Differences and Commutators of Idempotents in C^* -Algebras

A. M. Bikchentaev^{1^*} and Kh. Fawwaz^{1^{**}}

¹Kazan Federal University,
 18 Kremlyovskaya str., Kazan, 420008 Russia
 Received September 4, 2020; revised September 4, 2020; accepted December 24, 2020

Abstract—We establish similarity between some tripotents and idempotents on a Hilbert space \mathcal{H} and obtain new results on differences and commutators of idempotents P and Q. In the unital case, the difference P - Q is associated with the difference $A_{P,Q}$ of another pair of idempotents. Let φ be a trace on a unital C^* -algebra \mathcal{A} , \mathfrak{M}_{φ} be the ideal of definition of the trace φ . If $P - Q \in \mathfrak{M}_{\varphi}$, then $A_{P,Q} \in \mathfrak{M}_{\varphi}$ and $\varphi(A_{P,Q}) = \varphi(P - Q) \in \mathbb{R}$. In some cases, this allowed us to establish the equality $\varphi(P - Q) = 0$. We obtain new identities for pairs of idempotents and for pairs of isoclinic projections. It is proved that each operator $A \in \mathcal{B}(\mathcal{H})$, dim $\mathcal{H} = \infty$, can be presented as a sum of no more than 50 commutators of idempotents from $\mathcal{B}(\mathcal{H})$. It is shown that the commutator of an idempotent and an arbitrary element from an algebra \mathcal{A} cannot be a nonzero idempotent. If \mathcal{H} is separable and dim $\mathcal{H} = \infty$, then each skew-Hermitian operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum $T = \sum_{k=1}^{4} [A_k, B_k]$, where $A_k, B_k \in \mathcal{B}(\mathcal{H})$ are skew-Hermitian.

DOI: 10.3103/S1066369X21080028

Key words: Hilbert space, linear operator, idempotent, tripotent, isoclinic projection, commutator, similarity, C^* -algebra, trace, determinant.

INTRODUCTION

Let P, Q be idempotents on a Hilbert space \mathcal{H} . Various properties (invertibility, Fredholm property, trace class property, positivity etc.) of the difference X = P - Q have been studied in [1]– [6]. Any tripotent $(A = A^3)$ is a difference P - Q of some idempotents P and Q with PQ = QP = 0[7, Proposition 1]. Hence tripotents inherit some of the properties of idempotents [8]. If X is a trace class operator, the traces of all odd degrees of X coincide:

$$\operatorname{tr}(P-Q) = \operatorname{tr}((P-Q)^{2n+1}) = \dim \ker(X-I) - \dim \ker(X+I) \in \mathbb{Z},$$
(1)

here I is the identity operator on \mathcal{H} . If X is a compact operator, the right-hand side of (1) gives a natural "regularization" for the trace, showing that it always is an integer [9], [6]. In [10, Theorem 3], a C^* -analogue of the following statement is established: Let φ be a trace on a unital C^* -algebra $\mathcal{A}, \mathfrak{M}_{\varphi}$ be the ideal of definition of the trace φ , and $P, Q \in \mathcal{A}$ be tripotent; if $P - Q \in \mathfrak{M}_{\varphi}$, then $\varphi(P - Q) \in \mathbb{R}$.

Pairs of idempotents play important role in the Quantum Hall Effect [11]. For idempotents P, Q, R with trace class differences P - Q and Q - R, the equality $\operatorname{tr}(P - Q) = \operatorname{tr}(P - R) + \operatorname{tr}(R - Q)$ together with (1) imply

$$tr((P-Q)^3) = tr((P-R)^3) + tr((R-Q)^3).$$
(2)

Physical sense of additivity in (2) comes from interpretation of $tr((P-Q)^3)$ as the Hall conductance. Additivity of (cubic) equation in (2) can be seen as a variant of the Ohm's law on additivity of conductance [12]. In [13, Theorem 1], a C^{*}-analogue of the Quantum Hall Effect is obtained and

^{*}E-mail: Airat.Bikchentaev@kpfu.ru

^{**}E-mail: khattab1058@hotmail.com

it is proved there that the trace of differences of a wide class of symmetries from a C^* -algebra is real [13, Corollaries 2 and 3]. For C^* -subalgebra $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$, we set

$$\mathcal{A}_0 = \left\{ X \in \mathcal{A} : \ X = \sum_{n \ge 1} \left[X_n, \ X_n^* \right] \quad \text{for } (X_n)_{n \ge 1} \subset \mathcal{A} \right\},\$$

where the series $\|\cdot\|$ -converges. In [14, Theorem 2.6], it is proved that \mathcal{A}_0 coincides with the nullspace of all finite traces on \mathcal{A}^{sa} ; for a wide class of C^* -algebras, containing all W^* -algebras, it is sufficient to consider finite sums of the form [15]. If $P, Q \in \mathcal{A}^{\text{id}}$, 1) $QP \in \mathcal{A}^{\text{id}}$ if and only if [P, Q] maps subspace $P\mathcal{H}$ into subspace Ker Q [16, Ch. II, Problem 241]; 2) P and Q are equivalent if and only if P - Q = [X, Y] and P + Q = XY + YX for some $X, Y \in \mathcal{A}$ [17, p. 97]. In [18], unital C^* -algebras without finite non-trivial traces are described in terms of finite sums of commutators.

In this article, we establish similarity between some tripotents and idempotents (Theorems 1 and 2). New results on differences and commutators of idempotents P and Q are obtained. In the unital case, the difference P - Q is associated with the difference $A_{P,Q}$ of another pair of idempotents. If $P - Q \in \mathfrak{M}_{\varphi}$, then $A_{P,Q} \in \mathfrak{M}_{\varphi}$ and $\varphi(A_{P,Q}) = \varphi(P - Q) \in \mathbb{R}$ (Theorem 3). In some cases, this allowed us to establish the equality $\varphi(P - Q) = 0$ (Corollary 3). We obtain new identities for pairs of idempotents and for pairs of isoclinic projections (Lemma 6, Theorem 5). It is proved that each operator $A \in \mathcal{B}(\mathcal{H})$, dim $\mathcal{H} = \infty$, can be presented as a sum of no more than 50 commutators of idempotents from $\mathcal{B}(\mathcal{H})$ (Theorem 6). If \mathcal{A} is an algebra, $\{[P, X] : P \in \mathcal{A}^{\mathrm{id}}, X \in \mathcal{A}\} \cap \mathcal{A}^{\mathrm{id}} = \{0\}$ (Theorem 7). If \mathcal{H} is separable and dim $\mathcal{H} = \infty$, then each skew-Hermitian operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum $T = \sum_{k=1}^{4} [A_k, B_k]$, where $A_k, B_k \in \mathcal{B}(\mathcal{H})$ are skew-Hermitian (Theorem 8). Let $n \in \mathbb{N}$ and $A, P \in \mathbb{M}_n(\mathbb{C})$ with $P = P^2$, X = [A, P]. Then (i) if $k \in \mathbb{N}$ is odd, X^k is a commutator; (ii) if $n \in \mathbb{N}$ is odd, det(X) = 0 (Corollary 6).

1. DEFINITIONS AND NOTATION

For an algebra \mathcal{A} , by $\mathcal{A}^{\mathrm{id}}$ and $\mathcal{A}^{\mathrm{tri}}$ we will denote its subsets of idempotents $(P^2 = P)$ and tripotents $(P^3 = P)$ respectively. For $A, B \in \mathcal{A}$, define their commutator [A, B] = AB - BA. If \mathcal{A} is unital, by I we denote the unit of algebra \mathcal{A} and let $P^{\perp} = I - P$ for $P \in \mathcal{A}^{\mathrm{id}}$. The formula $S_P = 2P - I$ establishes a bijection between sets $\mathcal{A}^{\mathrm{id}}$ and $\mathcal{A}^{\mathrm{sym}}$.

A C^* -algebra is a complex Banach *-algebra \mathcal{A} such that $||A^*A|| = ||A||^2$ for all $A \in \mathcal{A}$. For a C^* -algebra \mathcal{A} , by $\mathcal{A}^{\mathrm{pr}}$, $\mathcal{A}^{\mathrm{sa}}$ and \mathcal{A}^+ we will denote its subsets of projections $(P^2 = P = P^*)$, Hermitian and positive elements respectively. Projections $P, Q \in \mathcal{A}$ are called *isoclinic* (with angle $\theta \in (0, \pi/2)$), if $PQP = \cos^2 \theta P$ and $QPQ = \cos^2 \theta Q$. If $A \in \mathcal{A}$, $|A| = \sqrt{A^*A} \in \mathcal{A}^+$. For a unital C^* -algebra \mathcal{A} , by \mathcal{A}^{u} and $\mathcal{A}^{\mathrm{inv}}$ we will denote its subsets of unitary and invertible elements respectively.

A W*-algebra is a C*-algebra \mathcal{A} which has predual Banach space \mathcal{A}_* : $\mathcal{A} \simeq (\mathcal{A}_*)^*$. Let \mathcal{H} be a Hilbert space over the field \mathbb{C} , $\mathcal{B}(\mathcal{H})$ be the *-algebra of all linear bounded operators on \mathcal{H} . If $P, Q \in \mathcal{B}(\mathcal{H})^{\mathrm{pr}}$, then the projection $P \wedge Q$ is defined by the equality $(P \wedge Q)\mathcal{H} = P\mathcal{H} \cap Q\mathcal{H}$, and $P \vee Q = (P^{\perp} \wedge Q^{\perp})^{\perp}$ projects on $\overline{\mathrm{lin}(P\mathcal{H} \cup Q\mathcal{H})}$. Any C*-algebra can be represented as a C*subalgebra in $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} (Gelfand–Naimark; see [19, Theorem 3.4.1]).

A trace on a C*-algebra \mathcal{A} is such a map $\varphi : \mathcal{A}^+ \to [0, +\infty]$ that $\varphi(X+Y) = \varphi(X) + \varphi(Y)$, $\varphi(\lambda X) = \lambda \varphi(X)$ for all $X, Y \in \mathcal{A}^+$, $\lambda \ge 0$ (wherein $0 \cdot (+\infty) \equiv 0$); $\varphi(Z^*Z) = \varphi(ZZ^*)$ for all $Z \in \mathcal{A}$. For a trace φ , define

$$\mathfrak{M}_{\varphi}^{+} = \{ X \in \mathcal{A}^{+} \colon \varphi(X) < +\infty \}, \quad \mathfrak{M}_{\varphi}^{\mathrm{sa}} = \mathrm{lin}_{\mathbb{R}} \mathfrak{M}_{\varphi}^{+}, \quad \mathfrak{M}_{\varphi} = \mathrm{lin}_{\mathbb{C}} \mathfrak{M}_{\varphi}^{+},$$

The restriction $\varphi|_{\mathfrak{M}_{\varphi}^+}$ can be correctly extended by linearity to a functional on \mathfrak{M}_{φ} which we will denote by the same letter φ . A W^* -algebra is called *properly infinite*, if there is no nonzero normal finite trace on it.

2. DIFFERENCES AND COMMUTATORS OF IDEMPOTENTS ON C^* -ALGEBRAS

Let \mathcal{A} be a W^* -algebra, $P, Q \in \mathcal{A}^{\text{pr}}$ and A = PQ. Then there exists a symmetry $S \in \mathcal{A}^{\text{sa}}$ such that $SAS^{-1} = A^*$ [20, Ch. 4, Exercise 4.4]. Let $A \in \mathcal{B}(\mathcal{H})$ be such that $SAS^{-1} = A^*$, where operator S is strongly invertible in the sense that zero does not lie in the closure of numerical image of S. Then A is similar to some $B \in \mathcal{B}(\mathcal{H})^{\text{sa}}$ [21].

Lemma 1. Let \mathcal{A} be a unital C^* -algebra and $A \in \mathcal{A}$, $B \in \mathcal{A}^{sa}$. If A and B are similar, A and A^* are also similar.

Proof. Let
$$T \in \mathcal{A}^{\text{inv}}$$
 be such that $A = T^{-1}BT$. Then $B = TAT^{-1}$ and for $S = T^*T \in \mathcal{A}^+$ we have

$$A^* = (T^{-1}BT)^* = T^*B(T^{-1})^* = T^*B(T^*)^{-1} = T^*TAT^{-1}(T^*)^{-1} = SAS^{-1}.$$

Theorem 1. Let $A \in \mathcal{B}(\mathcal{H})^{\text{tri}}$. Then A and A^* are similar.

Proof. Due to [8, Theorem 3], any $A \in \mathcal{B}(\mathcal{H})^{\text{tri}}$ is similar to some tripotent $B \in \mathcal{B}(\mathcal{H})^{\text{sa}}$. Now, the desired statement follows from Lemma 1.

The following lemma belongs to mathematical folklore.

Lemma 2. Let \mathcal{A} be a unital algebra and $P, Q \in \mathcal{A}^{id}$. If PQ = Q and QP = P (respectively PQ = P and QP = Q), P and Q are similar.

Proof. Let

$$T = I - P + Q, \quad S = I + P - Q.$$

Then TS = ST = I and $S = T^{-1}$. Obviously, $SPS^{-1} = Q$ (respectively $TPT^{-1} = Q$).

In the settings of Lemma 2, we have $S_Q(P-Q)S_Q = Q - P$, and if $\mathcal{A} = \mathbb{M}_n(\mathbb{C})$ with odd $n \in \mathbb{N}$, then the determinant $\det(P-Q) = 0$ due to the theorem on determinant of a product of matrices and due to the relation $\det(S_Q) \in \{-1, 1\}$.

Let \mathcal{A} be a unital C^* -algebra and $P \in \mathcal{A}^{\mathrm{id}}$. There exists a unique decomposition $P = \tilde{P} + Z$, where $\tilde{P} \in \mathcal{A}^{\mathrm{pr}}$ and nilpotent $Z \in \mathcal{A}$ with $Z^2 = 0$, moreover, $Z\tilde{P} = 0$, $\tilde{P}Z = Z$ [22, Theorem 1.3].

Theorem 2 (cf. [23], Lemma 16). Let \mathcal{A} be a unital C^* -algebra and $P \in \mathcal{A}^{id}$, $P = \tilde{P} + Z$ is the decomposition described above. Then P, \tilde{P}, P^* are similar.

Proof. Since $Z\widetilde{P} = 0$ and $\widetilde{P}Z = Z$, we have $P\widetilde{P} = \widetilde{P}$ and $\widetilde{P}P = P$. Hence, P and \widetilde{P} are similar due to Lemma 2. As $\widetilde{P} \in \mathcal{A}^{\text{sa}}$, idempotents P and P^* are similar due to Lemma 1.

Corollary 1. Let \mathcal{A} be a unital C^* -algebra. For $S \in \mathcal{A}$, the following conditions are equivalent: (i) $S \in \mathcal{A}^{\text{sym}}$;

(ii) $S = TUT^{-1}$ for some $T \in \mathcal{A}^{\text{inv}}$ and $U \in \mathcal{A}^{\text{sa}} \cap \mathcal{A}^{\text{u}}$.

Proof. (i) \Rightarrow (ii) If $P \in \mathcal{A}^{id}$, $P = T\widetilde{P}T^{-1}$ for some $T \in \mathcal{A}^{inv}$ due to Theorem 2 or [23, Lemma 16]. Hence,

$$S_P = 2P - I = 2T\widetilde{P}T^{-1} - I = T(2\widetilde{P} - I)T^{-1},$$

i.e., we can take $U = 2\widetilde{P} - I$.

Definition. Let \mathcal{A} be a unital algebra and $P, Q \in \mathcal{A}^{\mathrm{id}}$. Let

$$A_{P,Q} = S_Q P S_Q - S_P Q S_P.$$

RUSSIAN MATHEMATICS Vol. 65 No. 8 2021

We have $A_{Q,P} = A_{P^{\perp},Q^{\perp}} = -A_{P,Q}$, $A_{P^{\perp},Q} = -A_{P,Q^{\perp}} = I - S_P Q S_P - S_Q P S_Q$ and $A_{P,Q}(P - Q) = (P - Q)A_{P,Q}$. Let \mathcal{A} be a unital C^* -algebra and $P \in \mathcal{A}^{\mathrm{id}}$, $P = \tilde{P} + Z$ be the decomposition described above. Then $A_{\tilde{P},P} = 3P - 3\tilde{P} = 3Z$.

Lemma 3. Let J be an ideal in a unital algebra \mathcal{A} , $P, Q \in \mathcal{A}^{id}$ and $\lambda, \mu \in \mathbb{C}$, $\lambda \mu \neq 0$, $\lambda \neq -\mu$. Then

- (i) if $P Q \in J$, $A_{P,Q} \in J$;
- (ii) we have $P, Q \in J \Leftrightarrow \lambda P + \mu Q \in J$.

Proof. (i) We have

 $A_{P,Q} = S_P(P-Q)S_P + S_Q(P-Q)S_Q - (P-Q) = 4QPQ - 4PQP + (P-Q).$ (3) In particular, $QPQ - PQP \in J.$

(ii), " \Leftarrow ". We have

$$P = \frac{\mu}{\lambda(\lambda + \mu)} P(\lambda P + \mu Q) \left(\frac{\lambda + \mu}{\mu} I - Q\right) \in J.$$

It is seen from (3) that if $\{PQ, QP\} \cap \{0\} \neq \emptyset$ (or $\{P, Q\} \cap \{I\} \neq \emptyset$), $A_{P,Q} = P - Q$.

Theorem 3. Let φ be a trace on a unital C^* -algebra \mathcal{A} . If $P, Q \in \mathcal{A}^{\mathrm{id}}$ and $P - Q \in \mathfrak{M}_{\varphi}$, then $A_{P,Q} \in \mathfrak{M}_{\varphi}$ and $\varphi(A_{P,Q}) = \varphi(P - Q) \in \mathbb{R}$.

Proof. Recall that \mathfrak{M}_{φ} is an ideal in \mathcal{A} , moreover, $\varphi(XY) = \varphi(YX)$ for all $X \in \mathfrak{M}_{\varphi}$, $Y \in \mathcal{A}$ [19, Ch. 6, Exercise 6]. Due to item (i) of Lemma 3, we obtain $A_{P,Q} \in \mathfrak{M}_{\varphi}$. Since

$$\varphi(S_P(P-Q)S_P) = \varphi(S_Q(P-Q)S_Q) = \varphi(P-Q),$$

we have $\varphi(A_{P,Q}) = \varphi(P-Q) \in \mathbb{R}$ due to linearity of the extension of φ to \mathfrak{M}_{φ} , (3) and due to [10, Theorem 3].

Corollary 2. In the settings of item (i) of Theorem 3, for any $n \in \mathbb{N}$ we have

$$\varphi(A_{P,Q}^{2n+1}) = \varphi(A_{P,Q}) = \varphi(P-Q) \in \mathbb{R}.$$

Proof. For any $n \in \mathbb{N}$, we obtain from [13, Theorem 1] and (1) that

$$\varphi(A_{P,Q}^{2n+1}) = \varphi(A_{P,Q}) = \varphi(4QPQ - 4PQP + P - Q) = \varphi(P - Q) \in \mathbb{R},$$

since $QPQ - PQP \in \mathfrak{M}_{\varphi}$ and $\varphi(QPQ - PQP) = 0$ (see step 2 of the proof of [13, Theorem 1]).

Note that item (i) of the following theorem generalizes item (i) of [24, Theorem 3.2].

Theorem 4. Let φ be a trace on a C^* -algebra \mathcal{A} .

- (i) If $X \in \mathcal{A}^{\text{tri}}$, $Y \in \mathcal{A}$ and $[X, Y] \in \mathfrak{M}_{\varphi}$, then $\varphi([X, Y]) = 0$.
- (ii) If $X, Y \in \mathcal{A}$ and $[X, Y] \in \mathfrak{M}_{\varphi}$, then $[X^k, Y^n] \in \mathfrak{M}_{\varphi}$ for all $k, n \in \mathbb{N}$.
- (iii) If $X, Y \in \mathcal{A}$ and $X Y \in \mathfrak{M}_{\varphi}$, then $[X^k, Y^n] \in \mathfrak{M}_{\varphi}$ and $\varphi([X^k, Y^n]) = 0$ for all $k, n \in \mathbb{N}$.

Proof. (i) Step 1. Let $X \in \mathcal{A}^{\mathrm{id}}$. Since

$$XY - 2XYX + YX = X[X,Y] - [X,Y]X \in \mathfrak{M}_{\varphi},$$

the statement follows from the representation

$$[X,Y] = X(XY - 2XYX + YX) - (XY - 2XYX + YX)X$$

and linearity of the extension of φ to \mathfrak{M}_{φ} .

Step 2. Let $X \in \mathcal{A}^{\text{tri}}$ and X = P - Q with $P, Q \in \mathcal{A}^{\text{id}}$ and PQ = QP = 0 [7, Proposition 1]. Then $X^2 = P + Q \in \mathcal{A}^{\text{id}}$ and

$$[P,Y] + [Q,Y] = [X^2,Y] = X[X,Y] + [X,Y]X \in \mathfrak{M}_{\varphi}.$$

By the condition, $[P, Y] - [Q, Y] = [X, Y] \in \mathfrak{M}_{\varphi}$. From the two last relations, we have $[P, Y], [Q, Y] \in \mathfrak{M}_{\varphi}$, and due to step 1 and linearity of the extension of φ to \mathfrak{M}_{φ} , we obtain

$$\varphi([X,Y]) = \varphi([P,Y]) - \varphi([Q,Y]) = 0 - 0 = 0.$$

(ii) Let us use the method of mathematical induction. For all $k \ge 2$, we have

$$[X^k, Y] = X[X^{k-1}, Y] + [X, Y]X^{k-1} \in \mathfrak{M}_{\varphi}.$$

For all $n \geq 2$, we obtain

$$[X^{k}, Y^{n}] = Y[X^{k}, Y^{n-1}] + [X^{k}, Y]Y^{n-1} \in \mathfrak{M}_{\varphi}.$$

(iii) Step 1. With the help of mathematical induction, we will show that $X^k - Y^k \in \mathfrak{M}_{\varphi}$ for all $k \in \mathbb{N}$. Suppose that $X^{k-1} - Y^{k-1} \in \mathfrak{M}_{\varphi}$. Then

$$X^{k} - Y^{k} = X^{k-1}(X - Y) + (X^{k-1} - Y^{k-1})Y \in \mathfrak{M}_{\varphi},$$

which was required.

Step 2. From the representation

$$X^{k}Y^{n} - Y^{n}X^{k} = (X^{k} - Y^{k})Y^{n} - Y^{n}(X^{k} - Y^{k}),$$

it follows that $[X^k, Y^n] \in \mathfrak{M}_{\varphi}$ and

$$\varphi([X^k, Y^n]) = \varphi((X^k - Y^k)Y^n) - \varphi(Y^n(X^k - Y^k)) = 0$$

for all $k, n \in \mathbb{N}$ due to linearity of the extension of φ to \mathfrak{M}_{φ} .

In particular, if $X \in \mathcal{A}$, $P \in \mathcal{A}^{id}$ and $XP - PXP \in \mathfrak{M}_{\varphi}$, then $\varphi(XP - PXP) = 0$ due to the equality XP - PXP = [XP, P] (see item (i) of Theorem 4).

Example 1. Let \mathcal{A} be an algebra and $P, Q \in \mathcal{A}^{\text{id}}$, PQ = Q and QP = P. Then PQP = P and QPQ = Q; we have $(P+Q)^k = 2^k(P+Q)$ for all $k \in \mathbb{N}$ and $(P-Q)^2 = 0$. Hence, due to the theorem on the determinant of a product of matrices, for $\mathcal{A} = \mathbb{M}_n(\mathbb{C})$ we obtain $\det(P+Q) = \det(P-Q) = 0$.

For idempotents

$$P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \mathbb{M}_{3}(\mathbb{C})^{\mathrm{id}},$$

we have PQP = P and QPQ = Q, however $\{PQ, QP\} \cap \{P, Q\} = \emptyset$.

RUSSIAN MATHEMATICS Vol. 65 No. 8 2021

Lemma 4. Let \mathcal{A} be a unital algebra and $P, Q \in \mathcal{A}^{id}, \lambda \in \mathbb{C} \setminus \{0\}$. Let

$$A = (1 - \lambda)P + (\lambda^{-1} - \lambda - 1 + \lambda^2)PQ + \lambda QP + (\lambda^2 - \lambda^4)Q, \quad B = (1 - \lambda)Q + (2\lambda^{-1} - 1)PQ.$$

If $PQP = \lambda^2 P$ and $QPQ = \lambda^2 Q$, then idempotents P and A (respectively Q and B) are similar. We have $(\lambda P - \lambda^{-1}QP)^2 = (\lambda Q - \lambda^{-1}PQ)^2 = 0$.

Proof. Let

$$T = I + \lambda^{-1} P Q - \lambda Q, \quad S = I - \lambda^{-1} P Q + \lambda Q.$$

Then TS = ST = I and $S = T^{-1}$. We have $SPS^{-1} = A$ and $TQT^{-1} = B$, hence, $A, B \in \mathcal{A}^{\text{id}}$. The equalities $(\lambda P - \lambda^{-1}QP)^2 = (\lambda Q - \lambda^{-1}PQ)^2 = 0$ can be easily checked.

Corollary 3. Let \mathcal{A} be a unital algebra and $P, Q \in \mathcal{A}^{\text{id}}$. If PQP = P and QPQ = Q, then idempotents P and QP (respectively Q and PQ) are similar. We have $(P-QP)^2 = (Q-PQ)^2 = 0$.

In the settings of Lemma 4, we have $A_{P,Q} = (1 - 4\lambda^2)(P - Q)$, and if φ is a trace on a unital C^* -algebra \mathcal{A} and $P - Q \in \mathfrak{M}_{\varphi}$, then $\varphi(P - Q) = 0$. If \mathcal{A} is a unital *-algebra and $P, Q \in \mathcal{A}^{\mathrm{id}}$, then $PQ = Q \Leftrightarrow Q^{*\perp}P^{*\perp} = P^{*\perp}$.

Lemma 5. If $P, Q \in \mathcal{B}(\mathcal{H})^{\text{pr}}$ and PQP = P, then QP = P, i. e., $P \leq Q$.

Proof. Since $Q \cdot PQP = QP \cdot QP = QP$, we have

$$(P - QP)^2 = Q^{\perp} P Q^{\perp} P = 0.$$

Multiply both sides of this relation on the left by projection P, to get $(PQ^{\perp}P)^2 = 0$. Since $PQ^{\perp}P \in \mathcal{B}(\mathcal{H})^+$, we have $0 = PQ^{\perp}P = |Q^{\perp}P|^2$, i. e., $|Q^{\perp}P| = 0$ and $Q^{\perp}P = 0$.

Example 2. Let \mathcal{A} be a unital C^* -algebra, projections $P, Q \in \mathcal{A}^{\mathrm{pr}}$ be isoclinic with some angle $\theta \in (0, \pi/2)$. Then $(\cos^2 \theta P - QP)^2 = 0$ and

$$A_{P,Q} = (1 - 4\cos^2\theta)(P - Q),$$
(4)

for $\theta = \pi/3$ we have $A_{P,Q} = 0$. Recall [25, Ch. 2, §10, item 10.5, (iii)] that

$$P \lor Q = \frac{1}{\sin^2 \theta} (P - Q)^2.$$
(5)

Hence, $P \lor Q \in \mathcal{A}$,

 $A_{P,Q}^2 = (1 - 4\cos^2\theta)^2 \sin^2\theta P \lor Q,$

$$\sin(P-Q) = \frac{\sin(\sin\theta)}{\sin\theta}(P-Q), \quad \cos(P-Q) = I + (\cos(\sin\theta) - 1)P \lor Q,$$

$$\sinh(P-Q) = \frac{\sinh(\sin\theta)}{\sin\theta}(P-Q), \quad \cosh(P-Q) = I + (\cosh(\sin\theta) - 1) P \lor Q$$

and $\exp(P-Q) = \sinh(P-Q) + \cosh(P-Q)$. The relation

$$(P-Q)^4 = (P-Q)^2 - |PQ-QP|^2$$
(6)

(see the proof of [10, Proposition 1]) and (5) give

$$|[P,Q]| = \sin\theta\cos\theta P \lor Q.$$

If J is a left (or right) ideal in \mathcal{A} and $P - Q \in J$, then $P \lor Q \in J$ due to equality (5). Hence, projections $P = P \lor Q \cdot P$ and $Q = P \lor Q \cdot Q$ lie in J. It is clear that

$$P - Q \in J \Leftrightarrow (P - Q)^2 \in J \Leftrightarrow |[P, Q]| \in J \Leftrightarrow P \lor Q \in J \Leftrightarrow P, Q \in J.$$

If $\mathcal{A} = \mathbb{M}_n(\mathbb{C})$, we obtain from the theorem on determinant of a product of matrices and from (5) that

$$\det(P-Q) = \begin{cases} 0, & \text{if } P \lor Q \neq I; \\ \pm \sin^n \theta, & \text{if } P \lor Q = I. \end{cases}$$

Corollary 4. Let φ be a trace on a unital C^* -algebra \mathcal{A} and projections $P, Q \in \mathcal{A}^{\text{pr}}$ be isoclinic with some angle $\theta \in (0, \pi/2)$. If $P - Q \in \mathfrak{M}_{\varphi}$, then $P, Q \in \mathfrak{M}_{\varphi}$, and from Theorem 3 and equality (4) we obtain $0 = \varphi(P - Q) = \varphi(P) - \varphi(Q)$. From equality (5) we have $\varphi(P \vee Q) = \varphi(P) + \varphi(Q) = 2\varphi(P)$.

Lemma 6. Let \mathcal{A} be an algebra and $P, Q \in \mathcal{A}^{\mathrm{id}}$. Then

- (i) $(P-Q)^4 + (P+Q)^4 = 2(P+Q)^2 + 2(PQ+QP)^2;$
- (ii) $(P-Q)^2 + (P+Q)^2 = 2(P+Q);$
- (iii) if A is unital, [P,Q] = (I P Q)(P Q) = -(P Q)(I P Q).

Theorem 5. Let \mathcal{A} be a C^* -algebra and projections $P, Q \in \mathcal{A}^{\mathrm{pr}}$ be isoclinic with some angle $\theta \in (0, \pi/2)$. Then $\sin^4 \theta P \vee Q + (P+Q)^4 = (2 + \cos^2 \theta)(P+Q)^2$, where $(P+Q)^2 = 2(P+Q) - \sin^2 \theta P \vee Q$.

The proof follows from Lemma 6 and equality (5).

Lemma 7. (i) If \mathcal{A} is a properly infinite W^* -algebra, then each commutator [A, B] $(A, B \in \mathcal{A})$ can be represented as a sum of no more than 25 commutators of idempotents from \mathcal{A} .

(ii) If \mathcal{H} is separable and dim $\mathcal{H} = \infty$, then each commutator [A, B] of operators $A, B \in \mathcal{B}(\mathcal{H})^{sa}$ with ||A|| < 1, ||B|| < 1, can be represented as a sum of no more than 2025 commutators of projections from $\mathcal{B}(\mathcal{H})$.

Proof. (i) Due to [26, Theorem 4], we have

 $A = P_1 + \ldots + P_5, \ B = Q_1 + \ldots + Q_5$

with some $P_k, Q_k \in \mathcal{A}^{\mathrm{id}}, k = 1, \dots, 5.$

(ii) If \mathcal{H} is separable and dim $\mathcal{H} = \infty$, each operator $T \in \mathcal{B}(\mathcal{H})^{sa}$ with ||T|| < 1 can be represented as

$$T = 5(P_1 + P_2 + P_3 + P_4) - 5P_5 - 8P_6 - 12P_7$$

with $P_1, \ldots, P_7 \in \mathcal{B}(\mathcal{H})^{\mathrm{pr}}$ [27, Remark 4].

Theorem 6. Each operator $A \in \mathcal{B}(\mathcal{H})$, dim $\mathcal{H} = \infty$, can be represented as a sum of no more than 50 commutators of idempotents from $\mathcal{B}(\mathcal{H})$.

Proof. Any operator in an infinite-dimensional Hilbert space \mathcal{H} can be represented as a sum of two commutators [28, Corollary 2 from Problem 186]. Now we apply item (i) of Lemma 7, since $\mathcal{B}(\mathcal{H})$ is a properly infinite W^* -algebra.

Theorem 7. If \mathcal{A} is an algebra, $\{[P,X]: P \in \mathcal{A}^{\mathrm{id}}, X \in \mathcal{A}\} \cap \mathcal{A}^{\mathrm{id}} = \{0\}$. Generally speaking, $\{[P,Q]: P,Q \in \mathcal{A}^{\mathrm{id}}\} \cap \mathcal{A}^{\mathrm{tri}} \neq \{0\}$.

Proof. Let $P \in \mathcal{A}^{\mathrm{id}}, X \in \mathcal{A}$ and

$$[P,X]^2 = [P,X].$$
(7)

Multiply both sides of (7) on the left and on the right by idempotent P, to get

$$PXPXP = PX^2P.$$
(8)

RUSSIAN MATHEMATICS Vol. 65 No. 8 2021

Then, multiply both sides of (7) on the right by P, and take into account (8), we obtain PXP = XP. Multiply both sides of (7) on the left by P, and take into account (8), we obtain PX = PXP. Hence, [P, X] = 0 and $\{[P, X] : P \in \mathcal{A}^{\mathrm{id}}, X \in \mathcal{A}\} \cap \mathcal{A}^{\mathrm{id}} = \{0\}.$

Numbers

$$a = \frac{\sqrt{5} - 1}{2}, \ b = \sqrt{a - a^2} = \sqrt{\sqrt{5} - 2}$$

satisfy the condition $2a - b^2 = 1$. In algebra $\mathcal{A} = \mathbb{M}_2(\mathbb{C})$, for idempotents

$$P = \begin{pmatrix} 1 & b^{-1} \\ 0 & 0 \end{pmatrix}, \quad Q = \begin{pmatrix} a & b \\ b & 1-a \end{pmatrix}$$

we have $[P,Q]^2 = \operatorname{diag}(1,1) = I$, i.e., $[P,Q] \in \mathcal{A}^{\operatorname{sym}} \subset \mathcal{A}^{\operatorname{tri}} \setminus \{0\}$.

Any operator from $\mathcal{B}(\mathcal{H})$, dim $\mathcal{H} = \infty$, can be represented as a finite sum of pair-wise products of projections ([29]; [30], a theorem). Hence, any skew-Hermitian operator ($A^* = -A$) from $\mathcal{B}(\mathcal{H})$ can be represented as a finite sum of commutators of projections [24, Theorem 5.1]. The following theorem was announced by the first author without proof in [24, p. 12, Statement I].

Theorem 8. If \mathcal{H} is separable and dim $\mathcal{H} = \infty$, any skew-Hermitian operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum $T = \sum_{k=1}^{4} [A_k, B_k]$, where $A_k, B_k \in \mathcal{B}(\mathcal{H})$ are skew-Hermitian.

Proof. We will use [28, Corollary 2 from Problem 186]: any operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum of two commutators: T = [A, B] + [C, D] with $A, B, C, D \in \mathcal{B}(\mathcal{H})$. Let $T = -T^*$ and T = [A, B] + [C, D]. Then

$$T = \frac{T - T^*}{2} = \frac{AB - BA + A^*B^* - B^*A^* + CD - DC + C^*D^* - D^*C^*}{2}.$$
(9)

For any $Y \in \mathcal{B}(\mathcal{H})$, operators $Y - Y^*$, $i(Y + Y^*)$ are skew-Hermitian, where $i \in \mathbb{C}$ and $i^2 = -1$. It is easy to prove that

$$[A - A^*, B - B^*] + [i(B + B^*), i(A + A^*)] = 2AB - 2BA + 2A^*B^* - 2B^*A^*.$$

Thus,

$$\frac{AB - BA + A^*B^* - B^*A^*}{2} = \left[\frac{A - A^*}{2}, \frac{B - B^*}{2}\right] + \left[\frac{i(B + B^*)}{2}, \frac{i(A + A^*)}{2}\right],$$
 (10)

$$\frac{CD - DC + C^*D^* - D^*C^*}{2} = \left[\frac{C - C^*}{2}, \frac{D - D^*}{2}\right] + \left[\frac{i(D + D^*)}{2}, \frac{i(C + C^*)}{2}\right].$$
 (11)

Substitute the right-hand sides of (10) and (11) into (9) to complete the proof.

Corollary 5. If \mathcal{H} is separable and dim $\mathcal{H} = \infty$, any skew-Hermitian operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum $T = \sum_{k=1}^{4} [C_k, D_k]$, where $C_k, D_k \in \mathcal{B}(\mathcal{H})^{\text{sa}}$.

Proof. Let $C_k = iB_k$, $D_k = iA_k$ for k = 1, 2, 3, 4.

If $P, Q \in \mathcal{B}(\mathcal{H})^{\mathrm{pr}}$, then (6) implies (see also [4, Proposition 3])

$$|PQ - QP|^{2} = (P - Q)^{2} - (P - Q)^{4} \le (P - Q)^{2}.$$
(12)

Theorem 9. Let φ be a faithful trace on a W^* -algebra \mathcal{A} , $A \in \mathcal{A}$ and $P \in \mathcal{A}^{\mathrm{id}}$. For X = [A, P], we have $S_P X = -X S_P$. If $X^k \in \mathfrak{M}_{\varphi}$ for some odd $k \in \mathbb{N}$, $\varphi(X^k) = 0$. If, moreover, $P = P^*$, then [|X|, P] = 0, and for $A \in \mathcal{A}^{\mathrm{pr}}$ with $X^2 \in \mathfrak{M}_{\varphi}$ we have $\varphi(X^2) = 0 \Leftrightarrow X = 0$.

RUSSIAN MATHEMATICS Vol. 65 No. 8 2021

 \Box

Proof. It is clear that $XS_P = -S_PX$. For $U \in \mathcal{A}$ and $V \in \mathfrak{M}_{\varphi}$, we have $\varphi(UV) = \varphi(VU)$ (see [19, Ch. 6, Exercise 6]). Thus, if $X^k \in \mathfrak{M}_{\varphi}$ for some odd $k \in \mathbb{N}$, then $\varphi(X^k) = 0$ (cf. [5, Theorem 2.26]). If $P = P^*$, then $X^*S_P = -S_PX^*$ and $S_PX^*S_P = -X^*$. Hence, $|X|^2 = S_P|X|^2S_P$, i.e., $|X|^2S_P = S_P|X|^2$ and $|X|^2P = P|X|^2$. Now, due to the spectral theorem, we have |X|P = P|X|.

Let $A, P \in \mathcal{A}^{\mathrm{pr}}, X = [A, P]$ and $X^2 \in \mathfrak{M}_{\varphi}$ with $\varphi(X^2) = 0$. Since $X^2 = -|X|^2$, from (12) we get

$$0 = \varphi(X^2) = \varphi(-|X|^2) = -\varphi(|X|^2) = -\varphi((A-P)^2 - (A-P)^4).$$
(13)

Since $(A - P)^2 - (A - P)^4 \ge 0$ (recall that $||A - P|| \le 1$) and since trace φ is faithful, from (13) we have $(A - P)^2 - (A - P)^4 = 0$, i.e., $(A - P)^2 = |A - P|^2 \in \mathcal{A}^{\text{pr}}$. Hence, operator U = A - P is a partial isometry on \mathcal{H} . Hence, $UU^*U = U$ [28, Corollary 3 from Problem 98]. From the equality $(A - P)^3 = A - P$, we get PAP = APA. Hence, $PAP \le A$ and AP = PA due to [31, Proposition 2.1].

Corollary 6. Let $n \in \mathbb{N}$ and $A, P \in \mathbb{M}_n(\mathbb{C})$ with $P = P^2$, X = [A, P].

- (i) If $k \in \mathbb{N}$ is odd, X^k is a commutator.
- (ii) If $n \in \mathbb{N}$ is odd, det(X) = 0.

Proof. It is known that for $T \in \mathbb{M}_n(\mathbb{C})$, the following conditions are equivalent: 1) T is unitarily equivalent to a matrix with zero diagonal; 2) trace $\operatorname{tr}(T) = 0$; 3) T is a commutator; 4) $\operatorname{tr}(|I+zT|) \ge n$ for all $z \in \mathbb{C}$. The proof of equivalency 1) \Leftrightarrow 2) see in [16, Ch. II, Problem 209], equivalency 2) \Leftrightarrow 3) is proved in [28, Problem 182], equivalency 2) \Leftrightarrow 4) is established in [32, Theorem 4.8].

(i) Use equivalency $2) \Leftrightarrow 3$).

(ii) Since $S_P^2 = I$ and $\det(S_P) \in \{-1, 1\}$ due to the theorem on determinant of a product of matrices, we apply this theorem to the equality $S_P X = -X S_P$ with X = [A, P].

FUNDING

This work is conducted in the framework of realization of the development programme of the Volga Region Scientific-Educational Center of Mathematics of Kazan (Volga region) Federal University, agreement no. 075-02-2020-1478.

REFERENCES

- Koliha J.J., Rakočević V. "Invertibility of the difference of idempotents", Linear Multilinear Algebra 51 (1), 97–110 (2003).
- Koliha J.J., Rakočević V., Straškraba I. "The difference and sum of projectors", Linear Algebra Appl. 388, 279–288 (2004).
- Koliha J.J., Rakočević V. "Fredholm properties of the difference of orthogonal projections in a Hilbert space", Integral Equat. Oper. Theory 52 (1), 125–134 (2005).
- Bikchentaev A.M. "Trace and Differences of Idempotents in C*-algebras", Math. Notes 105 (5), 641–648 (2019).
- 5. Bikchentaev A.M. "On idempotent τ -measurable operators affiliated to a von Neumann algebra", Math. Notes **100** (4), 515–525 (2016).
- 6. Kalton N.J. "A note on pairs of projections", Bol. Soc. Mat. Mexicana (3) 3 (2), 309-311 (1997).
- Bikchentaev A.M., Yakushev R.S. "Representation of tripotents and representations via tripotents", Linear Algebra Appl. 435 (9), 2156–2165 (2011).
- Bikchentaev A.M. "Tripotents in algebras: invertibility and hyponormality", Lobachevskii J. Math. 35 (3), 281–285 (2014).
- Avron J., Seiler R., Simon B. "The index of a pair of projections", J. Funct. Anal. 120 (1), 220–237 (1994).
- 10. Bikchentaev A.M. "Differences of idempotents in C*-algebras", Sib. Math. J. 58 (2), 183-189 (2017).
- Bellissard J., van Elst A., Schulz-Baldes H. "The noncommutative geometry of the quantum Hall effect. Topology and physics", J. Math. Phys. 35 (10), 5373–5451 (1994).
- Gesztesy F. "From Mathematical Physics to Analysis: a walk in Barry Simon's Mathematical Garden, II", Notices Amer. Math. Soc. 63 (8), 878–889 (2016).

- Bikchentaev A.M. "Differences of Idempotents in C*-Algebras and the Quantum Hall Effect", Theor. Math. Phys. 195 (1), 557–562 (2018).
- Cuntz J., Pedersen G.K. "Equivalence and traces on C^{*}-algebras", J. Funct. Anal. 33 (2), 135–164 (1979).
- Fack T. "Finite sums of commutators in C*-algebras", Ann. Inst. Fourier, Grenoble 32 (1), 129–137 (1982).
- 16. Glazman I.M., Lyubich Yu.I. Finite-dimensional linear analysis (Nauka, Moscow, 1969) [in Russian].
- Davidson K.R. C^{*}-algebras by examples, Fields Institute Monographs (Amer. Math. Soc., Providence, Rhode Island, 1996).
- 18. Pop C. "Finite sums of commutators", Proc. Amer. Math. Soc. 130 (10), 3039–3041 (2002).
- 19. Murphy J. C*-algebras and operator theory (Factorial, Moscow, 1997) [in Russian].
- 20. Strătilă Ş., Zsidó L. Lectures on von Neumann algebras (Abacus Press, England, 1979).
- 21. Williams J.P. "Operators similar to their adjoints", Proc. Amer. Math. Soc. 20 (1), 121-123 (1969).
- Koliha J.J. "Range projections of idempotents in C*-algebras", Demonstratio Math. 24 (1), 91–103 (2001).
- 23. Kaplansky I. "Modules over operator algebras", Amer. J. Math. 75 (4), 839–858 (1953).
- 24. Bikchentaev A.M. "On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections, III. Commutators in C^{*}-algebras", Sb. Math. 4 (4), 477–493 (2008).
- 25. Sherstnev A.N. Methods of bilinear forms in non-commutative theory of measure and integral (Fizmatlit, Moscow, 2008) [in Russian].
- Pearcy C., Topping D.M. "Sums of small numbers of idempotents", Mich. Math. J. 14 (4), 453–465 (1967).
- Paszkiewicz A. "Any selfadjoint operator is a finite linear combination of projectors", Bull. L'Acad. Polon. Sci., Sér. Sci. Math. 28 (7–8), 337–345 (1980).
- 28. Halmos P. A Hilbert space problem book (Mir, Moscow, 1970) [in Russian].
- 29. Bikchentaev A.M. "On representation of linear operators in a Hilbert space in the form of finite sums of products of projectors", Doklady Mathematics **68** (3), 376–379 (2003).
- 30. Bikchentaev A.M. "On representation of elements of a von Neumann algebra in the form of finite sums of products of projections", Sib. Math. J. 46 (1), 24–34 (2005).
- Bikchentaev A.M. "Commutativity of projections and characterization of traces on Von Neumann algebras", Sib. Math. J. 51 (6), 971–977 (2010).
- 32. Bikchentaev A.M. "Convergence of integrable operators affiliated to a finite von Neumann algebra", Proceedings of the Steklov Institute of Mathematics **293**, 67–76 (2016).