, дополнение которого (до исход-
ного двудольного графа) снова есть остов.

15.10. Найти все попарно не изоморфные остовы графа:
1) Cn;
2) K2, n;
3) K6;
4) W5.

15.11. Доказать, что алгоритм Краскала находит остов наимень-
шего веса.
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15.12. Доказать, что алгоритм Прима находит остов наименьше-
го веса.

15.13. Найти остов наименьшего веса. Записать для него код
Прюфера.

1) a = (4, 3, 4, 5, 2, 1), b = (1, 2, 2), c = (5, 3, 4);
2) a = (3, 1, 2, 3, 4, 1), b = (2, 1, 2), c = (5, 5, 4);
3) a = (4, 3, 3, 2, 4, 3), b = (2, 2, 3), c = (2, 1, 1);
4) a = (3, 2, 3, 4, 3, 4), b = (2, 3, 1), c = (4, 4, 5);
5) a = (3, 4, 5, 2, 1, 4), b = (1, 2, 2), c = (4, 5, 3);
6) a = (1, 2, 3, 3, 2, 1), b = (2, 2, 2), c = (4, 5, 5);
7) a = (4, 2, 3, 3, 2, 4), b = (3, 1, 2), c = (1, 3, 1);
8) a = (2, 3, 4, 3, 4, 3), b = (2, 2, 3), c = (5, 4, 4);
9) a = (4, 2, 3, 4, 2, 4), b = (1, 3, 2), c = (2, 3, 2);
10) a = (2, 4, 3, 4, 2, 2), b = (2, 1, 1), c = (3, 5, 3).

a1

a2

a3

a4

a5

a6

b1

b2

b3

c1

c2

c3

Рис. 9. К задаче 15.13

15.14. Пусть G = N1 — граф с одной вершиной v и H = Cn —
циклический граф с n вершинами. Найти наименьший из весов осто-
вов графа G+H, если каждое ребро вH имеет вес x, а каждое ребро,
инцидентное вершине v, имеет вес y.

15.15. Пусть G = Km, H = Kn, причем каждое ребро в G имеет
вес x, а каждое ребро в H имеет вес y. Найти наименьший из весов
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остовов графа G+H, если каждое ребро, соединяющее вершину из
G с вершиной из H, имеет вес z.

15.16. Если все ребра связного графа имеют один и тот же вес, то
и все его остовы имеют одинаковый вес (какой?). Верно ли обратное
утверждение?

15.17. Предположим, что одно ребро графа имеет вес y, а вес
остальных ребер равен x, x < y. В каком случае ребро веса y входит
в остов наименьшего веса?

15.18. Построить помеченное дерево по коду Прюфера.
1) [1, 2, 1, 2, 2];
2) [1, 2, 3, 2, 1, 4];
3) [4, 6, 1, 3, 4, 2, 2];
4) [4, 4, 4, 6, 2, 1, 1];
5) [6, 2, 9, 2, 1, 2, 2, 5];
6) [9, 8, 7, 6, 5, 4, 3, 2, 1];
7) [2, 1, 3, 1, 4, 1, 5, 1, 6];
8) [3, 1, 2, 1, 7, 1, 9, 1, 2];
9) [9, 1, 5, 1, 9, 5, 4, 6, 6];
10) [1, 2, 9, 8, 1, 5, 1, 6, 1, 7].

15.19. Доказать, что различным помеченным деревьям соответ-
ствуют различные коды Прюфера.

15.20. Доказать, что различным кодам Прюфера соответствуют
различные помеченные деревья.

15.21. Доказать, что существует nn−2 помеченных деревьев с n
вершинами.
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16 Планарные графы
Плоским графом называется пара G = (V, E), со следующими

свойствами: 1) V ⊂ R2; 2) каждое ребро — это жорданова кривая с
концами соединяющими вершины ребра; 3) различные ребра имеют
различные множества концов; 4) различные ребра не имеют общих
точек, возможно за исключением концов. Планарным графом назы-
вается граф, изоморфный плоскому. Укладкой графа в плоскости на-
зывается плоский граф, изоморфный данному. Заменяя в определе-
нии плоского графа R2 на подходящее пространство, можно опре-
делить укладку графа в это пространство. Например, определение
укладки графа в R3 и на сфере оставляется в качестве упражнения.
Отметим, что любой подграф плоского графа является плоским.

Множество на плоскости называется линейно связным, если лю-
бые две точки из этого множества можно соединить жордановой
кривой, целиком лежащей в данном множестве. Связная компонен-
та множества R2 \ G называется гранью плоского графа G. Среди
всех граней есть ровно одна неограниченная, ее называют внешней
гранью. Отметим, что грань — это связная часть плоскости, ограни-
ченная ребрами графа и не содержащая внутри себя других ребер.

Граф G′ получается подразбиением ребра {u, v} из графа G, если
G′ получается из G добавлением новой вершины w и заменой ребра
{u, v} на два ребра {u, w} и {w, v}. Граф G′ называется подраз-
биением графа G, если его можно получить последовательным под-
разбиением ребер графа G. Два графа называются гомеоморфными,
если они являются подразбиениями одного и того же графа.

16.1. Доказать, что для любого связного плоского графа спра-
ведливо соотношение: n−m + f = 2, где n — число вершин графа,
m — число ребер, f — число граней.

16.2. Доказать, что для любого плоского графа справедливо со-
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отношение: n − m + f = 1 + k, где n — число вершин графа, m —
число ребер, f — число граней, k — число компонент связности.

16.3. Доказать, что для любого связного планарного графа c n ≥
3 вершинами и m ребрами выполняется неравенство: m ≤ 3n− 6.

16.4. Доказать, что если у связного планарного графа с n вер-
шинами и m ребрами каждый простой цикл содержит не менее l ≥ 3
ребер, то m ≤ l(n− 2)/(l − 2).

Доказать, что для любого связного планарного графа c n ≥ 3
вершинами и m ребрами выполняется неравенство: m ≤ 3n− 6.

16.5. Выяснить, существует ли планарный граф, у которого:
1) 7 вершин и 16 ребер;
2) 8 вершин и 17 ребер.

16.6. Какое наибольшее число граней может быть у плоского 5-
вершинного графа? Изобразите такой граф.

16.7. 1) Существует ли плоский 6-вершинный граф, у которого 9
граней?

2) Построить все попарно неизоморфные плоские 6-вершинные
графы, имеющие 8 граней.

16.8. Доказать, что в планарном графе есть вершина степени не
более 5.

16.9. Доказать, что если в планарном графе число вершин не
меньше 4, то в нем есть по крайней мере 4 вершины степени не более
5.

16.10. Доказать, что графы K5 и K3, 3 не являются планарными.

16.11. Доказать, что любой граф укладывается в R3.

16.12. Доказать, что граф планарный тогда и только тогда, когда
он укладывается на сфере.
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16.13. Доказать, что K5 и K3, 3 укладываются на торе.

16.14. Доказать, что K5 и K3, 3 укладываются на ленте Мебиуса.

16.15. (Теорема Понтрягина-Куратовского). Доказать, что граф
планарный тогда и только тогда, когда он не содержит подграфов
гомеоморфных K5 или K3, 3.

16.16. Построить граф с 6 вершинами и 12 ребрами, содержащий
одновременно подграфы, гомеоморфные K5 и K3, 3.

16.17. Какие из пар деревьев в задаче 15.9 гомеоморфны.

16.18. Применяя критерий Понтрягина—Куратовского, проверить
планарность графов:

1) графы из задачи 13.18;
2) графы изображенные на рис. 6;
3) графы изображенные на рис. 10:

n секций n секций

Рис. 10. К задаче 16.12

16.19. Какое наименьшее число ребер надо удалить из заданного
графа, чтобы получился планарный граф:

1) K6;
2) E4 — граф, соответствующий четырехмерному кубу;
3) граф Петерсена?

16.20. Какое наименьшее число вершин надо удалить из графов
в предыдущей задачи, чтобы получился планарный граф? Вершины
удаляются вместе c инцидентными им ребрами.
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