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Abstract
Let M be a von Neumann algebra of operators on a Hilbert space H and τ be a
faithful normal semifinite trace on M. Let tτ be the measure topology on the ∗-
algebra S(M, τ ) of all τ -measurable operators. We define three tτ -closed classes P1,
P2 and P3 of τ -measurable operators and investigate their properties. The class P2
containsP1 ∪P3. If a τ -measurable operator T is hyponormal, then T lies inP1 ∩P3;
if an operator T lies in P3, thenUTU∗ belongs to P3 for all isometriesU fromM. If
a bounded operator T lies inP1∪P3 then T is normaloid. If an operator T ∈ S(M, τ )

is p-hyponormal with 0 < p ≤ 1 then T ∈ P1. If M = B(H) and τ = tr is the
canonical trace, then the class P1 (resp., P3) coincides with the set of all paranormal
(resp., ∗-paranormal) operators on H. Let A, B ∈ S(M, τ ) and A be p-hyponormal
with 0 < p ≤ 1. If AB is τ -compact then A∗B is τ -compact.

Keywords Hilbert space · von Neumann algebra · Trace · Non-commutative
integration · Measurable operator · Generalized singular value function · Paranormal
operator · Hyponormal operator · Operator inequality

Mathematics Subject Classification 46L10 · 47C15 · 46L51

1 Introduction

It is well known that bounded hyponormal operators on a Hilbert spaceH have some
interesting properties. For example, if A is a hyponormal operator then ‖An‖∞ =
‖A‖n∞ for every n ∈ N [20, Problem 162], here ‖ · ‖∞ denotes the uniform norm
on B(H); every bounded hyponormal compact operator is normal [20, Problem 163].
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A. Bikchentaev

Fruitful generalizations of the notion of a hyponormal operator are the concepts of
p-hyponormal [1], paranormal [17,23], and ∗-paranormal operators [3]. A number
of modern authors study properties of such operators (see, for example, [29,30] and
references in them).

In this article, we obtain analogs of certain properties of bounded p-hyponormal,
paranormal, and ∗-paranormal operators onH for some unbounded ones. LetM be a
vonNeumann operator algebra on a Hilbert spaceH, 1 be the unit ofM, τ be a faithful
normal semifinite trace onM, S(M, τ ) be the ∗-algebra of all τ -measurable operators,
a number 0 < p < +∞ and L p(M, τ ) be the space of integrable (with respect to τ ) in
pth degree operators. LetM1 = {X ∈ M : ‖X‖∞ = 1}, μ(·; X) be the generalized
singular value function of operator X ∈ S(M, τ ) and let |X | = √

X∗X . Assume that
‖X‖∞ = +∞ for all X ∈ S(M, τ )\M.

In papers [6,8] we introduced two classes of τ -measurable operators

P1 = {T ∈ S(M, τ ) : ‖T 2A‖∞ ≥ ‖T A‖2∞ for all A ∈ M1 with T A ∈ M},
P2 = {T ∈ S(M, τ ) : μ(t; T 2) ≥ μ(t; T )2 for all t > 0}

and investigated their properties. The classes P1 and P2 are closed in the topology
of convergence in measure τ and P1 ⊂ P2 (Propositions 3.5 and 3.30 of [6]). In [6,
Theorem 3.1] we gave an equivalent definition of the class P1 [i.e., T ∈ P1 if and
only if |T |2 ≤ (λ−1|T 2|2 + λ1)/2 for all λ > 0], that allowed us to call P1 a class of
all paranormal τ -measurable operators. A similar definition of paranormal elements
for general normed algebras was introduced and investigated in [7].

If an operator T ∈ S(M, τ ) is hyponormal then T ∈ P1; if an operator T ∈ P1
has the inverse T−1 ∈ M then T−1 ∈ P1 [6, Theorem 3.6]. If an operator T ∈ Pk

thenUTU∗ ∈ Pk for all isometriesU ∈ M and k = 1, 2. If an operator T ∈ P1 ∩M
then T n ∈ P1 for all n ∈ N [6, Theorem 3.12]. Consider an operator T ∈ P1 ∩ M
and n ∈ N. Then μ(t, T n) ≥ μ(t; T )n for all t > 0 [6, Theorem 3.16] and we
have the equivalences: an operator T is τ -compact ⇔ an operator T n is τ -compact;
T ∈ L pn(M, τ ) ⇔ T n ∈ L p(M, τ ), 0 < p < +∞ [6, Corollary 3.17]. Every
operator T ∈ P1∩M is normaloid [6, Corollary 3.18]. Each τ -compact p-hyponormal
operator is normal [12, Theorem 2.2]. If an operator T ∈ S(M, τ ) is hyponormal and
T n is τ -compact for some natural number n then T is both normal and τ -compact [6,
Corollary 3.7]; it is a strengthening of item (i) of Corollary 3.2 [12]. If T ∈ P1 then
T 2 ∈ P1 [6, Theorem 3.21].

Put M = B(H) and τ be the canonical trace tr. Then the class P1 coincides with
the set of all paranormal operators on H [6, Corollary 3.3], is sequentially closed
in the strong operator topology [6, Corollary 3.4] and contains a non-hyponormal
operator [6, Corollary 3.13]. IfH is separable and infinite-dimensional then P1 = P2
[6, Corollary 3.23].

In this paper we introduce the class

P3 = {T ∈ S(M, τ ) : ‖T 2A‖∞ ≥ ‖T ∗A‖2∞ for all A ∈ M1 with T ∗A ∈ M}

of τ -measurable operators and investigate some properties of P1 and P3. In Theorem
3.1 we obtain an equivalent definition of the class P3 [i.e., T ∈ P3 if and only if
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|T ∗|2 ≤ (λ−1|T 2|2 + λ1)/2 for all λ > 0], that allows us to call P3 a class of all ∗-
paranormal τ -measurable operators. The classP3 is closed in the measure topology tτ
(Corollary 3.2). If an operator T ∈ S(M, τ ) is hyponormal then T ∈ P3; if an operator
T ∈ P3 then UTU∗ ∈ P3 for all isometries U ∈ M (Theorem 3.6). If an operator
T ∈ S(M, τ ) is p-hyponormalwith 0 < p ≤ 1 then T ∈ P1 andμ(t; T 2) ≥ μ(t; T )2

for all t > 0 (Theorem 4.4 and Corollary 4.5). It is a strengthening of item (i) of
Theorem 3.6 [6] and a generalization of Theorem 3 [28]. Methods of proof are new
even for algebra B(H), endowed with the canonical trace tr. Let A, B ∈ S(M, τ )

and A be p-hyponormal with 0 < p ≤ 1. If AB is τ -compact then A∗B is τ -compact
(Theorem 5.1). On τ -compactness of products of τ -measurable operators see [9].

2 Notation, definitions and preliminaries

LetM be a von Neumann algebra of operators on a Hilbert spaceH. LetP(M) be the
lattice of projections inM, 1 be the unit ofM, and let P⊥ = 1− P for P ∈ P(M).
AlsoM+ denotes the cone of positive elements inM, and ‖ · ‖∞ denotes the uniform
norm on M. A mapping ϕ : M+ → [0,+∞] is called a trace, if ϕ(X + Y ) =
ϕ(X)+ϕ(Y ), ϕ(λX) = λϕ(X) for all X ,Y ∈ M+, λ ≥ 0 [moreover, 0 · (+∞) ≡ 0];
ϕ(Z∗Z) = ϕ(Z Z∗) for all Z ∈ M. A trace ϕ is called faithful, if ϕ(X) > 0 for
all X ∈ M+, X = 0; normal, if Xi ↑ X (Xi , X ∈ M+) ⇒ ϕ(X) = supϕ(Xi );
semifinite, if ϕ(X) = sup{ϕ(Y ) : Y ∈ M+, Y ≤ X , ϕ(Y ) < +∞} for every
X ∈ M+.

A linear operator X : D (X) → H, where the domain D (X) of X is a linear
subspace of H, is said to be affiliated with M if Y X ⊆ XY for all Y ∈ M′, where
M′ is the commutant ofM. A linear operator X : D (X) → H is termed measurable
with respect to M if X is closed, densely defined, affiliated with M and there exists
a sequence {Pn}∞n=1 in the logic of all projections of M, P (M), such that Pn ↑ 1,
Pn(H) ⊆ D (X) and P⊥

n is a finite projection (with respect toM) for all n. It should
be noted that the condition Pn (H) ⊆ D (X) implies that X Pn ∈ M. The collection
of all measurable operators with respect toM is denoted by S (M), which is a unital
∗-algebra with respect to strong sums and products [denoted simply by X + Y and
XY for all X ,Y ∈ S (M)] [27,31].

Let X be a self-adjoint operator affiliated withM. We denote its spectral measure
by {EX }. It is well known that if X is a closed operator affiliated withMwith the polar
decomposition X = U |X |, then U ∈ M and E ∈ M for all projections E ∈ {E |X |}.
Moreover, X ∈ S(M) if and only if X is closed, densely defined, affiliated with M
and E |X |(λ,∞) is a finite projection for some λ > 0. It follows immediately that in
the case when M is a von Neumann algebra of type III or a type I factor, we have
S(M) = M. For type II von Neumann algebras, this is no longer true. From now on,
letM be a semifinite von Neumann algebra equipped with a faithful normal semifinite
trace τ .

For any closed and densely defined linear operator X : D (X) → H, the null
projection n(X) = n(|X |) is the projection onto its kernelKer(X), the range projection
r(X) is the projection onto the closure of its range Ran(X) and the support projection
s(X) of X is defined by s(X) = 1 − n(X).
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A. Bikchentaev

An operator X ∈ S (M) is called τ -measurable if there exists a sequence {Pn}∞n=1
in P (M) such that Pn ↑ 1, Pn (H) ⊆ D (X) and τ(P⊥

n ) < ∞ for all n.The collection
S (M, τ ) of all τ -measurable operators is a unital ∗-subalgebra of S (M) denoted by
S (M, τ ). It is well known that a linear operator X belongs to S (M, τ ) if and only if
X ∈ S(M) and there exists λ > 0 such that τ(E |X |(λ,∞)) < ∞. Alternatively, an
unbounded operator X affiliated withM is τ -measurable (see [16]) if and only if

τ(E |X |(n,+∞)) → 0 as n → ∞.

Let L+ and Lh denote the positive and Hermitian parts of a family L ⊂ S(M, τ ),
respectively. We denote by ≤ the partial order in S(M, τ )h generated by its proper
cone S(M, τ )+. If X ∈ S(M, τ ), then |X | = √

X∗X ∈ S(M, τ )+.

Definition 2.1 Let a semifinite von Neumann algebra M be equipped with a faith-
ful normal semifinite trace τ and let X ∈ S(M, τ ). The generalized singular value
function μ(X) : t → μ(t; X) of the operator X is defined by setting

μ(s; X) = inf{‖X P‖∞ : P ∈ P (M) such that τ(P⊥) ≤ s}. (1)

An equivalent definition in terms of the distribution function of the operator X is the
following. For every self-adjoint operator X ∈ S(M, τ ), setting

dX (t) = τ(EX (t,∞)), t > 0,

we have (see e.g. [16] and [26])

μ(t; X) = inf{s ≥ 0 : d|X |(s) ≤ t}.

Note that dX (·) is a right-continuous function (see e.g. [16]).
For convenience of the reader, we also recall the definition of themeasure topology

tτ on the algebra S(M, τ ). For every ε, δ > 0, we define the set

V (ε, δ) = {X ∈ S(M, τ ) : ∃P ∈ P (M) such that ‖X P‖∞ ≤ ε, τ (P⊥) ≤ δ}.

The topology generated by the sets V (ε, δ), ε, δ > 0, is called the measure topology
tτ on S(M, τ ) [16,27]. It is well-known that the algebra S(M, τ ) equipped with the
measure topology is a complete metrizable topological algebra [27]. We note that a
sequence {Xn}∞n=1 ⊂ S(M, τ ) converges to zero with respect to measure topology tτ
(i.e. Xn

τ−→ 0) if and only if τ
(
E |Xn |(ε,∞)

) → 0 as n → ∞ for all ε > 0.
The space S0(M, τ ) of τ -compact operators is the space associated to the algebra

of functions from S(0,∞) vanishing at infinity, that is,

S0(M, τ ) =
{
X ∈ S(M, τ ) : lim

t→+∞ μ(t; X) = 0

}
.

123



Paranormal measurable operators affiliated with a…

The two-sided ideal F(τ ) inM consisting of all elements of τ -finite range is defined
by

F(τ ) = {X ∈ M : τ(r(X)) < +∞} = {X ∈ M : τ(s(X)) < +∞}.

Equivalently, F(τ ) = {X ∈ M : μ(t; X) = 0 for some t > 0}. Clearly, S0(M, τ ) is
the closure of F(τ ) with respect to the measure topology [14], which is a two-sided
ideal in S(M, τ ).

Let m be Lebesgue measure on R. The noncommutative L p-Lebesgue space (0 <

p < +∞) affiliated with (M, τ ) is defined as

L p(M, τ ) = {X ∈ S(M, τ ) : μ(X) ∈ L p(R
+,m)}

with the quasi-norm ‖X‖p = ‖μ(X)‖p, X ∈ L p(M, τ ). In particular, ‖ ·‖p is a norm
when 1 ≤ p < +∞. We have F(τ ) ⊂ L p(M, τ ) ⊂ S0(M, τ ) for all 0 < p < +∞.

If τ(1) < +∞ then S(M, τ ) = S0(M, τ ) consists of all closed linear operators
onH affiliated withM and F(τ ) = M. Furthermore, tτ is independent of a concrete
choice of a trace τ and is minimal among all metrizable topologies which agree with
the ring structure of S(M, τ ) [13, Theorem 2].

Lemma 2.2 [16] Let X ,Y , Z ∈ S(M, τ ). Then

(1) μ(t; X) = μ(t; |X |) = μ(t; X∗) for all t > 0;
(2) if X ,Y ∈ M then μ(t; X ZY ) ≤ ‖X‖∞‖Y‖∞μ(t; Z) for all t > 0;
(3) μ(t; |X |p) = μ(t, X)p for all p > 0 and t > 0;
(4) if |X | ≤ |Y | then μ(t; X) ≤ μ(t; Y ) for all t > 0;
(5) μ(s + t; X + Y ) ≤ μ(s; X) + μ(t; Y ) for all s, t > 0;
(6) μ(t; λX) = |λ|μ(t; X) for all λ ∈ C and t > 0;
(7) limt→0+ μ(t; X) = ‖X‖∞ if X ∈ M and limt→0+ μ(t; X) = +∞ if X /∈ M.

Anoperator A ∈ S(M, τ ) is said to be p-hyponormalwith 0 < p ≤ 1, if (A∗A)p ≥
(AA∗)p; hyponormal, if it is 1-hyponormal; cohyponormal, if A∗ is hyponormal;
quasinormal, if A commutes with A∗A, i.e. A · A∗A = A∗A · A.
Lemma 2.3 (See [15], p. 720) If X ,Y ∈ S(M, τ )+ and Z ∈ S(M, τ ) then the
inequality X ≤ Y implies that Z X Z∗ ≤ ZY Z∗.

IfM = B(H), i.e. the ∗-algebra of all linear bounded operators onH, and τ = tr
is the canonical trace then S(M, τ ) coincides with B(H). In this case the measure
topology coincides with the ‖ · ‖∞-topology, S0(M, τ ) is the ideal of all compact
operators on H, F(τ ) is the finite-dimensional operator ideal on H and

μ(t; X) =
∞∑

n=1

sn(X)χ[n−1,n)(t), t > 0,

where {sn(X)}∞n=1 is the sequence of s-numbers of an operator X [19, Chap. 1]; here
χA is the indicator function of a set A ⊂ R. In this case, the space L p(M, τ ) is a
Schatten–von Neumann ideal Cp(H), 0 < p < +∞.
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An operator T ∈ B(H) is said to be paranormal (∗-paranormal), if ‖T 2x‖H ≥
‖T x‖2H (respectively, ‖T 2x‖H ≥ ‖T ∗x‖2H) for all x ∈ H1 = {y ∈ H : ‖y‖H = 1},
see [17,24]; normaloid, if ‖T ‖∞ = supy∈H1

|〈T x, x〉|. It is known that T is normaloid
⇔ its spectral radius equals ‖T ‖∞, or, equivalently, ||T n‖∞ = ‖T ‖n∞ for all n ∈ N

[20]. It is shown in [25, Problem 9.5] that an operator T ∈ B(H) is paranormal ⇔
|T |2 ≤ (λ−1|T 2|2 +λ1)/2 for all λ > 0. It is shown in [4] that an operator T ∈ B(H)

is ∗-paranormal ⇔

|T ∗|2 ≤ 1

2
(λ−1|T 2|2 + λ1) for all λ > 0. (2)

Let (�, ν) be a measure space andM be the von Neumann algebra of multiplicator
operators M f by functions f from L∞(�, ν) on a space L2(�, ν). The algebra M
contains no compact operators ⇔ the measure ν has no atoms [2, Theorem 8.4].

3 Three classes of �-measurable operators

Let τ be a faithful normal semifinite trace on a von Neumann algebraM. It is obvious
that

T ∈ Pk ⇔ λT ∈ Pk for all λ ∈ C\{0}, k = 1, 2, 3.

Theorem 3.1 For an operator T ∈ S(M, τ ) the following conditions are equivalent:

(i) T ∈ P3;
(ii) T meets condition (2).

Proof (i)⇒ (ii). Assume that for an operator T ∈ P3 condition (2) does not hold. Then
there exists a number λ > 0 such that

1

2
(λ−1|T 2|2 + λ1) − |T ∗|2 = X − Y , (3)

where X ,Y ∈ S(M, τ )+, XY = 0 and Y = 0. Let Y = ∫ +∞
0 t EY ( dt) be the spectral

decomposition and n ∈ N be such that the projection

P = EY ((n−1, n)) = 0.

Then PX P = 0 and PY P ≥ n−1P .
Multiplying relation (3) by the projection P on both sides, leads us to

P|T ∗|2P = 1

2
(λ−1P|T 2|2P + λP) + PY P ≥ 1

2
(λ−1P|T 2|2P + (λ + 2n−1)P).
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Since P is a unit in the reduced von Neumann algebra MP , we have

‖T ∗P‖2∞ = ‖P|T ∗|2P‖∞ ≥ 1

2
‖λ−1P|T 2|2P + (λ + 2n−1)P‖∞

= 1

2
(λ−1‖T 2P‖2∞ + (λ + 2n−1)).

If T 2P = 0 then ‖T ∗P‖2∞ ≥ λ2−1 + n−1 > ‖T 2P‖∞ = 0. If T 2P = 0 then by the
inequality a2 + b2 ≥ 2|ab| for all a, b ∈ R we have

‖T ∗P‖2∞ ≥ 1

2
· 2

√
λ−1(λ + 2n−1) · ‖T 2P‖∞ > ‖T 2P‖∞.

Thus, in both cases T /∈ P3—a contradiction.
(ii)⇒ (i). Consider an operator A ∈ M1 such that T ∗A ∈ M. Then A∗A ≤ 1 and

|T ∗|A ∈ M. If T 2A /∈ M then the assertion is met. Let T 2A ∈ M. Multiplying
inequality (2) from the left-hand side by the operator A∗ and from the right-hand side
by the operator A, leads us to

A∗|T ∗|2A ≤ 1

2
(λ−1A∗|T 2|2A + λA∗A) ≤ 1

2
(λ−1A∗|T 2|2A + λ1) for all λ > 0.

Therefore ‖A∗|T ∗|2A‖∞ = ‖T ∗A‖2∞ ≤ 1

2
(λ−1‖T 2A‖2∞ + λ) for all λ > 0. Put here

λ = ‖T 2A‖∞ and obtain ‖T ∗A‖2∞ ≤ ‖T 2A‖∞. ��
Corollary 3.2 The class P3 is closed in the measure topology tτ .

Proof Condition (2) is equivalent to the condition T 2∗T 2 − 2λT T ∗ + λ21 ≥ 0 for all
λ > 0. Hence tτ -closedness of the class P3 follows from Theorem 3.1, tτ -continuity
of the involution, tτ -continuity of the product operation on S(M, τ ) and tτ -closedness
of the cone S(M, τ )+ in S(M, τ ). ��
Corollary 3.3 Consider operators T ∈ P3, A ∈ S(M, τ ) and numbers k ∈ N, 0 <

p, q, r < +∞ with 1/p + 1/q = 1/r . Then

(i) if T 2T ∗k A, T ∗k A ∈ M then (T ∗)k+1A ∈ M;
(ii) if T 2T ∗k A ∈ M, T ∗k A ∈ F(τ ) or T 2T ∗k A ∈ F(τ ), T ∗k A ∈ M then

(T ∗)k+1A ∈ F(τ );
(iii) if T 2T ∗k A ∈ L p(M, τ ), T ∗k A ∈ Lq(M, τ ) then (T ∗)k+1A ∈ L2r (M, τ ).

Proof A slight modification of the proof of [6, Corollary 3.1] leads to the goal. ��
Corollary 3.4 Every operator T ∈ M∩P3 is ∗-paranormal, hence it is normaloid. If
M = B(H) then the class P3 coincides with the class of all ∗-paranormal operators
onH and is closed in ‖ · ‖∞-topology.

Proof Every ∗-paranormal operator is normaloid [3, Theorem 1.1]. ��

123



A. Bikchentaev

Remark 3.5 If an operator T ∈ S(M, τ ) is hyponormal or cohyponormal then
μ(t; T 2) = μ(t; T )2 for all t > 0 [12, Theorem 3.1] and T ∈ P2. If T ∈ S(M, τ ) is
nilpotent of second order (T = 0 = T 2) then T /∈ P2.

Theorem 3.6 (i) If an operator T ∈ S(M, τ ) is hyponormal then T ∈ P3.
(ii) If an operator T ∈ P3 then UTU∗ ∈ P3 for all isometries U ∈ M.

Proof (i) For a hyponormal operator T ∈ S(M, τ ) and every number λ > 0 by
Lemma 2.3 we have

T ∗ · T ∗T · T − 2λT T ∗+λ21≥T ∗ · T T ∗ · T − 2λT ∗T+λ21=(T ∗T − λ1)2≥0.

Applying Theorem 3.1 we conclude the proof.
(ii) Consider operators T ∈ P3 and A ∈ M1 such that (UTU∗)∗ · A ∈ M for an

isometry U ∈ M. If (UTU∗)2 · A /∈ M or U∗A = 0 then the assertion is obvious.
Let (UTU∗)2 · A ∈ M and U∗A = 0. Then 0 < ‖U∗A‖∞ ≤ 1 and

‖(UTU∗)2 · A‖∞ = ‖UT 2U∗ · A‖∞ ≥ ‖U∗ ·UT 2U∗ · A‖∞ = ‖T 2U∗A‖∞

=
∥∥∥∥T

2 U∗A
‖U∗A‖∞

∥∥∥∥∞
· ‖U∗A‖∞

≥
∥
∥∥∥T

U∗A
‖U∗A‖∞

∥
∥∥∥

2

∞
· ‖U∗A‖∞ = ‖T ·U∗A‖2∞

‖U∗A‖∞
≥ ‖T ∗ ·U∗A‖2∞ ≥ ‖UT ∗U∗ · A‖2∞ = ‖(UTU∗)∗ · A‖2∞.

��
Corollary 3.7 If an operator T ∈ S(M, τ ) is quasinormal then T ∈ P3.

Proof Every quasinormal operator T ∈ S(M, τ ) is hyponormal [11, Theorem 2.9]. ��
Remark 3.8 If an operator T ∈ S(M, τ ) is quasinormal then T n is also quasinormal
[10, Proposition 2.10] and μ(t; T n) = μ(t; T )n for all t > 0 and n ∈ N [10, Theorem
2.6].

Proposition 3.9 Let τ be a faithful normal semifinite trace on a von Neumann algebra
M. Then P3 ⊂ P2. If M = B(H) for separable and infinite dimensional H then
P3 = P2.

Proof Let t > 0 be fixed. From relation (1) for X = T 2 we have

∀ε > 0 ∃Pε ∈ P(M) (τ (P⊥
ε ) ≤ t, ε + μ(t; T 2) > ‖T 2Pε‖∞ ≥ μ(t; T 2)),

thereby ‖T ∗Pε‖2∞ ≤ ε + μ(t; T 2). Note that a projection Pε is included in the right-
hand side of (1) for X = T ∗. Thereforeμ(t; T ) = μ(t; T ∗) ≤ ‖T ∗Pε‖∞ and because
of the arbitrariness of the number ε > 0 we get μ(t; T 2) ≥ μ(t; T )2. Thus P3 ⊂ P2.

For T ∈ M̃ we have T ∈ P2 ⇔ T ∗ ∈ P2 [6, Proposition 3.22]. Let {en}∞n=0 be
an orthonormal basis in H. The unilateral shift T en = en+1 (n = 0, 1, 2, . . .) is
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a hyponormal operator (an isometry) and T ∈ P3 by item (i) of Theorem 3.5. The
null-space KerT ∗ is generated by vector e0, and the null-space Ker(T ∗)2 is generated
by vectors e0 and e1. We have for the one-dimensional projection A = 〈·, e1〉e1 the
relations

0 = ‖(T ∗)2A‖∞ < ‖(T ∗)∗A‖2∞ = ‖T ∗A‖2∞ = 1

and T ∗ /∈ P3. The assertion is proved. ��
Now by Proposition 3.24 of [6] we have

Corollary 3.10 For T ∈ P3 we have the equivalences:

(i) T ∈ M ⇔ T 2 ∈ M;
(ii) T ∈ F(τ ) ⇔ T 2 ∈ F(τ );
(iii) T ∈ S0(M, τ ) ⇔ T 2 ∈ S0(M, τ );
(iv) T ∈ L2p(M, τ ) ⇔ T 2 ∈ L p(M, τ ), 0 < p < +∞.

Proposition 3.11 If a τ -measurable operator T belongs toPk and P ∈ P(M) is such
that T P = PT P then the restriction T |PH belongs to Pk , k = 1, 3.

Proof For k = 1, P ∈ P(M) and A ∈ M1 with PA = 0 we have 0 < ‖PA‖∞ ≤ 1
and

‖(T |PH)2A‖∞

= ‖(PT P)2A‖∞ = ‖T 2PA‖∞ =
∥
∥∥∥T

2 PA

‖PA‖∞

∥
∥∥∥∞

· ‖PA‖∞ ≥

≥
∥∥∥
∥T

P A

‖PA‖∞

∥∥∥
∥

2

∞
· ‖PA‖∞ = ‖T |PHA‖2∞ · 1

‖PA‖∞
≥ ‖T |PHA‖2∞.

For k = 3 we apply the equality (T |PH)∗ = PT ∗P . ��
Proposition 3.12 Let T ∈ S(M, τ ) and a unitary operator S ∈ M h be so that
ST = T S. Then T ∈ P3 ⇔ ST ∈ P3.

Proof We have S2 = 1 and (ST )2 = T 2, ST ∗ = T ∗S.
(⇒) Let A ∈ M1 be so that (ST )∗A ∈ M. Then

‖(ST )2A‖∞ = ‖T 2A‖∞ ≥ ‖T ∗A‖2∞ = ‖A∗T T ∗A‖∞ = ‖A∗T S2T ∗A‖∞
= ‖ST ∗A‖2∞ = ‖T ∗SA‖2∞ = ‖(ST )∗A‖2∞.

(⇐) If ST ∈ P3 then by the above proved result T = S · ST ∈ P3. ��

4 Every p-hyponormal �-measurable operator lies inP1

Lemma 4.1 For all operators Y ∈ S(M, τ )+, X ∈ M1 and 1 ≤ r ≤ 2 we have
(X∗Y X)r ≤ X∗Yr X.
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Proof Let Y = ∫ +∞
0 t EY ( dt) be the spectral decomposition. Put Yn = ∫ n

0 t EY ( dt)
for all n ∈ N. Since the function f (t) = tr (t ≥ 0) is operator convex, we apply
[22, Theorem 2.1] and obtain (X∗YnX)r ≤ X∗Yr

n X for all n ∈ N. By tτ -continuity of

operator functions [33] and the product operation we have (X∗Yn X)r
τ−→ (X∗Y X)r

and X∗Yr
n X

τ−→ X∗Yr X as n → ∞. Finally, we apply the tτ -closedness of the cone
S(M, τ )+ in S(M, τ ). ��
Lemma 4.2 For all operators Y ∈ S(M, τ )+, X ∈ M1 and t > 0, q ≥ 1 we have
μ(t; X∗Yq X) ≥ μ(t; X∗Y X)q . In particular, we have ‖X∗Yq X‖∞ ≥ ‖X∗Y X‖q∞.

Proof Let 1 < q = p1 p2 . . . pk with some 1 < pn ≤ 2, n = 1, 2, . . . , k. By Lemma
4.1 and by items (3), (4) of Lemma 2.2 for all t > 0 we have

μ(t; X∗Yq X) = μ(t; X∗(Yq/p1)p1X) ≥ μ(t; (X∗Yq/p1X)p1)

= μ(t; X∗Yq/p1X)p1 = μ(t; X∗(Yq/p1 p2)p2X)p1 ≥ · · ·
≥ μ(t; X∗Yq/p1 p2 p3...pk X)p1 p2 p3...pk = μ(t; X∗Y X)q .

We apply item (7) of Lemma 2.2 and obtain ‖X∗Yq X‖∞ ≥ ‖X∗Y X‖q∞. ��
Lemma 4.3 Let an operator T ∈ S(M, τ ) be p-hyponormal with 0 < p ≤ 1 and
T = U |T | be the polar decomposition of T . Then

(i) U∗|T |1/2nU ≥ |T |1/2n ≥ U |T |1/2nU∗ for some n ∈ N;
(ii) the operator Tp = U |T |p is hyponormal.
Proof (i) We have |T ∗| = U |T |U∗ and |T |2p = (T ∗T )p ≥ (T T ∗)p = |T ∗|2p =
U |T |2pU∗. Let n ∈ N be such that q = 1

p2n−1 ∈ (0, 1). Then by Hansen’s Theorem

([21]; [5, Lemma 3.1.1]), we have the relations

|T |1/2n = (|T |2p)q ≥ (U |T |2pU∗)q ≥ U |T |2pqU∗ = U |T |1/2nU∗,

i.e., |T |1/2n ≥ U |T |1/2nU∗. Multiplication of this relation from the left-hand side by
the operator U∗ and from the right-hand side by the operator U and Lemma 2.3 lead
us to

U∗|T |1/2nU ≥ U∗U |T |1/2nU∗U = |T |1/2n .

(ii) We have U |T |2pU∗ = (U |T |2U∗)p ≤ |T |2p ≤ U∗|T |2pU . ��
The following statement strengthens item (i) of Theorem 3.6 [6] and is a general-

ization of Theorem 3 [28].

Theorem 4.4 If an operator T ∈ S(M, τ ) is p-hyponormal with 0 < p ≤ 1 then
T ∈ P1.
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Proof Let T = U |T | be the polar decomposition of the p-hyponormal operator T ∈
S(M, τ ) with 0 < p ≤ 1 and n ∈ N be as in item (i) of Lemma 4.3. For A ∈ M1
with T A ∈ M\{0} we have

‖T 2A‖2∞ = ‖A∗T ∗2T 2A‖∞ = ‖A∗T ∗ · |T |2 · T A‖∞

=
∥
∥∥∥

A∗T ∗

‖A∗T ∗‖∞
· (|T |1/2n )2n+1 · T A

‖T A‖∞

∥
∥∥∥∞

· ‖T A‖2∞.

Then by Lemma 4.2 we obtain

‖T 2A‖2∞ ≥
∥
∥∥∥

A∗T ∗

‖A∗T ∗‖∞
· |T |1/2n · T A

‖T A‖∞

∥
∥∥∥

2n+1

∞
· ‖T A‖2∞

= ‖A∗T ∗ · |T |1/2n · T A‖2n+1

∞ · ‖T A‖2∞
‖T A‖22n+2

∞

= ‖A∗|T |U∗ · |T |1/2n ·U |T |A‖2n+1

∞ · ‖T A‖2∞
‖T A‖22n+2

∞
.

Therefore by item (i) of Lemmas 4.3 and 2.3 we have

‖T 2A‖2∞ ≥ ‖A∗|T | · |T |1/2n · |T |A‖2n+1

∞ · ‖T A‖2∞
‖T A‖22n+2

∞

= ‖A∗ · |T |1/2n+2 · A‖2n+1

∞ · ‖T A‖2∞
‖T A‖22n+2

∞

= ‖A∗ · (|T |2)1/2n+1+1 · A‖2n+1

∞ · ‖T A‖2∞
‖T A‖22n+2

∞

Thus by Lemma 4.2 we obtain

‖T 2A‖2∞ ≥ ‖A∗ · |T |2 · A‖2n+1+1∞ · ‖T A‖2∞
‖T A‖22n+2

∞

= ‖|T | · A‖22n+2+2 · ‖T A‖2∞
‖T A‖22n+2

∞

≥ ‖U |T | · A‖22n+2+2∞ · ‖T A‖2∞
‖T A‖22n+2

∞
= ‖T A‖4∞

and Theorem 4.4 is proved. ��
Corollary 4.5 If an operator T ∈ S(M, τ ) is p-hyponormal with 0 < p ≤ 1 then
μ(t; T 2) ≥ μ(t; T )2 for all t > 0.

Proof We have P1 ⊂ P2 by Proposition 3.5 of [6]. ��
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Corollary 4.6 If an operator T ∈ M is p-hyponormalwith0 < p ≤ 1 thenμ(t; T n) ≥
μ(t; T )n for all t > 0 and n ∈ N.

Proof We apply Theorem 3.16 of [6]. ��

5 On p-hyponormal �-measurable operators

Let a semifinite vonNeumann algebraM be equippedwith a faithful normal semifinite
trace τ .

Theorem 5.1 Let A, B ∈ S(M, τ ) and A be p-hyponormal with 0 < p ≤ 1.

(i) If AB ∈ S0(M, τ ) then A∗B ∈ S0(M, τ ).
(ii) If A, B ∈ M and AB ∈ F(τ ) then A∗B ∈ F(τ ).
(iii) If A, B ∈ M and AB ∈ Lq(M, τ ) then A∗B ∈ Lq/p(M, τ ).

Proof (i) Let A∗ = U |A∗| be the polar decomposition of an operator A∗. Every
operator B ∈ S(M, τ ) can be represented as a sum B = S + T with S ∈ M and
T ∈ S0(M, τ ), see [32]. Hence we may assume that B ∈ M. By items (1), (2), (3),
(4) and (6) of Lemma 2.2 and by the Hansen’s inequality ( [21]; [5, Lemma 3.1.1])
for B1 = B/‖B‖∞ for all t > 0 we have

μ(t; AB)2 = μ(t; B∗A∗)2 = μ(t; B∗A∗AB) = ‖B‖2∞μ(t; B∗
1 A

∗AB1)

= ‖B‖2∞μ(t; (B∗
1 A

∗AB1)
p)1/p ≥ ‖B‖2∞μ(t; B∗

1 (A∗A)pB1)
1/p

≥ ‖B‖2∞μ(t; B∗
1 (AA∗)p B1)

1/p = ‖B‖2∞μ(t; |A∗|p B1)
2/p.

(3)

Therefore |A∗|pB ∈ S0(M, τ ) and A∗B = U |A∗|1−p · |A∗|pB ∈ S0(M, τ ).
(ii) We apply (3) and conclude that |A∗|pB ∈ F(τ ). Thus A∗B = U |A∗|1−p ·

|A∗|p B ∈ F(τ ).
(iii) For q > 0 by (3) we have |A∗|p B ∈ Lq/p(M, τ ). Thus A∗B = U |A∗|1−p ·

|A∗|p B ∈ Lq/p(M, τ ). Moreover, for all t > 0 and forC = ‖B‖q∞·‖U |A∗|1−p‖−q/p∞
by (3) and items (2), (3) and (4) of Lemma 2.2 we have

μ(t; AB)q ≥ ‖B‖qμ(t; |A∗|pB1)
q/p = C‖U |A∗|1−p‖q/p∞ μ(t; |A∗|pB1)

q/p

≥ Cμ(t;U |A∗|1−p · |A∗|p B1)
q/p = Cμ(t; A∗B1)

q/p

= C‖B‖−q/p∞ μ(t; A∗B)q/p.

(4)

Theorem is proved. ��
Corollary 5.2 Let A, B ∈ M and A, B∗ be p-hyponormal with 1/2 < p ≤ 1.

(i) If AB ∈ S0(M, τ ) then BA ∈ S0(M, τ ).
(ii) If AB ∈ F(τ ) then BA ∈ F(τ ).
(iii) If AB ∈ Lq(M, τ ) then BA ∈ L2q/p(M, τ ).
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Proof (i), (ii). Dividing suitably if need be, we may assume that A, B ∈ {X ∈ M :
‖X‖∞ ≤ 1}. Also, by Löwner’s inequality, both A and B∗ are 1

2 -hyponormal. Hence,
by Hansen’s inequality [21] we conclude that

A∗|B|2A ≤ A∗|B|A ≤ A∗|B∗|A = A∗(|B∗|2)1/2A ≤ (A∗|B∗|2A)1/2. (5)

Then we apply items (1), (3) and (4) of Lemma 2.2 and Theorem 5.1.
(iii) We have A∗B ∈ Lq/p(M, τ ) by Theorem 5.1. Hence B∗A = (A∗B)∗ ∈

Lq/p(M, τ ). Inequality (5) yields |BA|2 ≤ |B∗A| and we apply items (1), (3) and (4)

of Lemma 2.2. Moreover, for all t > 0 and for C = ‖B‖q∞ · ‖U |A∗|1−p‖−q/p∞ by (4),
(5) and items (1), (2), (3) and (4) of Lemma 2.2 we have

μ(t; AB)q ≥ C‖B‖−q/p∞ μ(t; A∗B)q/p = C‖B‖−q/p∞ μ(t; B∗A)q/p

≥ C‖B‖−q/p∞ μ(t; BA)2q/p.

The assertion is proved. ��
Theorem 5.3 (cf [1, Theorem 1]) Let T ∈ S(M, τ ) be p-hyponormal with 1

2 ≤ p < 1

and T = U |T | be the polar decomposition of T . Then the operator T̃ = |T | 12U |T | 12
is hyponormal.

Proof We have |T |2p ≥ (U |T |2U∗)p. By operator monotonicity of the function t �→
t

1
2p (t ≥ 0) and by Hansen’s inequality ( [21]; [5, Lemma 3.1.1]) we obtain

|T | ≥ (U |T |2U∗)p·
1
2p = (U |T |2U∗)

1
2 ≥ U |T |U∗.

Thus by Lemma 2.3 we have

T̃ ∗T̃ =|T | 12U∗ · |T | ·U |T | 12 ≥|T | 12U∗ ·U |T |U∗ ·U |T | 12 =|T |2=|T | 12 · |T | · |T | 12
≥ |T | 12 ·U |T |U∗ · |T | 12 = T̃ T̃ ∗.

Theorem is proved. ��
Lemma 5.4 Let A, B ∈ M̃+ with A ≥ B. Then for each r > 0,

(Br ApBr )
1
q ≥ B(p+2r)/q (6)

and

A(p+2r)/q ≥ (Ar B p Ar )
1
q (7)

hold for each p and q such that p ≥ 0, q ≥ 1, and (1 + 2r)q ≥ p + 2r .
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Proof Let A = ∫ +∞
0 λE A(dλ) and B = ∫ +∞

0 λEB(dλ) be the spectral decomposi-
tions of A and B. Put

An =
∫ n

0
λE A(dλ) and Bn =

∫ n

0
λEB(dλ)

for all n ∈ N. Then An, Bn belong to M+ and meet inequalities (6) and (7) for all
n ∈ N by [18]. We have An

τ−→ A, Bn
τ−→ B as n → ∞ and apply tτ -continuity of

real continuous functions [33] and tτ -continuity of the product operation. Inequalities
(6), (7) follow by tτ -closedness of the cone M̃+ in M̃. ��
Theorem 5.5 (cf [1, Theorem 2]) Let T ∈ S(M, τ ) be p-hyponormal with 0 < p < 1

2

and T = U |T | be the polar decomposition of T . Then the operator T̃ = |T | 12U |T | 12
is (p + 1

2 )-hyponormal.

Proof We apply Lemma 5.4 and repeat the proof of [1, Theorem 2]. Theorem is
proved. ��
Corollary 5.6 If an operator T ∈ S(M, τ ) is p-hyponormal with 0 < p < 1

2 and has

the polar decomposition T = U |T |, then the τ -measurable operator |T̃ | 12 Ũ |T̃ | 12 is

hyponormal, where T̃ = |T | 12U |T | 12 and T̃ = Ũ |T̃ | is the polar decomposition of T̃ .
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