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Abstract: Mefenamic acid has been used as a non-steroidal anti-inflammatory drug for a long time.
However, its practical use is quite limited due to a number of side effects on the intestinal organs.
Conformational polymorphism provides mefenamic acid with unique properties regarding possible
modifications obtained during the micronization process, which can improve pharmacokinetics and
minimize side effects. Micronization can be performed by decompression of supercritical fluids;
methods such as rapid expansion of the supercritical solution have proven their efficiency. However,
this group of methods is poorly applicable for compounds with low solubility, and the modification of
the method using a pharmaceutically suitable co-solvent may be useful. In our case, addition of only
2 mol% dimethyl sulfoxide increased the solubility remarkably. Information on the conformational
state may be critically important for carrying out micronization. In this work, structural analysis
and estimate of conformational preferences of mefenamic acid in dimethyl sulfoxide-d6 (at 25 ◦C
and 0.1 MPa) and in a mixed solvent supercritical carbon dioxide + dimethyl sulfoxide-d6 (45 ◦C,
9 MPa) were performed based on nuclear Overhauser effect spectroscopy. Results show changes in
the conformation fractions depending on the medium used. The importance of allowing for hidden
conformers in estimating the conformational state was demonstrated in the analysis. Obtained results
may be useful for improving micronization parameters.

Keywords: supercritical fluid; fenamates; spatial structure; high-pressure NMR

1. Introduction

Development and bringing to market of new pharmaceuticals is an arduous, time-
consuming, and expensive process [1]. Invention and promoting each new drug can
cost more than one billion dollars [2]. Thus, repurposing already existing drugs attracts
increasingly more interest [3]. Implementation of this approach costs several million dollars,
and the probability of approving a reprofiled drug by controlling agencies, such as the
United States Food and Drug Administration, is higher [2,3]. Therefore, studies aimed at
seeking new ways of drug repurposing among compounds already in use or those which
have been withdrawn become urgent [4–6]. Fenamates give an example of such compounds;
until 2012, they were used as non-steroidal anti-inflammatory drugs for pain relief. Due to
a number of side effects, their use was ceased in some countries [7–9]. Recently, anti-cancer
activity of fenamates was revealed [10–12].

Drug repurposing for returning a drug back to the pharmaceutical market requires a
dramatic decrease in its side effects. This can be achieved by increasing its bioavailability with
the aid of micronization. Micronized particles of the active pharmaceutical ingredient (API)
possess a highly improved dissolution rate [13–15], which makes it possible to decrease the
therapeutic dose and diminish side effects. An approach based on carbon dioxide supercritical
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fluid techniques is one of the highly efficient API micronization methods [16]. Depending on
the solubility of the compound, different fluid-based micronization techniques are used. For
materials well soluble in scCO2 (γ >×10−3 M), methods based on the principal functions of
CO2 supercritical fluid expansion (RESS, PGSS, RESOLV, etc.) [17–19] are employed; for poorly
soluble drugs (γ <×10−3 M), methods based on dilution of liquids by supercritical fluids (SAS,
GAS, ASES, etc.) [20,21] can be used. All the mentioned methods have their advantages and
drawbacks. For example, methods relying on expansion of scCO2 produce smaller particles as
compared with the dilution of liquids by the supercritical fluid. Fenamates have low solubility
in scCO2, so the dilution-based approaches are used most often for them [22–24]. Adaptation
of the scCO2 expansion methods for low-soluble compounds is an enticing idea. For instance,
it was implemented in the Depressurization of an Expanded Liquid Organic Solution (DELOS)
method [25]. Use of DMSO was proposed in [26] as a means of increasing the solubility of
fenamates in scCO2; therefore, we suppose the fluid expansion method of micronization
can be applied to fenamates with the aid of this co-solvent. Controlling the polymorphic
composition of pharmaceutical compounds is also important for obtaining micronized forms.
This is especially so for mefenamic acid in scCO2, since an unambiguous correlation was
shown between polymorphism and conformational state in solution [27], and recrystallization
of mefenamic acid under pressure was observed [28]. Hence, this compound is a perfect object
to investigate.

The study of poorly soluble drug-like compounds at supercritical state parameters is
a serious problem, and the selection of experimental methods for establishing the spatial
structure of poorly soluble compounds is an urgent task. In this work, we aimed to estimate
preferred conformers existing in solution upon addition of DMSO-d6 to scCO2. Addition
of DMSO as the co-solvent is proposed as a novel, promising modification of high-pressure
NMR technique. Obtained results may be of use in studies of other fenamates and are
important for obtaining micronized forms with simultaneous control of polymorphism.

2. Materials and Methods

1D (1H, 13C) и 2D (1H-13C HSQC, 1H-13C HMBC, 1H-1H TOCSY, 1H-1H NOESY) spec-
tra were recorded on a Bruker Avance III 500 MHz spectrometer. The sample temperature
was maintained at 25 ◦C (for solution) and 45 ◦C (for fluid) with an accuracy of ±0.10 ◦C.
The 1H and 13C resonance frequencies were 500.17 and 125.79 MHz, respectively. The
mefenamic acid (MFA, Sigma Aldrich Rus, Moscow, Russia, >99.99% (wt/wt)) was used
without additional purification. Deuterated dimethyl sulfoxide (DMSO-d6, Sigma-Aldrich,
Moscow, Russia 99.9 atom percent D) and carbon dioxide (GOST 8050-85, Linde Group,
Moscow, Russia CO2—99.995%, H2O—<0.001%) were used as solvents for NMR studies.
The MFA was dissolved in DMSO-d6 to prepare solutions with saturated concentrations
as high as 283 mg/mL. The NMR experiments at supercritical parameters of the state
of CO2 were carried out using equipment of the unique scientific facility, “Fluid-Spectr”
(https://ckp-rf.ru/usu/503933/ accessed on 4 October 2022), of G.A. Krestov institute of
solution chemistry of RAS for maintaining pressure in real-time.

Carbon dioxide from a gas cylinder (position 1 in Figure 1) was used for the addition of
high-pressure NMR cell (patent RU201791U1) [29] using a system of capillaries and a hand
press (HiP Co.™, Pennsylvania, PA, USA, position 4 in Figure 1). The control system for gas
supply was carried out by two high-pressure valves (HiP Co.™, Pennsylvania, PA, USA)
(positions 3 and 6 in Figure 1) and connected by three-way two-stem hand valves (Top
Industrie™, Vaux-le-Pénil, France, position 7 in Figure 1). Monitoring of the carbon dioxide
pressure value in the system was carried out using an electronic pressure transmitters
(Gems™, Basingstoke, UK, position 2, 5, 8 in Figure 1) with an accuracy of ±0.05 Mpa.
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Figure 1. Scheme of the installation of high pressure equipment for creating and maintaining high
pressure NMR experiments for the supercritical CO2. 1—gas cylinde; 2,5,8—pressure transmitters;
3,6—high-pressure valves; 4—hand press; 7—hand valves.

The high-pressure equipment, together with a high-pressure NMR cell and a Bruker
Avance III 500 spectrometer, makes it possible to record NMR spectra at pressures up to
30 Mpa and temperatures up to 90 ◦C. The standard 1H NMR spectra of MFA (Figure S1) [30]
were acquired with a spectral width 18 ppm, 32,768 data points, relaxation delay 2 s, and
512 scans. The 13C NMR spectrum of MFA (Figure S2) was acquired with a spectral width
270 ppm, 65,336 data points, relaxation delay 2 s, and 4096 scans. The standard for chemical
shifts (δTMS = 0 ppm) is dilute tetramethylsilane (TMS) in DMSO-d6.

The 1H-13C Heteronuclear single quantum coherence spectroscopy (1H-13C HSQC) [31–34]
(see Figure S3) and heteronuclear multiple-bond correlation spectroscopy (1H-13C HMBC) [35]
(Figure S4) spectra were acquired in the phase-sensitive mode with 256 (F1) and 1024 (F2) data
points, 32 for HSQC and 64 for HMBC scans per increment, spectral widths of 18 and 270 ppm
in the 1H and 13C dimensions, respectively. 1H-1H Total Correlation Spectroscopy (1H-1H
TOCSY) and Nuclear Overhauser Effect Spectroscopy (1H-1H NOESY) [36–39] spectra were
acquired using two different spin locks (20 and 100 ms) and from five (DMSO-d6-CO2) to fifteen
(DMSO-d6 150-900 ms) different mixing time parameters [30,40] (see Figures S5 and S6) with
256 (F1) and 2048 (F2) data points, 16 scans per increment, and spectral widths of 18 ppm.

The values of the chemical shifts for 1H and 13C, assignment of groups of atoms for
MEF, and the corresponding cross-peaks 1H-13C HSQC, 1H-13C HMBC, and 1H-1H TOCSY
are given in the Table S1.

The temperature 45 ◦C and pressure 9 MPa of the high-pressure NMR experiment
were set in accordance with the point 98:2 of the phase diagram of CO2: DMSO-d6 [41,42].
The choice of state parameters during NMR experiments is due primarily to the need
to minimize the content in bulk of the DMSO-d6. This ensures acceptable purity of the
micronized particles and avoids the formation of co-solvents with DMSO. It should be
noted that scCO2 + DMSO-d6 can be in a subcritical state at these state parameters [41,43].

Calculation of vibrational energies and frequencies of MFA conformers was carried out
using the software package Gaussian (Gaussian16Wversion 1.1 Gaussian, Inc.,Wallingford,
CT, USA) in the framework of density functional theory (DFT) by the “Becke, 3-parameter,
Lee–Yang–Parr” (B3LYP) method with the 6-311+G(2d,p) basis set, which have proven
themselves well in the conformational analysis of small molecules with cyclic fragments [44]
and MFA, in particular [27]. The results of quantum chemical calculations made it possible
to determine the energy values of conformers, the coordinates of atoms, as well as their
magnetic shielding tensors (Tables S4–S10). The structure of each conformer corresponded
to local energy minima and was confirmed by the absence of virtual (imaginary) frequencies.
In addition, within the framework of quantum chemical calculations, the GIAO (gauge-
independent atomic orbital) method was used to verify the obtained structures of MFA
conformers. The magnetic shielding tensors of carbon atoms in the structure of molecules
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of various conformers have been determined and the values of chemical shifts have been
calculated. A comparative analysis of the calculated (GIAO) and experimental (13C NMR)
values of chemical shifts made it possible to establish that their coefficients of determination
(R2) range from 0.996 to 0.999, which is an experimental confirmation of the correctness of
the obtained conformer structures in the framework of DFT calculations [45].

3. Results and Discussion
3.1. An Analysis of Structure of MFA

Mefenamic acid (2-[(2,3-dimethylphenyl)amino]benzoic acid) is a derivative of an-
thranilic acid in which one of the hydrogens attached to the nitrogen atom is replaced
by the 2,3-dimethylphenyl moiety. Figure 2 shows the molecular structure of MFA with
the atom numbering used in this paper. The conformation of the MFA molecule can be
described by two dihedral angles: τ1[C2-N-C3-C7], describing rotation of the benzene rings,
and τ2[O=C1-C13-C6], showing the orientation of the carboxyl group.
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Figure 2. Structural formula of MFA. Atom numbering is used below for labeling signals and cross-
peaks in NMR spectra and for denoting dihedral angles. Chemical bonds forming the dihedral angle
τ1[C2-N-C3-C7] are shown in red; τ2[O=C1-C13-C6], in blue.

In addition to τ1, the angle [C13-C2-N-C3] is also considered in the literature devoted
to conformers of mefenamic acid and other fenamates [28,46], which characterizes rotation
of the phenyl groups relative to the HN-C2 axis. We do not consider conformers arising due
to changes in the angle [C13-C2-N-C3] because the relative energies of these conformers are
too high. Note that in the conformers discussed here, the value of the angle [C13-C2-N-C3]
varies within 1–3◦.

Carboxyl group and nitrogen atom in the molecule of mefenamic acid lie in one
plane [47]. The sum of valence angles for all bonds linked to the nitrogen atom is close to
360◦, so the sp2 hybridization state may be suggested for the N atom. Three polymorphic
forms of MFA are known today, termed forms I, II, and III [46,48]. As for other fenamates,
polymorphism of MFA arises due to the molecule package and also their conformation.
In particular, conformers comprising form I have the τ1 angle equal to −119.99◦ (CH3
groups pointing up in Figure 3), while in forms II and III, this angle is 68.20◦ and −80.82◦,
respectively (CH3 groups pointing down in Figure 3) [46].
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Figure 3. Structure of the MFA conformers present in polymorphic forms I (black) [49], II (red) [28],
and III (green) [46].

Conformation of the molecules present in the MFA polymorphs is stabilized by an
intramolecular hydrogen bond. Note that the structures I and II differ by the dihedral angle
τ1[C2-N-C3-C7], the value of which can directly affect the energy of the crystal lattice [50].
Polymorphic form I is obtained by evaporating organic solutions in acetone and ethanol,
and MFA II can be obtained by recrystallization of MFA I in dimethylformamide (DMF).
Transition from MFA I to MFA II was shown to occur in the temperature range from 160 to
190 ◦C; the transition temperature depends on the heating rate or mechanical compress-
ing of the solid material [51]. Polymorphic form III was described in [52]. To block the
growth of crystals of the stable forms and to obtain MFA III, the authors used structurally
related compounds affecting the nucleation and growth of host crystals. Quite possibly,
the crystalline variability of MFA is not limited to these three polymorphic forms. For
possible control of polymorphism during micronization (e.g., by the DELOS method [25]),
conformation screening was performed using combined analysis of NMR experiments and
quantum-chemical calculations. This information may be useful, since investigation of
polymorphism in microscopic crystals is a difficult task requiring expensive instrumen-
tation such as Flash DSC 1 (Flash Differential Scanning Calorimeter) setup for ultrafast
calorimetry [53], and powder X-ray studies do not always distinguish different powders in
a mix.

Quantum-chemical calculations predict the four most probable conformers of MFA,
labeled from A to D in Figure 4. They differ both by the angle τ1[C2-N-C3-C7] and by
τ2[O=C1-C13-C6], i.e., by mutual orientation of the benzene rings and carboxyl group.
Calculations did not allow for the environment using the polarizable continuum model
(PCM), because it might prevent some conformers from being found [54]. This might lead
to erroneous or incomplete information on the conformational equilibrium.

The obtained set of most probable conformers was divided into groups following
geometric criteria (angles and distance between protons). Thus, the angle τ1 is −136.40◦

and −76.58◦ in the conformers A + C and B + D, respectively; these conformer groups
differ by the positions of the benzene ring planes. The groups A + B and C + D have
different angles τ2: 176.12◦ and −5.37◦, respectively (Figure 3). Note that deviation in the
non-changing angles within each group was within 1.5◦. Fractions of the mentioned groups
were found using the NOESY data obtained in DMSO-d6 (at 25 ◦C and 0.1 MPa) and in the
scCO2 + DMSO-d6 medium (45 ◦C, 9 MPa).
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Figure 4. Structures of the MFA conformers and dihedral angles τ1[C2-N-C3-C7] (red) and τ2[O=C1-
C13-C6] (blue).

Before performing the analysis of NOESY spectra, 1H and 13C NMR signals were assigned
using 1D (Figures S1 and S2) and 2D NMR experiments 1H-13C HSQC, 1H-13C HMBC, and
1H-1H TOCSY (Figures S3–S6). Then, assigned 1H signals were used to analyze cross-peaks
observed in the NOESY spectrum of MFA (Figure 5).
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Pharmaceutics 2022, 14, 2276 7 of 15

The cross-peaks in the NOESY spectrum correspond to 13 intramolecular proton–
proton distances shorter than 5 Å. Corresponding distances were calculated based on the
data of quantum-chemical calculations using appropriate averaging models for different
types of intramolecular flexibility [55–58].

Analysis of the NOESY-detected distances shows that there are two atom pairs, the distance
between which depends noticeably on conformational changes. These are H9/10-H11/12,
sensitive to rotation of the benzene rings, and OH-H6, showing rotation of the carboxyl group.
Calculated distance in the pair OH-H6 is 3.27 ± 0.01 Å in group A + B and 4.34 ± 0.01 Å in
group C + D (Table 1). Calculated distance of H9/10-H11/12 is 3.14± 0.02 and 4.61± 0.02 Å in
group A + C and B + D, respectively (Table 1). A somewhat bigger difference of 0.02 Å between
conformers A and C or B and D is caused by non-planar distortion of the benzene rings. In the
case of fast movement of protons, as in the case of H9/10-H11/12, the averaging model given
by Equation (1) is used:

ri
e f f =

( 1
nInS

∑
i

1
r3

i

)2
− 1

6

, (1)

where reff is the averaged internuclear distance taken from the conformer structures ob-
tained in quantum-chemical calculations, nI and nS are the numbers of equivalent spins the
atom groups I and S, and ri is the distance between the spins in the considered groups.

Table 1. Conformation-dependent distances in the MFA conformers based on quantum-chemical calculations.

Interproton
Distances, Å

Conformers

A B C D

H9/10-H11/12 3.12 4.64 3.16 4.59

OH-H6 3.27 3.28 4.34 4.34

H6-H11/12 2.77 2.77 2.78 2.78

Reference distance was used to calculate experimental values in the slope of the ISPA
(isolated spin–pair approximation) model. The choice of the reference requires that it should
be the same in different conformers (differing by 0.01 Å or less) and the nuclear Overhauser
effect is not distorted by anisotropy of intramolecular motion [59–61]. Finally, the atom pair
H6-H11/12 was chosen as the reference, having the distance of 2.76 Å (Table 1). This value
agrees well with the X-ray structural analysis data on the polymorphs of MFA [28,46,49]. Av-
erage distance was calculated using Equation (2), allowing for slow intramolecular flexibility:

ri
e f f =

(
1

nInS
∑

i

1
r6

i

)− 1
6

, (2)

Distances H9/10-H11/12 and OH-H6 were determined from NOESY experiments to
calculate the fraction of the MFA conformer groups. The approach for determination of the
distance relies on the fact that the cross-relaxation rate depends on the distance between
the nuclei, as given by Equation (3):

σij =
1

rij
6 , (3)

where σij is the cross-relaxation rate between nuclei i and j, and rij is the distance between
them. Having known one fixed internuclear distance, we determined all other distance
values using the ISPA model [29,54,62] (see Equation (4) below).

The cross-relaxation rates found from the NOE data for the atom groups H9/10-H11/12,
OH-H6 and H6-H11/12 obtained in DMSO-d6 were found to be (1.57 ± 0.02) × 10−2,
(1.28± 0.09)× 10−2, and (3.34± 0.02)× 10−2 s−1, respectively. In the measurements carried
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out in scCO2 + DMSO-d6 at 45 ◦C and 9 MPa, the corresponding cross-relaxation rates were
(1.56 ± 0.09) × 10−2, (0.99 ± 0.08) × 10−2, and (4.18 ± 0.3) × 10−2 s−1.

Distances obtained using Equation (4) (ISPA) for the atom pairs H9/10-H11/12 and
OH-H6 for MFA in DMSO-d6 were found to be 3.13 ± 0.009 and 3.24 ± 0.04 Å, respectively;
for MFA in the mixed solvent, they were 3.25 ± 0.06 and 3.51 ± 0.09 Å, respectively.

rexp = r0

(
σ0

σexp

) 1
6
, (4)

where r0 is the reference distance obtained from X-ray experiments, σ0 is the measured
cross-relaxation rate for the reference atom pair, and σexp is the cross-relaxation rate for the
distance to be determined from NOESY data.

Lee and Krishna showed that in the case of fast conformational exchange, the observed
cross-relaxation rate is an average of the rates corresponding to individual conformers
(see Equation (5)) [63]. Hence, the distance will also be averaged. The cross-relaxation
rate can be found from linear approximation of the dependence Iij(τm) of the integral
intensity of the NOESY cross-peaks (Equation (6)) on the mixing time parameter, τm, of the
NMR experiment. To find the cross-relaxation rates of the conformation-dependent and
reference distances, we recorded a set of NOESY spectra where the mixing time varied from
0.15 to 0.9 s. The slope of the obtained dependences allowed determination of the σ values
(Figure 6). The raw data for building the plots and corresponding cross-relaxation rates
and their inaccuracies are listed in Tables S2 and S3.

σexp = ∑
i

σixi, (5)

where σ is the resulting average cross-relaxation rate, σi is the cross-relaxation rate in the
conformer i, and xi is the relative fraction of this conformer.

Iij(τm) =
1
2

(
1
nj

∣∣∣∣ aij(τm)

aii(τm)

∣∣∣∣+ 1
ni

∣∣∣∣∣ aji(τm)

ajj(τm)

∣∣∣∣∣
)

, (6)

where nj and ni are the number of protons within the considered group of equivalent atoms,
and aij and aji are the parameters showing the intensity of 2D NOESY cross-peaks.
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Figure 6. Integral intensity as a function of the mixing time for the conformation-dependent (red and
green lines) and reference (blue) distances, obtained by analysis of NOESY spectra measured for MFA
in DMSO-d6 (a) and scCO2 + DMSO-d6 at 45◦, 9 MPa (b).
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By substituting the obtained values into the Equation (7) of two-position exchange,
we built a plot of the difference between the calculated and experimental distances as a
function of the conformer fractions (Figure 7b). The inaccuracy level of determination of
the experimental distance for MFA in DMSO-d6 was also plotted in the figure [29,64,65].

1
r6

exp
=

x1

r6
1
+

1− x1

r6
2
→ x1 =

r6
1(r

6
2 − r6

exp)

r6
exp(r6

2 − r6
1)

, (7)

where rexp is the experimental distance determined from NOESY, and r1 and r2 are the
distances between the atoms in individual conformers.
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Figure 7. Distribution (a) and population (b) of conformers of MFA in DMSO-d6 calculated from the
observed conformation-dependent distance OH-H6.

3.2. Influence of Hidden Conformers of MFA in DMSO-d6

Relative equilibrium fractions of MFA conformers in DMSO-d6 were determined
following Equation (7); results are shown in Figure 7a.

Minimums of the plot (Figure 7b) correspond to the populations of the conformer groups
(blue and red curves); dashed gray line shows the error level of determining the distances.
Crossing of the solid and dashed lines shows the conformer fraction ranges [55,66,67].

Evidently, the predicted fractions of the conformer groups related to variation of the
angle τ2[O=C1-C13-C6] for MFA in pure DMSO-d6 are meaningless: 104.4 ± 2% for A + B
and −4.4 ± 2% for C + D. This may be caused by the fact that some of the conformers have
been omitted from the analysis. Thus, two new conformers were added (called AA and
BB), in which the variation of the angle τ3[O=C1-O-H] (mobility of the hydroxyl group) is
taken into account. The angle τ3 is 170.66◦ in AA and −171.35◦ in BB (Figure 8). This type
of molecular rearrangement seemed unlikely, and the necessity to add new forms into the
analysis was unexpected.

Conformation-dependent distance OH-H6 for these conformers was calculated to be
1.89 Å in AA and 1.86 Å in BB; the value of H9/H10-H11/H12 is 3.08 and 4.65 Å, respec-
tively. According to the geometric criteria, we consider conformer groups A + C + AA and
B + D + BB when rotation of the angle τ1[C2-N-C3-C7] takes place (rotation of the benzene
rings), and groups A + B+AA + BB with C + D when the angle τ2[O=C1-C13-C6] changes
(rotation of the carboxyl group). A new group was also added for separate estimating the
fraction of conformer groups A + B and AA + BB, in which the angle τ3[O=C1-O-H] (flex-
ibility of the hydroxyl group) is the criterion. The distance H9/10-H11/12 in the groups
A + C + AA is 3.12 Å, and in B + D + BB, it is 4.62 Å. The distance OH-H6 takes the following
values: 2.09 Å in A + B + AA + BB, 4.34 Å in C + D, 3.27 Å in A + B, and 1.88 Å in AA + BB.
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Using the above-mentioned method of analysis of the NOESY data within the ISPA model
and assuming the two-position exchange, we calculated the populations of the groups A + B
+ AA + BB and C + D for MFA in DMSO-d6. They were found to be 6.3 ± 1% and 93.9 ± 1%,
respectively (Figure 9).
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Figure 9. Distribution of conformers of MFA in DMSO-d6 calculated from the observed conformation-
dependent distance OH-H6 (a) without and (b) allowing for the existence of additional conformers
AA and BB. Figure 9a is a duplicate of Figure 7a for comparison.

Figure 9 shows that neglecting the intramolecular lability of the hydroxyl group and
omitting hidden conformers leads to wrong conclusions and the error of 98.1% in numerical
interpretation of NOESY results.

3.3. Influence of Hidden Conformers of MFA in scCO2

At the next step, populations of the conformer groups related to the mobility of the
carboxyl group (angle τ2[O=C1-C13-C6]) in the mixed solvent scCO2 + DMSO-d6 at 45 ◦C
and 9 MPa were determined. Results of the calculations are presented in Figure 10.
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Figure 10. Distribution of conformers of MFA in scCO2 + DMSO-d6 at 9 MPa calculated from the
observed conformation-dependent distance OH-H6 (a) without and (b) allowing for the existence of
additional conformers AA and BB.

Choice of these particular parameters of state is justified by the fact that increasing the
pressure to 10 MPa at the same temperature of 45 ◦C brings the system scCO2 + DMSO-d6
to the critical point [43]. It is accompanied by substantial density fluctuations with minimal
variations of pressure, and NMR spectra of high quality cannot be recorded any more. Use of
the pressure below 9 MPa or other temperatures results in an increase in the molar fraction of
DMSO-d6, which is also undesirable because it can cause formation of crystal solvates.

Comparison of the results shown in Figure 10 leads us to a conclusion that the er-
ror in determining the conformer fractions in the case of the mixed solvent is also very
large, exceeding 50%. Thus, using the model of two-position chemical exchange given by
Equation (6) and allowing for the additional conformers, we plotted the dependences of
the difference between the calculated and experimental distances on the conformer group
fractions, which finally gave the conformer group populations (Figure S7). Thus, new
conformer fractions were found, allowing the motions of the hydroxyl group for MFA
dissolved in DMSO-d6 at 25 ◦C and mixed solvent scCO2 + DMSO-d6 at 45 ◦C and 9 MPa;
results are summarized in Figure 11.

Although the populations of conformers AA + BB are very small, only approximately
0.3%, including them in the NOESY data analysis is crucial to obtaining correct results on
the conformer populations. If an incomplete set of conformers is considered [68], numerical
results and conclusions become incorrect. All distance values given by quantum-chemical
calculations and experimental ones are listed in Tables S2 and S3.

The fraction of the group A + C + AA decreases significantly (and that of B + D + BB
grows), by 22.4%, as we go from the system in pure DMSO-d6 to the mixed solvent based
on scCO2. Since the molar fraction of DMSO-d6 in scCO2 in our experimental conditions
is only 2%, the main effect should be caused by addition of carbon dioxide. For example,
addition of scCO2 may diminish the solvation effect of DMSO-d6 onto MFA; consequently,
the number of intermolecular interactions also decreases, and this leads to redistribution of
the conformer fractions in the solvent scCO2 + DMSO-d6. We suppose that the obtained
relative conformer populations in the mixed solvent should be close to that existing in
pure scCO2.
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Figure 11. Relative conformer group fractions of MFA in (a–c) DMSO-d6 and (d–f) scCO2 + DMSO
at supercritical parameters of state, calculated from experimentally found distances OH-H6 and
H9/10-H11/12.

Diagrams shown in Figure 11 demonstrate that the fraction of A + C + AA decreases
by 22.4% (rotation of the benzene rings) upon addition of scCO2. At the same time, the
fractions of groups A + B + AA + BB and C + D, as well as A + B and AA + BB, experience
smaller modifications, within 2.9%. In general, the group A + C + AA dominates in the
system, which facilitates formation of the stable polymorphic form I.

4. Conclusions

Preferred conformers of mefenamic acid dissolved in DMSO-d6 (at 25 ◦C and 0.1 MPa)
and in the mixed medium scCO2 + DMSO-d6 (45 ◦C, 9 MPa) were determined. Hidden
conformers, which are not observed directly in the NOESY spectra, were shown to be
important for correct calculation of the conformer fractions. Redistribution of the conformer
group populations upon addition of supercritical carbon dioxide was revealed. Use of
DMSO-d6 as a co-solvent in scCO2 allows determination of the conformation distribution
of compounds poorly soluble in pure scCO2, including fenamates. Obtained results may be
of use in design and practical implementation of the drug micronization process. In future
perspectives, we would like to conduct the comparison of structural features of different
fenamates [69] and lidocaine [64,70]. It should elucidate the question of whether addition
of DMSO has a certain effect on the conformational equilibrium. In future works, it would
be interesting to study the effect of the attendance of a trifluoromethyl substituted fragment
in fenamates [71] (for example, flufenamic acid) on conformational equilibria in scCO2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14112276/s1. The 1H and 13C NMR spectra,
1H-13C HSQC, 1H-13C HMBC, 1H-1H TOCSY (spin-locks with 20 and 100 ms) of MFA in DMSO-d6.
(Figures S1−S6). The plots of populations of the conformer groups (Figure 7). The chemical shift
of the 1H and 13C nuclei is determined by 2D spectra of the MFA molecule (Table S1). Normalized

https://www.mdpi.com/article/10.3390/pharmaceutics14112276/s1
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Pharmaceutics 2022, 14, 2276 13 of 15

integral intensities of the cross-peaks, cross-relaxation rates, and proton–proton distances in the MFA
molecule (Tables S2−S3). The energy value, structure, coordinates of atoms, and the values of their
magnetic shielding obtained from the data of quantum chemical calculations for all conformers of
MFA (Tables S4−S10).
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