Differences and Commutators of Idempotents in C^{*}-Algebras

A. M. Bikchentaev ${ }^{1 *}$ and Kh. Fawwaz ${ }^{1 * *}$

${ }^{1}$ Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia
Received September 4, 2020; revised September 4, 2020; accepted December 24, 2020

Abstract

We establish similarity between some tripotents and idempotents on a Hilbert space \mathcal{H} and obtain new results on differences and commutators of idempotents P and Q. In the unital case, the difference $P-Q$ is associated with the difference $A_{P, Q}$ of another pair of idempotents. Let φ be a trace on a unital C^{*}-algebra $\mathcal{A}, \mathfrak{M}_{\varphi}$ be the ideal of definition of the trace φ. If $P-Q \in \mathfrak{M}_{\varphi}$, then $A_{P, Q} \in \mathfrak{M}_{\varphi}$ and $\varphi\left(A_{P, Q}\right)=\varphi(P-Q) \in \mathbb{R}$. In some cases, this allowed us to establish the equality $\varphi(P-Q)=0$. We obtain new identities for pairs of idempotents and for pairs of isoclinic projections. It is proved that each operator $A \in \mathcal{B}(\mathcal{H}), \operatorname{dim} \mathcal{H}=\infty$, can be presented as a sum of no more than 50 commutators of idempotents from $\mathcal{B}(\mathcal{H})$. It is shown that the commutator of an idempotent and an arbitrary element from an algebra \mathcal{A} cannot be a nonzero idempotent. If \mathcal{H} is separable and $\operatorname{dim} \mathcal{H}=\infty$, then each skew-Hermitian operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum $T=\sum_{k=1}^{4}\left[A_{k}, B_{k}\right]$, where $A_{k}, B_{k} \in \mathcal{B}(\mathcal{H})$ are skew-Hermitian.

DOI: 10.3103/S1066369X21080028
Key words: Hilbert space, linear operator, idempotent, tripotent, isoclinic projection, commutator, similarity, C^{*}-algebra, trace, determinant.

INTRODUCTION

Let P, Q be idempotents on a Hilbert space \mathcal{H}. Various properties (invertibility, Fredholm property, trace class property, positivity etc.) of the difference $X=P-Q$ have been studied in [1][6]. Any tripotent $\left(A=A^{3}\right)$ is a difference $P-Q$ of some idempotents P and Q with $P Q=Q P=0$ [7, Proposition 1]. Hence tripotents inherit some of the properties of idempotents [8]. If X is a trace class operator, the traces of all odd degrees of X coincide:

$$
\begin{equation*}
\operatorname{tr}(P-Q)=\operatorname{tr}\left((P-Q)^{2 n+1}\right)=\operatorname{dim} \operatorname{ker}(X-I)-\operatorname{dim} \operatorname{ker}(X+I) \in \mathbb{Z} \tag{1}
\end{equation*}
$$

here I is the identity operator on \mathcal{H}. If X is a compact operator, the right-hand side of (1) gives a natural "regularization" for the trace, showing that it always is an integer [9], [6]. In [10, Theorem 3], a C^{*}-analogue of the following statement is established: Let φ be a trace on a unital C^{*}-algebra $\mathcal{A}, \mathfrak{M}_{\varphi}$ be the ideal of definition of the trace φ, and $P, Q \in \mathcal{A}$ be tripotent; if $P-Q \in \mathfrak{M}_{\varphi}$, then $\varphi(P-Q) \in \mathbb{R}$.

Pairs of idempotents play important role in the Quantum Hall Effect [11]. For idempotents P, Q, R with trace class differences $P-Q$ and $Q-R$, the equality $\operatorname{tr}(P-Q)=\operatorname{tr}(P-R)+\operatorname{tr}(R-$ Q) together with (1) imply

$$
\begin{equation*}
\operatorname{tr}\left((P-Q)^{3}\right)=\operatorname{tr}\left((P-R)^{3}\right)+\operatorname{tr}\left((R-Q)^{3}\right) \tag{2}
\end{equation*}
$$

Physical sense of additivity in (2) comes from interpretation of $\operatorname{tr}\left((P-Q)^{3}\right)$ as the Hall conductance. Additivity of (cubic) equation in (2) can be seen as a variant of the Ohm's law on additivity of conductance [12]. In [13, Theorem 1], a C^{*}-analogue of the Quantum Hall Effect is obtained and

[^0]it is proved there that the trace of differences of a wide class of symmetries from a C^{*}-algebra is real [13, Corollaries 2 and 3]. For C^{*}-subalgebra $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$, we set
$$
\mathcal{A}_{0}=\left\{X \in \mathcal{A}: X=\sum_{n \geq 1}\left[X_{n}, X_{n}^{*}\right] \quad \text { for }\left(X_{n}\right)_{n \geq 1} \subset \mathcal{A}\right\}
$$
where the series $\|\cdot\|$-converges. In [14, Theorem 2.6], it is proved that \mathcal{A}_{0} coincides with the nullspace of all finite traces on $\mathcal{A}^{\text {sa }}$; for a wide class of C^{*}-algebras, containing all W^{*}-algebras, it is sufficient to consider finite sums of the form [15]. If $\left.P, Q \in \mathcal{A}^{\text {id }}, 1\right) Q P \in \mathcal{A}^{\text {id }}$ if and only if $[P, Q]$ maps subspace $P \mathcal{H}$ into subspace $\operatorname{Ker} Q$ [16, Ch. II, Problem 241]; 2) P and Q are equivalent if and only if $P-Q=[X, Y]$ and $P+Q=X Y+Y X$ for some $X, Y \in \mathcal{A}$ [17, p. 97]. In [18], unital C^{*}-algebras without finite non-trivial traces are described in terms of finite sums of commutators.

In this article, we establish similarity between some tripotents and idempotents (Theorems 1 and 2). New results on differences and commutators of idempotents P and Q are obtained. In the unital case, the difference $P-Q$ is associated with the difference $A_{P, Q}$ of another pair of idempotents. If $P-Q \in \mathfrak{M}_{\varphi}$, then $A_{P, Q} \in \mathfrak{M}_{\varphi}$ and $\varphi\left(A_{P, Q}\right)=\varphi(P-Q) \in \mathbb{R}$ (Theorem 3). In some cases, this allowed us to establish the equality $\varphi(P-Q)=0$ (Corollary 3). We obtain new identities for pairs of idempotents and for pairs of isoclinic projections (Lemma 6, Theorem 5). It is proved that each operator $A \in \mathcal{B}(\mathcal{H}), \operatorname{dim} \mathcal{H}=\infty$, can be presented as a sum of no more than 50 commutators of idempotents from $\mathcal{B}(\mathcal{H})$ (Theorem 6). If \mathcal{A} is an algebra, $\left\{[P, X]: P \in \mathcal{A}^{\text {id }}, X \in \mathcal{A}\right\} \cap \mathcal{A}^{\text {id }}=\{0\}$ (Theorem 7). If \mathcal{H} is separable and $\operatorname{dim} \mathcal{H}=\infty$, then each skew-Hermitian operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum $T=\sum_{k=1}^{4}\left[A_{k}, B_{k}\right]$, where $A_{k}, B_{k} \in \mathcal{B}(\mathcal{H})$ are skew-Hermitian (Theorem 8). Let $n \in \mathbb{N}$ and $A, P \in \mathbb{M}_{n}(\mathbb{C})$ with $P=P^{2}, X=[A, P]$. Then (i) if $k \in \mathbb{N}$ is odd, X^{k} is a commutator; (ii) if $n \in \mathbb{N}$ is odd, $\operatorname{det}(X)=0$ (Corollary 6).

1. DEFINITIONS AND NOTATION

For an algebra \mathcal{A}, by $\mathcal{A}^{\text {id }}$ and $\mathcal{A}^{\text {tri }}$ we will denote its subsets of idempotents $\left(P^{2}=P\right)$ and tripotents $\left(P^{3}=P\right)$ respectively. For $A, B \in \mathcal{A}$, define their commutator $[A, B]=A B-B A$. If \mathcal{A} is unital, by I we denote the unit of algebra \mathcal{A} and let $P^{\perp}=I-P$ for $P \in \mathcal{A}^{\text {id }}$. The formula $S_{P}=2 P-I$ establishes a bijection between sets $\mathcal{A}^{\text {id }}$ and $\mathcal{A}^{\text {sym }}$.

A C^{*}-algebra is a complex Banach $*$-algebra \mathcal{A} such that $\left\|A^{*} A\right\|=\|A\|^{2}$ for all $A \in \mathcal{A}$. For a C^{*}-algebra \mathcal{A}, by $\mathcal{A}^{\mathrm{pr}}, \mathcal{A}^{\text {sa }}$ and \mathcal{A}^{+}we will denote its subsets of projections $\left(P^{2}=P=P^{*}\right)$, Hermitian and positive elements respectively. Projections $P, Q \in \mathcal{A}$ are called isoclinic (with angle $\theta \in(0, \pi / 2)$), if $P Q P=\cos ^{2} \theta P$ and $Q P Q=\cos ^{2} \theta Q$. If $A \in \mathcal{A},|A|=\sqrt{A^{*} A} \in \mathcal{A}^{+}$. For a unital C^{*}-algebra \mathcal{A}, by \mathcal{A}^{u} and $\mathcal{A}^{\text {inv }}$ we will denote its subsets of unitary and invertible elements respectively.

A W^{*}-algebra is a C^{*}-algebra \mathcal{A} which has predual Banach space \mathcal{A}_{*} : $\mathcal{A} \simeq\left(\mathcal{A}_{*}\right)^{*}$. Let \mathcal{H} be a Hilbert space over the field $\mathbb{C}, \mathcal{B}(\mathcal{H})$ be the $*$-algebra of all linear bounded operators on \mathcal{H}. If $P, Q \in \mathcal{B}(\mathcal{H})^{\text {pr }}$, then the projection $P \wedge Q$ is defined by the equality $(P \wedge Q) \mathcal{H}=P \mathcal{H} \cap Q \mathcal{H}$, and $P \vee Q=\left(P^{\perp} \wedge Q^{\perp}\right)^{\perp}$ projects on $\overline{\operatorname{lin}(P \mathcal{H} \cup Q \mathcal{H})}$. Any C^{*}-algebra can be represented as a C^{*} subalgebra in $\mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} (Gelfand-Naimark; see [19, Theorem 3.4.1]).

A trace on a C^{*}-algebra \mathcal{A} is such a map $\varphi: \mathcal{A}^{+} \rightarrow[0,+\infty]$ that $\varphi(X+Y)=\varphi(X)+$ $\varphi(Y), \quad \varphi(\lambda X)=\lambda \varphi(X)$ for all $X, Y \in \mathcal{A}^{+}, \lambda \geq 0($ wherein $0 \cdot(+\infty) \equiv 0) ; \varphi\left(Z^{*} Z\right)=\varphi\left(Z Z^{*}\right)$ for all $Z \in \mathcal{A}$. For a trace φ, define

$$
\mathfrak{M}_{\varphi}^{+}=\left\{X \in \mathcal{A}^{+}: \varphi(X)<+\infty\right\}, \quad \mathfrak{M}_{\varphi}^{\mathrm{sa}}=\operatorname{lin}_{\mathbb{R}} \mathfrak{M}_{\varphi}^{+}, \quad \mathfrak{M}_{\varphi}=\operatorname{lin}_{\mathbb{C}} \mathfrak{M}_{\varphi}^{+}
$$

The restriction $\left.\varphi\right|_{\mathfrak{M}_{\varphi}^{+}}$can be correctly extended by linearity to a functional on \mathfrak{M}_{φ} which we will denote by the same letter φ. A W^{*}-algebra is called properly infinite, if there is no nonzero normal finite trace on it.

2. DIFFERENCES AND COMMUTATORS OF IDEMPOTENTS ON C^{*}-ALGEBRAS

Let \mathcal{A} be a W^{*}-algebra, $P, Q \in \mathcal{A}^{\text {pr }}$ and $A=P Q$. Then there exists a symmetry $S \in \mathcal{A}^{\text {sa }}$ such that $S A S^{-1}=A^{*}[20$, Ch. 4, Exercise 4.4$]$. Let $A \in \mathcal{B}(\mathcal{H})$ be such that $S A S^{-1}=A^{*}$, where operator S is strongly invertible in the sense that zero does not lie in the closure of numerical image of S. Then A is similar to some $B \in \mathcal{B}(\mathcal{H})^{\text {sa }}$ [21].

Lemma 1. Let \mathcal{A} be a unital C^{*}-algebra and $A \in \mathcal{A}, B \in \mathcal{A}^{\text {sa }}$. If A and B are similar, A and A^{*} are also similar.

Proof. Let $T \in \mathcal{A}^{\text {inv }}$ be such that $A=T^{-1} B T$. Then $B=T A T^{-1}$ and for $S=T^{*} T \in \mathcal{A}^{+}$we have

$$
A^{*}=\left(T^{-1} B T\right)^{*}=T^{*} B\left(T^{-1}\right)^{*}=T^{*} B\left(T^{*}\right)^{-1}=T^{*} T A T^{-1}\left(T^{*}\right)^{-1}=S A S^{-1}
$$

Theorem 1. Let $A \in \mathcal{B}(\mathcal{H})^{\text {tri }}$. Then A and A^{*} are similar.
Proof. Due to [8, Theorem 3], any $A \in \mathcal{B}(\mathcal{H})^{\text {tri }}$ is similar to some tripotent $B \in \mathcal{B}(\mathcal{H})^{\text {sa }}$. Now, the desired statement follows from Lemma 1.

The following lemma belongs to mathematical folklore.
Lemma 2. Let \mathcal{A} be a unital algebra and $P, Q \in \mathcal{A}^{\text {id }}$. If $P Q=Q$ and $Q P=P($ respectively $P Q=P$ and $Q P=Q), P$ and Q are similar.

Proof. Let

$$
T=I-P+Q, \quad S=I+P-Q
$$

Then $T S=S T=I$ and $S=T^{-1}$. Obviously, $S P S^{-1}=Q\left(\right.$ respectively $\left.T P T^{-1}=Q\right)$.
In the settings of Lemma 2, we have $S_{Q}(P-Q) S_{Q}=Q-P$, and if $\mathcal{A}=\mathbb{M}_{n}(\mathbb{C})$ with odd $n \in \mathbb{N}$, then the determinant $\operatorname{det}(P-Q)=0$ due to the theorem on determinant of a product of matrices and due to the relation $\operatorname{det}\left(S_{Q}\right) \in\{-1,1\}$.

Let \mathcal{A} be a unital C^{*}-algebra and $P \in \mathcal{A}^{\text {id }}$. There exists a unique decomposition $P=\widetilde{P}+Z$, where $\widetilde{P} \in \mathcal{A}^{\text {pr }}$ and nilpotent $Z \in \mathcal{A}$ with $Z^{2}=0$, moreover, $Z \widetilde{P}=0, \widetilde{P} Z=Z[22$, Theorem 1.3].

Theorem 2 (cf. [23], Lemma 16). Let \mathcal{A} be a unital C^{*}-algebra and $P \in \mathcal{A}^{\text {id }}, P=\widetilde{P}+Z$ is the decomposition described above. Then P, \widetilde{P}, P^{*} are similar.

Proof. Since $Z \widetilde{P}=0$ and $\widetilde{P} Z=Z$, we have $P \widetilde{P}=\widetilde{P}$ and $\widetilde{P} P=P$. Hence, P and \widetilde{P} are similar due to Lemma 2. As $\widetilde{P} \in \mathcal{A}^{\text {sa }}$, idempotents P and P^{*} are similar due to Lemma 1.

Corollary 1. Let \mathcal{A} be a unital C^{*}-algebra. For $S \in \mathcal{A}$, the following conditions are equivalent:
(i) $S \in \mathcal{A}^{\text {sym }}$;
(ii) $S=T U T^{-1}$ for some $T \in \mathcal{A}^{\text {inv }}$ and $U \in \mathcal{A}^{\text {sa }} \cap \mathcal{A}^{\mathrm{u}}$.

Proof. (i) \Rightarrow (ii) If $P \in \mathcal{A}^{\text {id }}, P=T \widetilde{P} T^{-1}$ for some $T \in \mathcal{A}^{\text {inv }}$ due to Theorem 2 or [23, Lemma 16]. Hence,

$$
S_{P}=2 P-I=2 T \widetilde{P} T^{-1}-I=T(2 \widetilde{P}-I) T^{-1}
$$

i. e., we can take $U=2 \widetilde{P}-I$.

Definition. Let \mathcal{A} be a unital algebra and $P, Q \in \mathcal{A}^{\text {id }}$. Let

$$
A_{P, Q}=S_{Q} P S_{Q}-S_{P} Q S_{P}
$$

We have $A_{Q, P}=A_{P^{\perp}, Q^{\perp}}=-A_{P, Q}, A_{P^{\perp}, Q}=-A_{P, Q^{\perp}}=I-S_{P} Q S_{P}-S_{Q} P S_{Q}$ and $A_{P, Q}(P-$ $Q)=(P-Q) A_{P, Q}$. Let \mathcal{A} be a unital C^{*}-algebra and $P \in \mathcal{A}^{\text {id }}, P=\widetilde{P}+Z$ be the decomposition described above. Then $A_{\widetilde{P}, P}=3 P-3 \widetilde{P}=3 Z$.

Lemma 3. Let J be an ideal in a unital algebra $\mathcal{A}, P, Q \in \mathcal{A}^{\text {id }}$ and $\lambda, \mu \in \mathbb{C}, \lambda \mu \neq 0, \lambda \neq-\mu$. Then
(i) if $P-Q \in J, A_{P, Q} \in J$;
(ii) we have $P, Q \in J \Leftrightarrow \lambda P+\mu Q \in J$.

Proof. (i) We have

$$
\begin{equation*}
A_{P, Q}=S_{P}(P-Q) S_{P}+S_{Q}(P-Q) S_{Q}-(P-Q)=4 Q P Q-4 P Q P+(P-Q) \tag{3}
\end{equation*}
$$

In particular, $Q P Q-P Q P \in J$.
(ii), " \Leftarrow ". We have

$$
P=\frac{\mu}{\lambda(\lambda+\mu)} P(\lambda P+\mu Q)\left(\frac{\lambda+\mu}{\mu} I-Q\right) \in J .
$$

It is seen from (3) that if $\{P Q, Q P\} \cap\{0\} \neq \varnothing$ (or $\{P, Q\} \cap\{I\} \neq \varnothing), A_{P, Q}=P-Q$.
Theorem 3. Let φ be a trace on a unital C^{*}-algebra \mathcal{A}. If $P, Q \in \mathcal{A}^{\text {id }}$ and $P-Q \in \mathfrak{M}_{\varphi}$, then $A_{P, Q} \in \mathfrak{M}_{\varphi}$ and $\varphi\left(A_{P, Q}\right)=\varphi(P-Q) \in \mathbb{R}$.

Proof. Recall that \mathfrak{M}_{φ} is an ideal in \mathcal{A}, moreover, $\varphi(X Y)=\varphi(Y X)$ for all $X \in \mathfrak{M}_{\varphi}, Y \in \mathcal{A}[19$, Ch. 6, Exercise 6]. Due to item (i) of Lemma 3, we obtain $A_{P, Q} \in \mathfrak{M}_{\varphi}$. Since

$$
\varphi\left(S_{P}(P-Q) S_{P}\right)=\varphi\left(S_{Q}(P-Q) S_{Q}\right)=\varphi(P-Q)
$$

we have $\varphi\left(A_{P, Q}\right)=\varphi(P-Q) \in \mathbb{R}$ due to linearity of the extension of φ to $\mathfrak{M}_{\varphi},(3)$ and due to [10, Theorem 3].

Corollary 2. In the settings of item (i) of Theorem 3, for any $n \in \mathbb{N}$ we have

$$
\varphi\left(A_{P, Q}^{2 n+1}\right)=\varphi\left(A_{P, Q}\right)=\varphi(P-Q) \in \mathbb{R}
$$

Proof. For any $n \in \mathbb{N}$, we obtain from [13, Theorem 1] and (1) that

$$
\varphi\left(A_{P, Q}^{2 n+1}\right)=\varphi\left(A_{P, Q}\right)=\varphi(4 Q P Q-4 P Q P+P-Q)=\varphi(P-Q) \in \mathbb{R}
$$

since $Q P Q-P Q P \in \mathfrak{M}_{\varphi}$ and $\varphi(Q P Q-P Q P)=0$ (see step 2 of the proof of [13, Theorem 1]).

Note that item (i) of the following theorem generalizes item (i) of [24, Theorem 3.2].
Theorem 4. Let φ be a trace on a C^{*}-algebra \mathcal{A}.
(i) If $X \in \mathcal{A}^{\text {tri }}, Y \in \mathcal{A}$ and $[X, Y] \in \mathfrak{M}_{\varphi}$, then $\varphi([X, Y])=0$.
(ii) If $X, Y \in \mathcal{A}$ and $[X, Y] \in \mathfrak{M}_{\varphi}$, then $\left[X^{k}, Y^{n}\right] \in \mathfrak{M}_{\varphi}$ for all $k, n \in \mathbb{N}$.
(iii) If $X, Y \in \mathcal{A}$ and $X-Y \in \mathfrak{M}_{\varphi}$, then $\left[X^{k}, Y^{n}\right] \in \mathfrak{M}_{\varphi}$ and $\varphi\left(\left[X^{k}, Y^{n}\right]\right)=0$ for all $k, n \in \mathbb{N}$.

Proof. (i) Step 1. Let $X \in \mathcal{A}^{\text {id }}$. Since

$$
X Y-2 X Y X+Y X=X[X, Y]-[X, Y] X \in \mathfrak{M}_{\varphi}
$$

the statement follows from the representation

$$
[X, Y]=X(X Y-2 X Y X+Y X)-(X Y-2 X Y X+Y X) X
$$

and linearity of the extension of φ to \mathfrak{M}_{φ}.
Step 2. Let $X \in \mathcal{A}^{\text {tri }}$ and $X=P-Q$ with $P, Q \in \mathcal{A}^{\text {id }}$ and $P Q=Q P=0$ [7, Proposition 1]. Then $X^{2}=P+Q \in \mathcal{A}^{\text {id }}$ and

$$
[P, Y]+[Q, Y]=\left[X^{2}, Y\right]=X[X, Y]+[X, Y] X \in \mathfrak{M}_{\varphi} .
$$

By the condition, $[P, Y]-[Q, Y]=[X, Y] \in \mathfrak{M}_{\varphi}$. From the two last relations, we have $[P, Y],[Q, Y] \in$ \mathfrak{M}_{φ}, and due to step 1 and linearity of the extension of φ to \mathfrak{M}_{φ}, we obtain

$$
\varphi([X, Y])=\varphi([P, Y])-\varphi([Q, Y])=0-0=0 .
$$

(ii) Let us use the method of mathematical induction. For all $k \geq 2$, we have

$$
\left[X^{k}, Y\right]=X\left[X^{k-1}, Y\right]+[X, Y] X^{k-1} \in \mathfrak{M}_{\varphi} .
$$

For all $n \geq 2$, we obtain

$$
\left[X^{k}, Y^{n}\right]=Y\left[X^{k}, Y^{n-1}\right]+\left[X^{k}, Y\right] Y^{n-1} \in \mathfrak{M}_{\varphi}
$$

(iii) Step 1. With the help of mathematical induction, we will show that $X^{k}-Y^{k} \in \mathfrak{M}_{\varphi}$ for all $k \in \mathbb{N}$. Suppose that $X^{k-1}-Y^{k-1} \in \mathfrak{M}_{\varphi}$. Then

$$
X^{k}-Y^{k}=X^{k-1}(X-Y)+\left(X^{k-1}-Y^{k-1}\right) Y \in \mathfrak{M}_{\varphi},
$$

which was required.
Step 2. From the representation

$$
X^{k} Y^{n}-Y^{n} X^{k}=\left(X^{k}-Y^{k}\right) Y^{n}-Y^{n}\left(X^{k}-Y^{k}\right),
$$

it follows that $\left[X^{k}, Y^{n}\right] \in \mathfrak{M}_{\varphi}$ and

$$
\varphi\left(\left[X^{k}, Y^{n}\right]\right)=\varphi\left(\left(X^{k}-Y^{k}\right) Y^{n}\right)-\varphi\left(Y^{n}\left(X^{k}-Y^{k}\right)\right)=0
$$

for all $k, n \in \mathbb{N}$ due to linearity of the extension of φ to \mathfrak{M}_{φ}.

In particular, if $X \in \mathcal{A}, P \in \mathcal{A}^{\text {id }}$ and $X P-P X P \in \mathfrak{M}_{\varphi}$, then $\varphi(X P-P X P)=0$ due to the equality $X P-P X P=[X P, P]$ (see item (i) of Theorem 4).

Example 1. Let \mathcal{A} be an algebra and $P, Q \in \mathcal{A}^{\text {id }}, P Q=Q$ and $Q P=P$. Then $P Q P=P$ and $Q P Q=Q$; we have $(P+Q)^{k}=2^{k}(P+Q)$ for all $k \in \mathbb{N}$ and $(P-Q)^{2}=0$. Hence, due to the theorem on the determinant of a product of matrices, for $\mathcal{A}=\mathbb{M}_{n}(\mathbb{C})$ we obtain $\operatorname{det}(P+Q)=$ $\operatorname{det}(P-Q)=0$.

For idempotents

$$
P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), Q=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \in \mathbb{M}_{3}(\mathbb{C})^{\text {id }}
$$

we have $P Q P=P$ and $Q P Q=Q$, however $\{P Q, Q P\} \cap\{P, Q\}=\varnothing$.

Lemma 4. Let \mathcal{A} be a unital algebra and $P, Q \in \mathcal{A}^{\text {id }}, \lambda \in \mathbb{C} \backslash\{0\}$. Let

$$
A=(1-\lambda) P+\left(\lambda^{-1}-\lambda-1+\lambda^{2}\right) P Q+\lambda Q P+\left(\lambda^{2}-\lambda^{4}\right) Q, \quad B=(1-\lambda) Q+\left(2 \lambda^{-1}-1\right) P Q
$$

If $P Q P=\lambda^{2} P$ and $Q P Q=\lambda^{2} Q$, then idempotents P and A (respectively Q and B) are similar. We have $\left(\lambda P-\lambda^{-1} Q P\right)^{2}=\left(\lambda Q-\lambda^{-1} P Q\right)^{2}=0$.

Proof. Let

$$
T=I+\lambda^{-1} P Q-\lambda Q, \quad S=I-\lambda^{-1} P Q+\lambda Q
$$

Then $T S=S T=I$ and $S=T^{-1}$. We have $S P S^{-1}=A$ and $T Q T^{-1}=B$, hence, $A, B \in \mathcal{A}^{\text {id }}$. The equalities $\left(\lambda P-\lambda^{-1} Q P\right)^{2}=\left(\lambda Q-\lambda^{-1} P Q\right)^{2}=0$ can be easily checked.

Corollary 3. Let \mathcal{A} be a unital algebra and $P, Q \in \mathcal{A}^{\text {id } . ~ I f ~} P Q P=P$ and $Q P Q=Q$, then idempotents P and $Q P$ (respectively Q and $P Q$) are similar. We have $(P-Q P)^{2}=(Q-P Q)^{2}=0$.

In the settings of Lemma 4, we have $A_{P, Q}=\left(1-4 \lambda^{2}\right)(P-Q)$, and if φ is a trace on a unital C^{*}-algebra \mathcal{A} and $P-Q \in \mathfrak{M}_{\varphi}$, then $\varphi(P-Q)=0$. If \mathcal{A} is a unital $*$-algabra and $P, Q \in \mathcal{A}^{\text {id }}$, then $P Q=Q \Leftrightarrow Q^{* \perp} P^{* \perp}=P^{* \perp}$.

Lemma 5. If $P, Q \in \mathcal{B}(\mathcal{H})^{\text {pr }}$ and $P Q P=P$, then $Q P=P$, i.e., $P \leq Q$.
Proof. Since $Q \cdot P Q P=Q P \cdot Q P=Q P$, we have

$$
(P-Q P)^{2}=Q^{\perp} P Q^{\perp} P=0 .
$$

Multiply both sides of this relation on the left by projection P, to get $\left(P Q^{\perp} P\right)^{2}=0$. Since $P Q^{\perp} P \in \mathcal{B}(\mathcal{H})^{+}$, we have $0=P Q^{\perp} P=\left|Q^{\perp} P\right|^{2}$, i. e., $\left|Q^{\perp} P\right|=0$ and $Q^{\perp} P=0$.

Example 2. Let \mathcal{A} be a unital C^{*}-algebra, projections $P, Q \in \mathcal{A}^{\text {pr }}$ be isoclinic with some angle $\theta \in(0, \pi / 2)$. Then $\left(\cos ^{2} \theta P-Q P\right)^{2}=0$ and

$$
\begin{equation*}
A_{P, Q}=\left(1-4 \cos ^{2} \theta\right)(P-Q), \tag{4}
\end{equation*}
$$

for $\theta=\pi / 3$ we have $A_{P, Q}=0$. Recall [25, Ch. 2, §10, item 10.5, (iii)] that

$$
\begin{equation*}
P \vee Q=\frac{1}{\sin ^{2} \theta}(P-Q)^{2} . \tag{5}
\end{equation*}
$$

Hence, $P \vee Q \in \mathcal{A}$,

$$
\begin{gathered}
A_{P, Q}^{2}=\left(1-4 \cos ^{2} \theta\right)^{2} \sin ^{2} \theta P \vee Q, \\
\sin (P-Q)=\frac{\sin (\sin \theta)}{\sin \theta}(P-Q), \quad \cos (P-Q)=I+(\cos (\sin \theta)-1) P \vee Q, \\
\sinh (P-Q)=\frac{\sinh (\sin \theta)}{\sin \theta}(P-Q), \quad \cosh (P-Q)=I+(\cosh (\sin \theta)-1) P \vee Q
\end{gathered}
$$

and $\exp (P-Q)=\sinh (P-Q)+\cosh (P-Q)$. The relation

$$
\begin{equation*}
(P-Q)^{4}=(P-Q)^{2}-|P Q-Q P|^{2} \tag{6}
\end{equation*}
$$

(see the proof of $[10$, Proposition 1]) and (5) give

$$
|[P, Q]|=\sin \theta \cos \theta P \vee Q
$$

If J is a left (or right) ideal in \mathcal{A} and $P-Q \in J$, then $P \vee Q \in J$ due to equality (5). Hence, projections $P=P \vee Q \cdot P$ and $Q=P \vee Q \cdot Q$ lie in J. It is clear that

$$
P-Q \in J \Leftrightarrow(P-Q)^{2} \in J \Leftrightarrow|[P, Q]| \in J \Leftrightarrow P \vee Q \in J \Leftrightarrow P, Q \in J .
$$

If $\mathcal{A}=\mathbb{M}_{n}(\mathbb{C})$, we obtain from the theorem on determinant of a product of matrices and from (5) that

$$
\operatorname{det}(P-Q)= \begin{cases}0, & \text { if } P \vee Q \neq I \\ \pm \sin ^{n} \theta, & \text { if } P \vee Q=I\end{cases}
$$

Corollary 4. Let φ be a trace on a unital C^{*}-algebra \mathcal{A} and projections $P, Q \in \mathcal{A}^{\text {pr }}$ be isoclinic with some angle $\theta \in(0, \pi / 2)$. If $P-Q \in \mathfrak{M}_{\varphi}$, then $P, Q \in \mathfrak{M}_{\varphi}$, and from Theorem 3 and equality (4) we obtain $0=\varphi(P-Q)=\varphi(P)-\varphi(Q)$. From equality (5) we have $\varphi(P \vee Q)=\varphi(P)+\varphi(Q)=$ $2 \varphi(P)$.

Lemma 6. Let \mathcal{A} be an algebra and $P, Q \in \mathcal{A}^{\text {id }}$. Then
(i) $(P-Q)^{4}+(P+Q)^{4}=2(P+Q)^{2}+2(P Q+Q P)^{2}$;
(ii) $(P-Q)^{2}+(P+Q)^{2}=2(P+Q)$;
(iii) if \mathcal{A} is unital, $[P, Q]=(I-P-Q)(P-Q)=-(P-Q)(I-P-Q)$.

Theorem 5. Let \mathcal{A} be a C^{*}-algebra and projections $P, Q \in \mathcal{A}^{\text {pr }}$ be isoclinic with some angle $\theta \in(0, \pi / 2)$. Then $\sin ^{4} \theta P \vee Q+(P+Q)^{4}=\left(2+\cos ^{2} \theta\right)(P+Q)^{2}$, where $(P+Q)^{2}=2(P+Q)-$ $\sin ^{2} \theta P \vee Q$.

The proof follows from Lemma 6 and equality (5).
Lemma 7. (i) If \mathcal{A} is a properly infinite W^{*}-algebra, then each commutator $[A, B](A, B \in \mathcal{A})$ can be represented as a sum of no more than 25 commutators of idempotents from \mathcal{A}.
(ii) If \mathcal{H} is separable and $\operatorname{dim} \mathcal{H}=\infty$, then each commutator $[A, B]$ of operators $A, B \in \mathcal{B}(\mathcal{H})^{\text {sa }}$ with $\|A\|<1,\|B\|<1$, can be represented as a sum of no more than 2025 commutators of projections from $\mathcal{B}(\mathcal{H})$.

Proof. (i) Due to [26, Theorem 4], we have

$$
A=P_{1}+\ldots+P_{5}, \quad B=Q_{1}+\ldots+Q_{5}
$$

with some $P_{k}, Q_{k} \in \mathcal{A}^{\text {id }}, k=1, \ldots, 5$.
(ii) If \mathcal{H} is separable and $\operatorname{dim} \mathcal{H}=\infty$, each operator $T \in \mathcal{B}(\mathcal{H})^{\text {sa }}$ with $\|T\|<1$ can be represented as

$$
T=5\left(P_{1}+P_{2}+P_{3}+P_{4}\right)-5 P_{5}-8 P_{6}-12 P_{7}
$$

with $P_{1}, \ldots, P_{7} \in \mathcal{B}(\mathcal{H})^{\text {pr }}[27$, Remark 4].
Theorem 6. Each operator $A \in \mathcal{B}(\mathcal{H})$, $\operatorname{dim} \mathcal{H}=\infty$, can be represented as a sum of no more than 50 commutators of idempotents from $\mathcal{B}(\mathcal{H})$.

Proof. Any operator in an infinite-dimensional Hilbert space \mathcal{H} can be represented as a sum of two commutators [28, Corollary 2 from Problem 186]. Now we apply item (i) of Lemma 7, since $\mathcal{B}(\mathcal{H})$ is a properly infinite W^{*}-algebra.

Theorem 7. If \mathcal{A} is an algebra, $\left\{[P, X]: P \in \mathcal{A}^{\text {id }}, X \in \mathcal{A}\right\} \cap \mathcal{A}^{\text {id }}=\{0\}$. Generally speaking, $\left\{[P, Q]: P, Q \in \mathcal{A}^{\text {id }}\right\} \cap \mathcal{A}^{\text {tri }} \neq\{0\}$.

Proof. Let $P \in \mathcal{A}^{\text {id }}, X \in \mathcal{A}$ and

$$
\begin{equation*}
[P, X]^{2}=[P, X] . \tag{7}
\end{equation*}
$$

Multiply both sides of (7) on the left and on the right by idempotent P, to get

$$
\begin{equation*}
P X P X P=P X^{2} P . \tag{8}
\end{equation*}
$$

Then, multiply both sides of (7) on the right by P, and take into account (8), we obtain $P X P=X P$. Multiply both sides of (7) on the left by P, and take into account (8), we obtain $P X=P X P$. Hence, $[P, X]=0$ and $\left\{[P, X]: P \in \mathcal{A}^{\text {id }}, X \in \mathcal{A}\right\} \cap \mathcal{A}^{\text {id }}=\{0\}$.

Numbers

$$
a=\frac{\sqrt{5}-1}{2}, \quad b=\sqrt{a-a^{2}}=\sqrt{\sqrt{5}-2}
$$

satisfy the condition $2 a-b^{2}=1$. In algebra $\mathcal{A}=\mathbb{M}_{2}(\mathbb{C})$, for idempotents

$$
P=\left(\begin{array}{cc}
1 & b^{-1} \\
0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{cc}
a & b \\
b & 1-a
\end{array}\right)
$$

we have $[P, Q]^{2}=\operatorname{diag}(1,1)=I$, i. e., $[P, Q] \in \mathcal{A}^{\text {sym }} \subset \mathcal{A}^{\text {tri }} \backslash\{0\}$.
Any operator from $\mathcal{B}(\mathcal{H}), \operatorname{dim} \mathcal{H}=\infty$, can be represented as a finite sum of pair-wise products of projections ([29]; [30], a theorem). Hence, any skew-Hermitian operator $\left(A^{*}=-A\right)$ from $\mathcal{B}(\mathcal{H})$ can be represented as a finite sum of commutators of projections [24, Theorem 5.1]. The following theorem was announced by the first author without proof in [24, p. 12, Statement I].

Theorem 8. If \mathcal{H} is separable and $\operatorname{dim} \mathcal{H}=\infty$, any skew-Hermitian operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum $T=\sum_{k=1}^{4}\left[A_{k}, B_{k}\right]$, where $A_{k}, B_{k} \in \mathcal{B}(\mathcal{H})$ are skew-Hermitian.

Proof. We will use [28, Corollary 2 from Problem 186]: any operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum of two commutators: $T=[A, B]+[C, D]$ with $A, B, C, D \in \mathcal{B}(\mathcal{H})$. Let $T=-T^{*}$ and $T=[A, B]+[C, D]$. Then

$$
\begin{equation*}
T=\frac{T-T^{*}}{2}=\frac{A B-B A+A^{*} B^{*}-B^{*} A^{*}+C D-D C+C^{*} D^{*}-D^{*} C^{*}}{2} . \tag{9}
\end{equation*}
$$

For any $Y \in \mathcal{B}(\mathcal{H})$, operators $Y-Y^{*}, i\left(Y+Y^{*}\right)$ are skew-Hermitian, where $i \in \mathbb{C}$ and $i^{2}=-1$. It is easy to prove that

$$
\left[A-A^{*}, B-B^{*}\right]+\left[i\left(B+B^{*}\right), i\left(A+A^{*}\right)\right]=2 A B-2 B A+2 A^{*} B^{*}-2 B^{*} A^{*}
$$

Thus,

$$
\begin{align*}
& \frac{A B-B A+A^{*} B^{*}-B^{*} A^{*}}{2}=\left[\frac{A-A^{*}}{2}, \frac{B-B^{*}}{2}\right]+\left[\frac{i\left(B+B^{*}\right)}{2}, \frac{i\left(A+A^{*}\right)}{2}\right] \tag{10}\\
& \frac{C D-D C+C^{*} D^{*}-D^{*} C^{*}}{2}=\left[\frac{C-C^{*}}{2}, \frac{D-D^{*}}{2}\right]+\left[\frac{i\left(D+D^{*}\right)}{2}, \frac{i\left(C+C^{*}\right)}{2}\right] . \tag{11}
\end{align*}
$$

Substitute the right-hand sides of (10) and (11) into (9) to complete the proof.
Corollary 5. If \mathcal{H} is separable and $\operatorname{dim} \mathcal{H}=\infty$, any skew-Hermitian operator $T \in \mathcal{B}(\mathcal{H})$ can be represented as a sum $T=\sum_{k=1}^{4}\left[C_{k}, D_{k}\right]$, where $C_{k}, D_{k} \in \mathcal{B}(\mathcal{H})^{\text {sa }}$.

Proof. Let $C_{k}=i B_{k}, D_{k}=i A_{k}$ for $k=1,2,3,4$.
If $P, Q \in \mathcal{B}(\mathcal{H})^{\mathrm{pr}}$, then (6) implies (see also [4, Proposition 3])

$$
\begin{equation*}
|P Q-Q P|^{2}=(P-Q)^{2}-(P-Q)^{4} \leq(P-Q)^{2} \tag{12}
\end{equation*}
$$

Theorem 9. Let φ be a faithful trace on a W^{*}-algebra $\mathcal{A}, A \in \mathcal{A}$ and $P \in \mathcal{A}^{\text {id }}$. For $X=[A, P]$, we have $S_{P} X=-X S_{P}$. If $X^{k} \in \mathfrak{M}_{\varphi}$ for some odd $k \in \mathbb{N}, \varphi\left(X^{k}\right)=0$. If, moreover, $P=P^{*}$, then $[|X|, P]=0$, and for $A \in \mathcal{A}^{\text {pr }}$ with $X^{2} \in \mathfrak{M}_{\varphi}$ we have $\varphi\left(X^{2}\right)=0 \Leftrightarrow X=0$.

Proof. It is clear that $X S_{P}=-S_{P} X$. For $U \in \mathcal{A}$ and $V \in \mathfrak{M}_{\varphi}$, we have $\varphi(U V)=\varphi(V U)$ (see [19, Ch. 6, Exercise 6]). Thus, if $X^{k} \in \mathfrak{M}_{\varphi}$ for some odd $k \in \mathbb{N}$, then $\varphi\left(X^{k}\right)=0$ (cf. [5, Theorem 2.26]). If $P=P^{*}$, then $X^{*} S_{P}=-S_{P} X^{*}$ and $S_{P} X^{*} S_{P}=-X^{*}$. Hence, $|X|^{2}=S_{P}|X|^{2} S_{P}$, i. e., $|X|^{2} S_{P}=$ $S_{P}|X|^{2}$ and $|X|^{2} P=P|X|^{2}$. Now, due to the spectral theorem, we have $|X| P=P|X|$.

Let $A, P \in \mathcal{A}^{\text {pr }}, X=[A, P]$ and $X^{2} \in \mathfrak{M}_{\varphi}$ with $\varphi\left(X^{2}\right)=0$. Since $X^{2}=-|X|^{2}$, from (12) we get

$$
\begin{equation*}
0=\varphi\left(X^{2}\right)=\varphi\left(-|X|^{2}\right)=-\varphi\left(|X|^{2}\right)=-\varphi\left((A-P)^{2}-(A-P)^{4}\right) \tag{13}
\end{equation*}
$$

Since $(A-P)^{2}-(A-P)^{4} \geq 0$ (recall that $\|A-P\| \leq 1$) and since trace φ is faithful, from (13) we have $(A-P)^{2}-(A-P)^{4}=0$, i. e., $(A-P)^{2}=|A-P|^{2} \in \mathcal{A}^{\text {pr }}$. Hence, operator $U=A-P$ is a partial isometry on \mathcal{H}. Hence, $U U^{*} U=U$ [28, Corollary 3 from Problem 98]. From the equality $(A-P)^{3}=A-P$, we get $P A P=A P A$. Hence, $P A P \leq A$ and $A P=P A$ due to [31, Proposition 2.1].

Corollary 6. Let $n \in \mathbb{N}$ and $A, P \in \mathbb{M}_{n}(\mathbb{C})$ with $P=P^{2}, X=[A, P]$.
(i) If $k \in \mathbb{N}$ is odd, X^{k} is a commutator.
(ii) If $n \in \mathbb{N}$ is odd, $\operatorname{det}(X)=0$.

Proof. It is known that for $T \in \mathbb{M}_{n}(\mathbb{C})$, the following conditions are equivalent: 1) T is unitarily equivalent to a matrix with zero diagonal; 2) trace $\operatorname{tr}(T)=0 ; 3) T$ is a commutator; 4) $\operatorname{tr}(|I+z T|) \geq n$ for all $z \in \mathbb{C}$. The proof of equivalency 1$) \Leftrightarrow 2$) see in $[16$, Ch. II, Problem 209], equivalency 2$) \Leftrightarrow 3$) is proved in [28, Problem 182], equivalency 2) $\Leftrightarrow 4$) is established in [32, Theorem 4.8].
(i) Use equivalency 2$) \Leftrightarrow 3$).
(ii) Since $S_{P}^{2}=I$ and $\operatorname{det}\left(S_{P}\right) \in\{-1,1\}$ due to the theorem on determinant of a product of matrices, we apply this theorem to the equality $S_{P} X=-X S_{P}$ with $X=[A, P]$.

FUNDING

This work is conducted in the framework of realization of the development programme of the Volga Region Scientific-Educational Center of Mathematics of Kazan (Volga region) Federal University, agreement no. 075-02-2020-1478.

REFERENCES

1. Koliha J.J., Rakočević V. "Invertibility of the difference of idempotents", Linear Multilinear Algebra 51 (1), 97-110 (2003).
2. Koliha J.J., Rakočević V., Straškraba I. "The difference and sum of projectors", Linear Algebra Appl. 388, 279-288 (2004).
3. Koliha J.J., Rakočević V. "Fredholm properties of the difference of orthogonal projections in a Hilbert space", Integral Equat. Oper. Theory 52 (1), 125-134 (2005).
4. Bikchentaev A.M. "Trace and Differences of Idempotents in C^{*}-algebras", Math. Notes 105 (5), 641-648 (2019).
5. Bikchentaev A.M. "On idempotent τ-measurable operators affiliated to a von Neumann algebra", Math. Notes 100 (4), 515-525 (2016).
6. Kalton N.J. "A note on pairs of projections", Bol. Soc. Mat. Mexicana (3) 3 (2), 309-311 (1997).
7. Bikchentaev A.M., Yakushev R.S. "Representation of tripotents and representations via tripotents", Linear Algebra Appl. 435 (9), 2156-2165 (2011).
8. Bikchentaev A.M. "Tripotents in algebras: invertibility and hyponormality", Lobachevskii J. Math. 35 (3), 281-285 (2014).
9. Avron J., Seiler R., Simon B. "The index of a pair of projections", J. Funct. Anal. 120 (1), 220-237 (1994).
10. Bikchentaev A.M. "Differences of idempotents in C^{*}-algebras", Sib. Math. J. 58 (2), 183-189 (2017).
11. Bellissard J., van Elst A., Schulz-Baldes H. "The noncommutative geometry of the quantum Hall effect. Topology and physics", J. Math. Phys. 35 (10), 5373-5451 (1994).
12. Gesztesy F. "From Mathematical Physics to Analysis: a walk in Barry Simon's Mathematical Garden, II", Notices Amer. Math. Soc. 63 (8), 878-889 (2016).
13. Bikchentaev A.M. "Differences of Idempotents in C^{*}-Algebras and the Quantum Hall Effect", Theor. Math. Phys. 195 (1), 557-562 (2018).
14. Cuntz J., Pedersen G.K. "Equivalence and traces on C^{*}-algebras", J. Funct. Anal. 33 (2), 135-164 (1979).
15. Fack T. "Finite sums of commutators in C^{*}-algebras", Ann. Inst. Fourier, Grenoble 32 (1), 129-137 (1982).
16. Glazman I.M., Lyubich Yu.I. Finite-dimensional linear analysis (Nauka, Moscow, 1969) [in Russian].
17. Davidson K.R. C^{*}-algebras by examples, Fields Institute Monographs (Amer. Math. Soc., Providence, Rhode Island, 1996).
18. Pop C. "Finite sums of commutators", Proc. Amer. Math. Soc. 130 (10), 3039-3041 (2002).
19. Murphy J. C^{*}-algebras and operator theory (Factorial, Moscow, 1997) [in Russian].
20. Strătilă Ş., Zsidó L. Lectures on von Neumann algebras (Abacus Press, England, 1979).
21. Williams J.P. "Operators similar to their adjoints", Proc. Amer. Math. Soc. 20 (1), 121-123 (1969).
22. Koliha J.J. "Range projections of idempotents in C^{*}-algebras", Demonstratio Math. 24 (1), 91-103 (2001).
23. Kaplansky I. "Modules over operator algebras", Amer. J. Math. 75 (4), 839-858 (1953).
24. Bikchentaev A.M. "On the representation of elements of a von Neumann algebra in the form of finite sums of products of projections, III. Commutators in C^{*}-algebras", Sb. Math. 4 (4), 477-493 (2008).
25. Sherstnev A.N. Methods of bilinear forms in non-commutative theory of measure and integral (Fizmatlit, Moscow, 2008) [in Russian].
26. Pearcy C., Topping D.M. "Sums of small numbers of idempotents", Mich. Math. J. 14 (4), 453-465 (1967).
27. Paszkiewicz A. "Any selfadjoint operator is a finite linear combination of projectors", Bull. L'Acad. Polon. Sci., Sér. Sci. Math. 28 (7-8), 337-345 (1980).
28. Halmos P. A Hilbert space problem book (Mir, Moscow, 1970) [in Russian].
29. Bikchentaev A.M. "On representation of linear operators in a Hilbert space in the form of finite sums of products of projectors", Doklady Mathematics 68 (3), 376-379 (2003).
30. Bikchentaev A.M. "On representation of elements of a von Neumann algebra in the form of finite sums of products of projections", Sib. Math. J. 46 (1), 24-34 (2005).
31. Bikchentaev A.M. "Commutativity of projections and characterization of traces on Von Neumann algebras", Sib. Math. J. 51 (6), 971-977 (2010).
32. Bikchentaev A.M. "Convergence of integrable operators affiliated to a finite von Neumann algebra", Proceedings of the Steklov Institute of Mathematics 293, 67-76 (2016).

[^0]: *E-mail: Airat.Bikchentaev@kpfu.ru
 ${ }^{* *}$ E-mail: khattab1058@hotmail.com

