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Abstract: Vacuum polarization of a scalar field on the short throat wormhole background is in-
vestigated. The scalar field is assumed to be massless, having an arbitrary coupling to the scalar
curvature of spacetime. In addition, it is supposed that the field is in a thermal state with an
arbitrary temperature.
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1. Introduction

Two important quantities in the study of quantum effects in strong gravitational
fields are 〈φ2〉 and 〈Tν

µ〉 where φ is a quantized field and Tν
µ is the stress tensor for this

field. These quantities provide us with information about spontaneous symmetry breaking,
particle production, and vacuum–polarization effects. In addition, 〈Tν

µ〉 is the source of
the backreaction effect of the quantized fields on the geometry of spacetime. This effect is
described using the semi-classical theory of gravity

Gµ
ν = 8π〈Tµ

ν 〉. (1)

It should be noted that vacuum fluctuations of quantum fields were considered as matter,
providing the existence of wormholes in [1–4].

The main problem of the semi-classical theory of gravity is that the contribution of the
quantized gravitational field is not taken into account. A popular solution to this problem
is the limit of a large number of matter fields. In this limit, it is assumed that the number
of matter fields present is so large that the graviton contribution is negligible. Another
problem of this theory is that the effects of vacuum polarization are generally determined
by the topological and geometric properties of spacetime as a whole and the choice of the
quantum state in which the vacuum expectation values are calculated. This means that
calculating the functional dependence 〈Tµ

ν 〉 on the metric tensor, which must be determined
from Equation (1), is extremely difficult. Such calculations 〈Tµν〉 and 〈φ2〉 have been made
only in a highly symmetrical spacetime for conformally invariant fields and Equation (1)
has been solved by [5–9].

Usually, numerical calculations 〈φ2〉 and 〈Tµ
ν 〉 are extremely difficult [10–17]. In some

cases, 〈φ2〉 and 〈Tµν〉 are determined by the local properties of spacetime. In these cases, it
is possible to approximate the functional dependence of 〈φ2〉 and 〈Tµν〉 on the metric tensor.
One of the most well-known examples of such a situation is the case of a very massive
field. In this case, the field mass m is much greater than 1/l, where l is the characteristic
curvature scale of the background geometry

1
ml
� 1, (2)

and 〈φ2〉 can be expanded in terms of the powers of ml [18–24].
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We emphasize that the only parameter of the length dimension in the problem (1) is
the Planck length of the lPl. This means that the characteristic scale l of the curvature of the
spacetime can differ from lPl only if there is a large dimensionless parameter. As an example
of such a parameter, we can consider the number of fields whose polarization is a source
of spacetime curvature (Here and below, it is assumed, of course, that the characteristic
scale of change of the background gravitational field is sufficiently greater than lPl, so that
the very notion of a classical spacetime still has some meaning.). In the case of a massive
field, the existence of an additional parameter, 1/ml, does not increase the characteristic
curvature scale l, which corresponds to the solution of Equation (1) (The characteristic
scale of components Gµ

ν on the left-hand side of Equation (1) is 1/l2 and, on the right-hand
side, is lPl

2/(m2l6).). For massless quantized fields, this parameter can be the field coupling
constants with spacetime curvature [4]. Another possibility of introducing an additional
parameter into the problem (1) is to consider the non-zero temperature of the quantum state
for a quantum field. It is known (see, e.g., [25]) that, in the high temperature limit (when
T � 1/l, T is the thermal state temperature), 〈φ2〉, for such a thermal state, is proportional
to T2.

In this work, we investigate the quantized scalar field in the wormhole spacetime
with an infinitely short throat. It is assumed that the field is massless, has an arbitrary
coupling to the scalar curvature of spacetime, and is in the thermal state with the arbitrary
temperature. We calculate 〈ϕ2〉 using the point-splitting method and demonstrate that the
result has correct asymptotics at high temperature and at T = 0.

The units h̄ = c = G = kB = 1 are used throughout the paper.

2. Non-Renormalized Expression
〈
ϕ2〉

The metric of a static spherically symmetric wormhole spacetime with an infinitely
short throat, analytically extended into Euclidean space, has the form

ds2 = dτ2 + dρ2 + (|ρ|+ a)2(dθ2 + sin2 θ dϕ2), (3)

where τ is the Euclidean time (τ = −it and t is the coordinate corresponding to the time-like
Killing vector, which always exists in static spacetime).

The vacuum expectation value of an operator
〈
φ2〉 quantized scalar field φ can be

calculated using the method of point splitting [26,27] from the Euclidean Green’s function
GE(x; x̃) as follows

〈φ2(x, x̃)〉unren = GE(x, x̃), (4)

where GE(x, x̃) obeys the equation

[�x − ξR(x)]GE(x, x̃) = − δ4(x, x̃)√
|g(x)|

, (5)

�x = gµν(x)∇µ∇ν is calculated for the metric (3), ξ is a scalar field coupling to the curvature

R. In spacetime (3), one finds that δ4(x, x̃)/
√

g(x) can be written as δ(τ − τ̃)δ(r, r̃)δ(Ω, Ω̃)/r2

(dΩ2 = dθ2 + sin2 θ dϕ2). The delta function δ(Ω, Ω̃) can be expanded in terms of Legendre
polynomials Pl with the result that

δ(Ω, Ω̃) = ∑
l,m

Ylm(Ω)Y∗lm(Ω̃) =
1

4π

∞

∑
l=0

(2l + 1)Pl(cos γ), (6)

where cos γ ≡ cos θ cos θ̃ + sin θ sin θ̃ cos(φ− φ̃).
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In this paper, it is assumed that the field is in a thermal state at temperature T,
determined with respect to a time-like Killing vector. In this case, the Green’s function is

periodic by τ − τ̃ with a period
1
T

. In this case, δ(τ − τ̃) has the form

δ(τ − τ̃) = T
∞

∑
n=−∞

ein2πT(τ−τ̃). (7)

then

GE(x; x̃) =
T

4π

∞

∑
n=−∞

ein2πT(τ−τ̃)
∞

∑
l=0

(2l + 1)Pl(cos γ)gnl(ρ, ρ̃)

=
T

4π

∞

∑
l=0

(2l + 1)Pl(cos γ) g0l(ρ, ρ̃)

+
T

2π

∞

∑
n=1

cos[ 2πnT(τ − τ̃)]
∞

∑
l=0

(2l + 1)Pl(cos γ) gnl(ρ, ρ̃), (8)

where gnl(ρ, ρ̃) satisfies the equation{
d2

dρ2 +
2

(|ρ|+ a)
d(|ρ|+ a)

dρ

d
dρ
−
[
(2πnT)2 +

l(l + 1)
(|ρ|+ a)2 + ξR

]}
gnl(ρ, ρ̃)

= − δ(ρ, ρ̃)

(|ρ|+ a)2 . (9)

2.1. n 6= 0 Contribution

The gnl(ρ, ρ̃) for ρ > ρ̃, n 6= 0 is provided by the expression (compare with article [28])

gnl(ρ, ρ̃) =
Kν

(
k(a + ρ)

)
Iν

(
k(a + ρ̃)

)
√
(a + ρ)(a + ρ̃)

−
(8ξ − 1)Iν(x)Kν(x) + x

(
I
′
ν(x)Kν(x) + Iν(x)K

′
ν(x)

)
(8ξ − 1)K2

ν(x) + 2xK′ν(x)Kν(x)

×
Kν

(
k(a + ρ)

)
Kν

(
k(a + ρ̃)

)
√
(a + ρ)(a + ρ̃)

, (10)

where k = 2πnT, x = ρ/a.
Let us represent gnl(ρ, ρ̃) (n 6= 0) as follows

gnl(ρ, ρ̃) = gM
nl (ρ, ρ̃) + gI

nl(ρ, ρ̃), (11)

where

gM
nl (ρ, ρ̃) =

Kν

(
k(a + ρ)

)
Iν

(
k(a + ρ̃)

)
√
(a + ρ)(a + ρ̃)

,

gI
nl(ρ, ρ̃) = −

(8ξ − 1)Iν(x)Kν(x) + x
(

I
′
ν(x)Kν(x) + Iν(x)K

′
ν(x)

)
(8ξ − 1)K2

ν(x) + 2xK′ν(x)Kν(x)

×
Kν

(
k(a + ρ)

)
Kν

(
k(a + ρ̃)

)
√
(a + ρ)(a + ρ̃)

.
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2.2. n = 0 Contribution

The solution of Equation (9) for n = 0, ρ > ρ̃ has the form

g0l(ρ, ρ̃) = gM
0l (ρ, ρ̃) + gI

0l(ρ, ρ̃), (12)

where

gM
0l (ρ, ρ̃) =

(ρ + a)−(l+1)(ρ̃ + a)l

2l + 1
,

gI
0l(ρ, ρ̃) = − a2l+1(1− 8ξ)(ρ + a)−l−1(ρ̃ + a)−l−1

2(2l + 1)(l − 4ξ + 1)
.

2.3. General Expression

Hereafter, we will consider θ = θ̃, ϕ = ϕ̃. In this case, cos(γ) = 1 and Pl(1) = 1. Then,
(8) will adopt the form

GE(x; x̃) =
T

4π

∞

∑
l=0

(2l + 1) g0l(ρ, ρ̃)

+
T

2π

∞

∑
n=1

cos[ 2πnT(τ − τ̃)]
∞

∑
l=0

(2l + 1) gnl(ρ, ρ̃). (13)

Let us represent GE(x; x̃) as

GE(x; x̃) = GE0(x; x̃) + GEn(x; x̃), (14)

where GE0(x; x̃) is the first term in (13), and GEn(x; x̃) is the last term in (13). Let us also
represent each of these terms as

GE0(x; x̃) = GM
E0(x; x̃) + GI

E0(x; x̃), n = 0,

GEn(x; x̃) = GM
En(x; x̃) + GI

En(x; x̃), n 6= 0, (15)

and definitions of GM
E0(x; x̃), GI

E0(x; x̃), GM
En(x; x̃) and GI

En(x; x̃) are provided below. Let us
define

GM
En(τ, ρ; τ̃, ρ̃) ≡ T

2π

∞

∑
n=1

cos
[
2πnT(τ − τ̃)

] ∞

∑
l=0

(2l + 1) gM
nl (ρ, ρ̃). (16)

Using the summation theorem for Bessel functions [29] and having performed the
summation by n in (16), we will obtain

GM
En(ρ; ρ̃) =

1
4π2(ρ− ρ̃)2 −

T
4π(ρ− ρ̃)

+
T2

12
− T4π2(ρ− ρ̃)2

180
+ O((ρ− ρ̃)3) (17)

for τ − τ̃ = 0. Then, the definition GI
En(τ, ρ; τ̃, ρ̃) has the form

GI
En(τ, ρ; τ̃, ρ̃) = − T

2π

∞

∑̃
n=1

cos
[
2πnT(τ − τ̃)

] ∞

∑
l=0

(2l + 1)gI
nl(ρ, ρ̃)

= − T
2π

∞

∑
n=1

cos
[
2πnT(τ − τ̃)

] ∞

∑
l=0

(2l + 1)
Kν

(
k(a + ρ)

)
Kν

(
k(a + ρ̃)

)
√
(a + ρ)(a + ρ̃)

×
(8ξ − 1)Iν(ka)Kν(ka) + ka

(
I
′
ν(ka)Kν(ka) + Iν(ka)K

′
ν(ka)

)
(8ξ − 1)K2

ν(ka) + 2kaK′ν(ka)Kν(ka)
(18)
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Consequently,

GEn(τ, ρ; τ̃, ρ̃) = GM
En(ρ; ρ̃) + GI

En(τ, ρ; τ̃, ρ̃) =
1

4π2(ρ− ρ̃)2 −
T

4π(ρ− ρ̃)
+

T2

12

−T4π2(ρ− ρ̃)2

180
− T

2π

∞

∑
n=1

cos
[
2πnT(τ − τ̃)

] ∞

∑
l=0

(2l + 1)
Kν

(
k(a + ρ)

)
Kν

(
k(a + ρ̃)

)
√
(a + ρ)(a + ρ̃)

×
(8ξ − 1)Iν(ka)Kν(ka) + ka

(
I
′
ν(ka)Kν(ka) + Iν(ka)K

′
ν(ka)

)
(8ξ − 1)K2

ν(ka) + 2kaK′ν(ka)Kν(ka)
+ O((ρ− ρ̃)3). (19)

We can denote (see (12))

GM
E0(ρ, ρ̃) ≡ T

4π

∞

∑
l=0

(2l + 1) gM
0l (ρ, ρ̃) =

T
4π

∞

∑
l=0

(ρ + a)−(l+1)(ρ̃ + a)l =
T

4π(ρ− ρ̃)
, (20)

GI
E0(ρ, ρ̃) ≡ T

4π

∞

∑
l=0

(2l + 1) gI
0l(ρ, ρ̃) = − T

8π

∞

∑
l=0

a2l+1(1− 8ξ)(ρ + a)−l−1(ρ̃ + a)−l−1

(l − 4ξ + 1)
. (21)

then

GM
E (ρ, ρ̃) = GM

E0(ρ, ρ̃) + GM
En(ρ, ρ̃)

=
1

4π2(ρ− ρ̃)2 +
T2

12
− T4π2(ρ− ρ̃)2

180
+ O((ρ− ρ̃)3), (22)

GI
E(τ, ρ, τ̃, ρ̃) = GI

E0(ρ, ρ̃) + GI
En(τ, ρ, τ̃, ρ̃)

= − T
8π

∞

∑
l=0

a2l+1(1− 8ξ)(ρ + a)−l−1(ρ̃ + a)−l−1

(l − 4ξ + 1)

− T
2π

∞

∑
n=1

cos
[
2πnT(τ − τ̃)

] ∞

∑
l=0

(2l + 1)
Kν

(
k(a + ρ)

)
Kν

(
k(a + ρ̃)

)
√
(a + ρ)(a + ρ̃)

×
(8ξ − 1)Iν(ka)Kν(ka) + ka

(
I
′
ν(ka)Kν(ka) + Iν(ka)K

′
ν(ka)

)
(8ξ − 1)K2

ν(ka) + 2kaK′ν(ka)Kν(ka)
. (23)

Finally,

GE(τ, ρ, τ̃, ρ̃) = GI
E(τ, ρ, τ̃, ρ̃) + GM

E (ρ, ρ̃). (24)

Then, the expression (8) can be rewritten as
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GE(τ, ρ; τ, ρ̃) =
1

4π2(ρ− ρ̃)2 +
T2

12
− T4π2(ρ− ρ̃)2

180

− T
8π

∞

∑
l=0

a2l+1(1− 8ξ)(ρ + a)−l−1(ρ̃ + a)−l−1

(l − 4ξ + 1)

− T
2π

∞

∑
n=1

cos
[
2πnT(τ − τ̃)

] ∞

∑
l=0

(2l + 1)

×
(8ξ − 1)Iν(ka)Kν(ka) + ka

(
I
′
ν(ka)Kν(ka) + Iν(ka)K

′
ν(ka)

)
(8ξ − 1)K2

ν(ka) + 2kaK′ν(ka)Kν(ka)

×
Kν

(
k(a + ρ)

)
Kν

(
k(a + ρ̃)

)
√
(a + ρ)(a + ρ̃)

+ O((ρ− ρ̃)3). (25)

We can notice that GM
E (ρ, ρ̃) coincides with the corresponding Green function of Minkowski

spacetime.

3. Renormalization 〈φ2〉 and the Result

In this article, the point-splitting method is used for the regularization of 〈φ2(x, x̃)〉.
The renormalization procedure consists of subtracting GDS from GE(xi, x̃i) counterterm
[27], which is equal to

GDS =
1

4π2(ρ− ρ̃)2 (26)

in space (3) for xi − x̃i = δi
ρ(ρ − ρ̃), and then letting ρ̃ → ρ. All the divergences of GE

coincide with the divergences of GM
E . Therefore, we will introduce

GM
E_ren = lim

ρ̃→ρ

(
GM

E − GDS

)
. (27)

Then, in the domain ρ > 0

a2〈φ2〉ren = a2(GE − GDS) = a2 lim
ρ̃→ρ

(
GM

E_ren + GI
E

)
=

a2T2

12
+ a2 lim

ρ̃→ρ
GI

E

=
τ2

48π2 −
τ

16π2

∞

∑
l=0

(1− 8ξ)

(l − 4ξ + 1)(x + 1)2l+2 −
τ

2π2(x + 1)

∞

∑
n=1

∞

∑
l=0

(
l +

1
2

)

×
(8ξ − 1)Iν(τn)Kν(τn) + τn

(
I
′
ν(τn)Kν(τn) + Iν(τn)K

′
ν(τn)

)
(8ξ − 1)K2

ν(τn) + 2τnK′ν(τn)Kν(τn)

×
[
Kν

(
τn(x + 1)

)]2
, x = ρ/a, τ = 2πTa. (28)

In the limit ρ→ ∞

〈φ2〉ren '
T2

12
+

Ta(ξ − 1/8)
4π(ξ − 1/4)ρ2 . (29)

For T = 0,
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a2〈φ2〉ren = − 1
2π2(1 + x)

∞∫
0

dy
∞

∑
l=0

ν
(8ξ − 1)Iν(y)Kν(y) + y

(
I
′
ν(y)Kν(y) + Iν(y)K

′
ν(y)

)
(8ξ − 1)K2

ν(y) + 2yK′ν(y)Kν(y)

×
[
Kν

(
y(1 + x)

)]2
, x = ρ/a, ν = l + 1/2 (30)

the result is the same as the result of [28]. Due to the symmetry of the problem, the result is
also valid in the domain ρ < 0.

4. Conclusions

We have calculated 〈φ2〉ren of a quantized scalar field in the spacetime of a wormhole
with an infinitely short throat. It was assumed that the field has an arbitrary coupling ξ to
the scalar curvature R of spacetime, is massless, and is in a thermal quantum state with an
arbitrary temperature T.

〈φ2〉ren was computed for various values of the constants ξ and τ = 2πTa. The results
of these calculations are shown in Figure 1 and 2. 〈φ2〉ren diverges at a=0. The reason
for this behavior of 〈φ2〉ren is that the wormhole model (3) under consideration does not
effectively describe the geometry of spacetime in the vicinity of the wormhole throat. In a
wormhole with a smooth throat, there is no such divergence, at least for T = 0 [28].

Figure 1. Plot of functions (28) for different values of ξ = 1/5, 1/8 and τ = 2πTa = 0.01, 5, 10 vs.
x = ρ/a.

Figure 2. Plot of functions (28) for different values of ξ = 1/6, 0 and τ = 2πTa = 0.01, 5, 10 vs.
x = ρ/a.
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In the high temperature limit (T � 1/a), the result

〈φ2〉ren '
T2

12
(31)

coincides with the previously known one (see, e.g., [30]). In the limit of T = 0, the result
(30) coincides with the result of [28]. In the limit ρ → ∞, 〈φ2〉ren tends to be the constant
value (31) determined by the quantum state temperature T.
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