
Investigation of free electrical oscillations in an oscillatory
circuit

Oscillatory circuit is an electrical circuit consisting of a coil (inductive element) L and a capacitor
C (Fig. 1a). Changes of the current I in the coil and charge q in the capacitor are free electrical
oscillations. A real circuit has energy losses, mainly due to joule (ohmic) heating in the coil and
connecting wires, which have a resistance R. For this reason, free oscillations are decaying.
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Figure 1

The Kirchho�’s second rule for a closed electric circuit containing the inductane coil L, re-
sistor R, and capacitor C, which are connected in a sequential manner, predicts that

UL + UR + UC = 0 , (1)

where UL = Lq̈, UR = Rq̇ and UC = 1
C
q are the voltage drops on the coil L, ohmic resistance R,

and capacitor C. Thus we can derive di�erential equations for the free electrical oscillations of
the charge q and voltage at the capacitor UC ≡ U :

q̈ + 2βq̇ + ω2
0q = 0 and Ü + 2βU̇ + ω2

0U = 0 . (2)

The value β = R/2L is called the damping coe�cient, τ = 1/β is the relaxation time, and
ω0 = 1/

√
LC is the natural frequency of the oscillatory circuit.

The general solution of Eqs. (2) is actually the equation of decaying oscillations. For example,
for the voltage U it is written as (Fig. 1b)

U(t) = Ume
−βt cos(ωt) . (3)

Let us investigate the solution (3) at di�erent proportions of β2 and ω2
0 .

1. β2 � ω2
0 — weak damping. Free decaying oscillations take place in the circuit. The volt-

age at the capacitor is changed according to a periodic law with a decreasing amplitude
(Fig. 1b). The oscillations frequency is given by the formula

ω =
√
ω2
0 − β2 . (4)
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To characterize damping oscillations, a parameter λ (logarithmic decrement) is introduced
in addition to the factor β. It is de�ned as a natural (Napierian) logarithm of the ratio of
two consecutive voltage amplitudes U0(t) and U0(t+ T ), separated by one full oscillation
period T :

λ = ln
U0(t)

U0(t+ T )
. (5)

The value of λ can also be calculated as follows:

λ =
1

N
ln

U0(t)

U0(t+NT )
, λ =

1

Ne

and λ =
ln 2

N0.5

, (6)

where U0(t) and U0(t + NT ) are the amplitudes separated by N oscillation periods, and
Ne and N0.5 are the numbers of oscillations after which the amplitude decreases e times
(e = 2, 71828 . . . ) or twice, respectively.
The quality of an oscillatory circuit is characterized by the Q-factor which is de�ned as

Q = π/λ . (7)

The damping parameters β, τ , λ and Q relate to each other by the following expressions:

λ = π/Q = βT = T/τ or Q = π/λ = π/βT = πτ/T . (8)

Thus, the slower is the oscillation damping, the higher is the Q-factor of the circuit. In
the weak damping regime the oscillations occur at a frequency close to the resonance
frequency, i.e., ω ≈ ω0 = 1/

√
LC or T = 2π/ω ≈ 2π

√
LC and, hence,

Q ≈ 1

R

√
L

C
. (9)

2. β2 ≈ ω2
0 — strong damping. An aperiodic process of changing the charge and voltage

at the capacitor and the current in the circuit takes place instead of oscillations. Figures
2a and 2b show the example plots of the aperiodic voltage change U(t) at the capacitor.
If only the capacitor discharge process occurs in the circuit, then the curve U(t) has the
shape presented in Fig. 2b. The minimal active resistance of the circuit, with which the
aperiodic process is observed, is called the critical resistance Rcr. The value of the critical
resistance can be found from the equation β = ω0:

Rcr = 2
√
L/C (10)

Task. Determination of the logarithmic damping coe�cient of oscilla-
tons and the Q-factor of a circuit.

1. Connect the generator of rectangular pulses to the contacts 1, 2 (Fig. 3). Set the genera-
tor frequency to 300 Hz. Make a short contact between the output contacts of the cable,
attached to the oscilloscope, and match the signal line with the middle horizontal line of
the display using the “l” handwheel. Then reconnect the cable to the contacts 4 and 5. By
turning the handwheels “stability” and “level” on the oscilloscope, get a stable image of
decaying oscillations.
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Figure 3

Set the resistance R to the minimal value. In case of problems, call the engineer or teacher,
or check the following procedure:
Switch 1 of the oscilloscope set to the position “∼”; switch 2, to “AUTO”; switch 3, to “+”
or “–”; switch 4, to “EXT.” Get a stable sinusoidal pattern containing several oscilaltions by
regulating the input ampli�cation “Y” of the oscilloscope (selector VOLT/UNIT) and the
sweep period (selector TIME/UNIT).

2. Measure the amplitudes of two oscillations separated by k periods: an and an+k in millime-
ters (n and k are integers). For exact measurement of the amplitude, the oscillation being
measured should by positioned on the central vertical gauge using the horizontal position
handwheel (“↔”). Calculate the logarithmic damping decrement and the Q-factor of the
circuit as λ = 1

k
ln
(

an
an+k

)
andQ = π

λ
. Repeat the measurement with di�erent n and k (no

less than 3 combinations!) and �nd the average Qav. Calculate the resistance R using the
expression R = 1

Qav

√
L
C

, assuming that L = 10 mH and C = 33 nF.

3. Repeat the measurements of step 2 for three values of the resistance R distributed over
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3/4 of the whole regulation range starting from the smallest value.

4. Build the plots of dependencies Q = Q(R) and λ = λ(R). Explain the results.

Questions

1. Free electrical oscillations. Equation of decaying oscillations and its solution.

2. Characteristics of decaying oscillations: damping factor, damping decrement and logarith-
mic damping decrement, relaxation time.

3. Q-factor of an oscillatory circuit, its physical meaning, equations.

4. Particular cases of free oscillations:

• small resistance of the circuit,
• large resistance of the circuit,
• critical case, critical resistance.

5. Graphical determination of the damping parameters.

4


