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Abstract: The development and implementation of the methods for designing amorphous metal
alloys with desired mechanical properties is one of the most promising areas of modern materials
science. Here, the machine learning methods appear to be a suitable complement to empirical
methods related to the synthesis and testing of amorphous alloys of various compositions. In
the present work, it is proposed a method to determine amorphous metal alloys with mechanical
properties closest to those required. More than 50,000 amorphous alloys of different compositions
have been considered, and the Young’s modulus E and the yield strength σy have been evaluated
for them by the machine learning model trained on the fundamental physical properties of the
chemical elements. Statistical treatment of the obtained results reveals that the fundamental physical
properties of the chemical element with the largest mass fraction are the most significant factors,
whose values correlate with the values of the mechanical properties of the alloys, in which this
element is involved. It is shown that the values of the Young’s modulus E and the yield strength σy

are higher for amorphous alloys based on Cr, Fe, Co, Ni, Nb, Mo and W formed by the addition of
semimetals (e.g., Be, B, Al, Sn), nonmetals (e.g., Si and P) and lanthanides (e.g., La and Gd) than for
alloys of other compositions. Increasing the number of components in alloy from 2 to 7 and changing
the mass fraction of chemical elements has no significantly impact on the strength characteristics E
and σy. Amorphous metal alloys with the most improved mechanical properties have been identified.
In particular, such extremely high-strength alloys include Cr80B20 (among binary), Mo60B20W20

(among ternary) and Cr40B20Nb10Pd10Ta10Si10 (among multicomponent).

Keywords: machine learning; materials design; mechanical properties; metals; amorphous alloys

1. Introduction

Amorphous metal alloys are the promising materials for the automotive, aerospace,
energy, electronics and medical technology industries [1–4]. High corrosion resistance, high
magnetic permeability, superior mechanical strength, high fracture toughness, high elastic
strain limit and high formability are just some of the unique set of properties that make
amorphous metal alloys widely applicable [5–7]. Such the combination of properties is
directly due to the absence of structural order accompanied by defects that is typical for
crystalline analogues [8–11]. However, despite all the advantages of amorphous metal
alloys, their production is complicated by the fact that the formation of a stable disordered
structure depends strongly on alloy composition (i.e., number of components, type of added
chemical elements) and its preparation protocol (i.e., cooling and compression procedures,
initial and final melt temperatures) [12–16].

Amorphous metal alloys are actively studied for more than 80 years, beginning, in
particular, with the works of Kramer [17,18]. One of the first methods of practical formation
of alloys with amorphous structure was based on the so-called electrodeposition process.
Later, in the 60’s of the 20th century, the first works related with formation of amorphous
metal films by rapid cooling of the corresponding melts were appeared [19,20]. As it
turned out later, amorphization of metallic melts of almost any composition is possible
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if extremely fast cooling is used. The next stage in the development of the amorphous
alloy formation methodology concerned the consideration of alloys in eutectics, where it
was found that bulk amorphous samples of more than 1 mm thickness can be formed [21].
Further attention in this area focuses on some aspects. Namely, the mechanical properties
of bulk amorphous metal alloys are strongly dependent on alloy composition and chemical
purity of raw material. The strength properties of amorphous alloys can be significantly
reduced due to the presence of impurities. Moreover, bulk amorphous metal alloys are
inherently fragile. Therefore, in the early 2000’s, studies were aimed to improve the alloy
hardening methods as well as to determine the relationship between the key mechanical
properties of amorphous metal alloys, which include the Young’s modulus E, the yield
strength σy and the strength σf [22,23]. It has been shown that the relationship between
the hardness H (by Vickers method), the strength σf , the Young’s modulus E and the
yield strength σy of amorphous metal alloys is close to linear and can be reproduced, for
example, by Tabor’s relation H = Kσy, by Johnson’s model H = σy(a + b ln[cE/σy]) and by
relation σf = dE1/2 (here, K, a, b, c and d are constants) [24–26]. These studies found that
amorphous metal alloys with large values of E and σy are characterized by high hardness
H and strength σf .

The synthesis of amorphous metal alloy with desired mechanical properties may
require listing various combinations of compositions followed by mechanical testing. This
makes the process of synthesizing new alloys extremely difficult and significantly increases
the costs. Then, methods of computer design seem to be a suitable support for empirical
methods at the stage of determining amorphous metal alloys with desired mechanical
properties [27,28]. In recent decades, rapid development of information technologies as
well as automation of data collection and storage processes contribute to accumulation
and systematization of information about the physical and mechanical properties of bulk
amorphous metal alloys glasses [29–32]. The methods of machine learning operate with
large arrays of the data and allow us to determine the relationship between composition and
properties of alloys both already known and not previously known [33–36]. For example,
Xiong and co-authors have been developed a machine learning model that can predict the
glass-forming ability and elastic moduli of bulk metallic glasses based on the fundamental
atomic properties, chemical and physical properties obtained from experiments or density
functional theory simulations [37]. These results find the importance of individual chemical
element properties and macroscopic properties in determining the strength characteristics
of amorphous alloys. The results obtained by Khakurel et al. established that the average
concentration of valence electrons, the atomic radius and the melting temperature are
the key properties, which are correlated with the Young’s modulus of compositionally
complex alloys [38]. The results of this work can also be extended to amorphous metal
alloys, as it is confirmed in Refs. [39,40]. In addition, as it was found in Ref. [41] using a
machine learning model, the Young’s modulus of metal alloys under normal conditions
correlates with the yield strength and with the glass transition temperature. In this case, the
specificity of “chemical formula” of alloy, which is determined by the molar mass and the
number of components, is not as important as is usually expected. Johnson and Samwer
have found that the mechanical properties (elastic constants, compressive yield strength,
elastic strain limit) of 30 bulk metallic glasses as functions of the scaled temperature
TR/Tg obey the universal law ∝ a − b(TR/Tg)2/3, where a and b are the constants, TR
is the room temperature, Tg is the glass transition temperature [42]. The results of this
work systematize existing knowledge about the mechanical properties of amorphous
alloys. An artificial neural network has created by Jeon and co-authors for designing
Fe-based amorphous metal alloys with the desired crystallization temperature and glass
transition temperature [43]. Thus, all these studies show that the machine learning methods
are suitable tool to find new amorphous alloys with required physical and mechanical
properties. Despite the significant number of such studies, little attention has been paid to
the development of methods for determining previously unknown amorphous alloys with
the desired mechanical properties.
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The present work proposes a new method for determining amorphous metal alloys of
arbitrary composition based on a large set of empirical data. The originality of this method
is that it is based on a machine learning model capable of predicting the Young’s modulus
and the yield strength of amorphous alloys taking into account the fundamental properties
of each chemical element that forms the alloys. It is quite significant that the obtained
results lead to new knowledge, which will contribute to the determination of amorphous
metal alloys that maximally satisfy the required mechanical properties.

2. Method for Determining the Mechanical Properties of Amorphous Metal Alloys
2.1. General Strategy of the Method

The developed method for determining amorphous metal alloys is based on a machine
learning model, which is an artificial neural network of direct propagation. The main
advantage of this method is the possibility to calculate the Young’s modulus E and the
yield strength σy both for known amorphous metal alloys and for alloys that are yet to
be synthesized. The developed method makes it possible to determine E and σy of alloys,
whose number of components varies in the range from 2 to 7. Note that such the number of
components is ordinary for the majority of known metal alloys. In addition, the proposed
method can be adapted to identify alloys with large number of components at the presence
of appropriate data for neural network training. The composition and mass fraction of
chemical elements in the generated alloys are the control parameters, which allow us to
construct a diverse set of compounds.

The general strategy for determining amorphous metal alloys implemented in this
work consists of four main stages [see Figure 1]:

• Stage I. This stage includes the process of data collection and systematization of
information about the properties of multicomponent amorphous metal alloys based
on Al, Au, Ca, Co, Cu, Fe, La, Hf, Mg, Ni, Pd, Pt, Sc, Ti, W, Zr, etc., as well as
information about the properties of the other additional chemical elements involved
in the formation of these alloys. Among these properties are the atomic mass ma,
the covalent radius rc, the ionization energy Ei and the electronegativity χ, which
characterize the nature of the chemical element [see Table 1]. This choice is due
to the following reasons. First, these parameters most clearly define the possible
physical and chemical bonds between the elements, which can either promote or
inhibit the formation of an amorphous structure. For example, according to the
empirical rule proposed by Inone et al. in the early 1990’s [44], the difference in
atomic sizes must be greater than 12% for good amorphization of a liquid. Secondly,
most of the intrinsic properties of chemical elements (especially of the same type)
are correlated. In addition, the thermal conductivity λ, the specific heat capacity
Cs, the density ρ, the melting temperature Tm and the boiling temperature Tb of
chemical elements at normal conditions are used. The atomic number Z and the mass
fraction m f of each chemical element in the alloy are used to characterize the alloy
composition. The Young’s modulus E and the yield strength σy are also applied, whose
values are known for the considered amorphous alloys. The values of all the listed
physical properties are taken from the database ITPhyMS (Information technologies
in physical materials science) [45] and the database Materials Project [46] as well as
from Refs. [36,47–50] [see Supplementary data of the present work]. These properties
are characterized by different physical dimensions and by different ranges of values.
Therefore, the properties are calibrated so that their values vary in the range [0; 1].
The calibration is done according to the rule

Property′ =
Property−Valuemin

Valuemax −Valuemin
, (1)

where “Valuemin” and “Valuemax” are the smallest and largest known values of the
“Property”. Moreover, all these listed properties correlate with the mechanical proper-
ties of materials. For example, Xiong et al. have shown that the accuracy of predicting
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the mechanical properties of amorphous metal alloys is improved when the quantities
ma, Z, rc, ρ, λ, Tm and Tb are considered in a machine learning model [37]. In addition,
the results obtained by Wang based on the analysis of a large set of empirical data for
amorphous alloys allow one to establish the existence of correlation between elastic
moduli (i.e., Young’s modulus, shear modulus, bulk modulus), microstructural fea-
tures, rheological properties, the glass transition temperature, the melting temperature
and the boson peak [47,48].

Figure 1. Four-stage scheme of the method for determining amorphous metal alloys and calculating
their mechanical properties.

• Stage II. Alloys with different compositions are generated. Taking into account the
number of possible components, combinations of all chemical elements and their mass
fraction, up to 1018 different compositions can be determined simultaneously. When
obtaining alloys, those chemical elements are selected that are included on the alloys
in the training dataset. In the present work, 32 chemical elements were used including
transition metals (Fe, Co, Ni, Cu, etc.), semimetals (B, Al, Sn, etc.), lanthanides (La,
Gd, Er, etc.) and alkali and alkaline earth metals (Li, Be, Mg, Ca, etc.). A list of all
the considered chemical elements is given on Table S1 in Supplementary data. The
mass fraction of the chemical elements in a generated alloy is also set randomly so
that the total mass fraction of all chemical elements is equal to 100%. A set of physical
properties is created for each chemical element [see Table 1].

• Stage III. Information about the alloy composition and the physical properties of all
the chemical elements is processed by the pre-trained neural network. This neural
network evaluates the Young’s modulus E and the yield strength σy for all generated
alloys. The training procedure of the neural network is discussed in more details in
the subsection “Machine learning model: structure and training”.

• Stage IV. Statistical interpretation of machine learning results is performed.

Thus, the proposed method makes it possible to perform a complete cycle of alloy de-
sign and determine its mechanical properties: from obtaining the correct alloy composition
to calculating the correct values of E and σy.
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Table 1. Physical properties of chemical elements used as input parameters in the artificial neural network.

Property Symbol Unit

Atomic number Z –
Mass fraction of elements m f %

Atomic mass ma a.e.m.
Covalent radius rc pm
Ionization energy Ei eV
Electronegativity χ –
Thermal conductivity λ W/(m·K)
Specific heat capacity Cs J/(g·K)
Density ρ g/cm3

Melting temperature Tm K
Boiling temperature Tb K

2.2. Machine Learning Model: Structure and Training

The machine learning model is the four-layer artificial neural network. The first layer
has 77 input neurons for the values of 11 physical properties for all chemical elements of the
obtained alloy (7 input neurons are allocated to each property because the maximal number
of components in the alloy is also seven). If the number of components in the alloy is less
than 7, then the remaining neurons are unused. The next two layers are hidden. The first
hidden layer consists of 80 neurons, while the second hidden layer has 10 neurons. Note
that the number of neurons in the hidden layers is optional. The neural network produces
close results with 80 to 100 neurons in the first hidden layer and with 10 to 80 neurons in the
second hidden layer. The fourth layer consists of one neuron that determines the Young’s
modulus E or the yield strength σy. It is important to note that two separate independent
neural networks with the same structure are used to calculate the values of E and σy.

Calculation of the values of all neurons is carried out by expression [51]:

n(k)
i = f

(
Nk−1

∑
j=1

w(k−1)
ij n(k−1)

j + b(k)i

)
. (2)

Here, n(k)
i is the value of the ith neuron in the kth layer (k = 2, 3, 4); w(k−1)

ij is the
value of the (k− 1)th layer weight going from a neuron with index j to a neuron with index
i from the kth layer; b(k)i is the bias weight acting on a neuron with index i; Nk−1 is the
number of neurons in the (k− 1)th layer. The sigmoid f (x) = 1/(1− exp[−x]) is applied
as the activation function [52].

The neural network is trained using the backpropagation algorithm [53,54]. The values
of the weight coefficients are adjusted as follows:

w(k), new
ij = w(k)

ij − γ
∂ξ

∂w(k)
ij

, (3)

where ξ is the squared error between the output neuron and the desired value of the
mechanical property; γ is the training rate. In the present work, the training rate is
γ = 0.3, which is optimal for the created neural network. At the training rate γ = 0.3,
the machine learning model gives the best result for E and σy with the lower MRE at the
relatively small number of training cycles [see insets on Figures 2a,b]. The original dataset
is divided into training and validation subsets in proportion 80:20. The training subset
consists of amorphous metal alloys based on Al, Au, Ca, Co, Cu, Fe, La, Hf, etc. with
different compositions, for which the values of E and σy are known [36,47–50]. The physical
properties of the chemical elements of these alloys are also used in the training procedure
[see Supplementary Data]. To verify the correctness of the machine learning results, the
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validation subset is applied, which includes amorphous alloys that were not included
on the training subset. The criterion to stop the training procedure is the minimal error
between the results of the output neuron and the required values from the validation subset.

Figure 2. (a) Plot of the predicted Young’s modulus E versus the empirical E. (b) Plot of the predicted
yield strength σy versus the empirical σy. Top insets: mean relative error as function of the number of
training cycles for E and σy. Bottom insets: dependence of the mean relative error and the training
cycles on the training rate γ, from which the optimal value of γ (indicated by the red arrows)
was determined.

2.3. Validation of the Machine Learning Model

Typically, RMSRE (Root Mean Squared Relative Error), RMSE (Root Mean Square
Error), RRMSE (Relative Root Mean Square Error), MSE (Mean Square Error), MAE (Mean
Absolute Error) or MRE (Mean Relative Error) are used as indicators for measuring accuracy
of results [55–59]. In the present work, it was important to use an indicator that does not
depend on units of physical quantities. At the same time, this indicator must be easy to
estimate. Therefore, we chose the MRE, which is calculated by expression:

MRE =
1
N

N

∑
i=1

|MANN −Mreq|
Mreq

× 100%. (4)

Here,M = {E or σy} denotes the mechanical property; MANN is the result of the
neural network;Mreq is the required value of the mechanical property; N is the number of
items in the validation subset. We find that the MRE is ∼13% for the Young’s modulus E
and∼11% for the yield strength σy. This relatively low MRE indicates a correlation between
the predicted and empirical values of the mechanical properties that is also confirmed by
the results presented in Figure 2a,b. Moreover, the values of the MRE are stable. This is
confirmed by the computed loss functions [see insets on Figure 2a,b], which reach a plateau
after 3× 103 training cycles. Thus, the results of the machine learning model are reliable
and predictable.

3. Properties Importance Scores

The analysis of the importance scores shows that all the considered physical properties
(λ, Tb, χ, ρ, Cs, Tm, Ei, rc and ma) are necessary for the correct evaluation of the Young’s
modulus E and the yield strength σy by the machine learning model. As can be seen from
Figure 3a, in the case of the Young’s modulus E, the importance scores of the properties λ,
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Tb, Cs, Tm and ma are similar (MRE∼45%), and these physical properties can be recognized
as significant factors. The lowest importance scores are observed for the density ρ and for
the properties characterizing the chemical nature of the atoms: the ionization energy Ei
(MRE∼75%), the electronegativity χ (MRE∼61%) and the covalent radius rc (MRE∼60%).
These properties have less impact on the result of the machine learning model. Furthermore,
considering all the properties reduces the error to MRE∼13%. The importance scores of the
properties in the case of the yield strength σy differ significantly from the Young’s modulus E
[see Figure 3b]. The main factors affecting the yield strength σy are the thermal conductivity
λ (MRE∼22%) and the covalent radius rc (MRE∼23%). MRE for other parameters is above
28%. Together, these properties lead to the best result, where the error is MRE∼11%.

aaaaa
aaaaa
bbbbb
bbbbb

aaaaaaaaa
aaaaaaaaa
bbbbbbbbb
bbbbbbbbb

Figure 3. Importance scores for each physical property: (a) in the case of the Young’s modulus
and (b) in the case of the yield strength. (c) Mean relative error as a function of the number of
parameters in the artificial neural network input. (d) Pearson correlation heat map for the considered
physical properties.

Thus, the formation of the machine learning models for the Young’s modulus E and
the yield strength σy using a single physical property (λ, or Tb, or χ, or ρ, or Cs, or Tm, . . . )
produces an error that is much larger than the error when these machine learning models
are formed with the entire set of physical properties. Mathematically, such the situation is
possible when the correlation between the parameter E (or σy) and some individual physical
property appears indirectly (not explicitly). In turn, this means that it is not possible to
obtain analytical expressions relating a mechanical property with any parameter of the
set (λ, Tb, χ, ρ, Cs, Tm, Ei, rc and ma) and correctly reproducing the results for an arbitrary
metal alloy. The methodology of artificial neural networks used in this study makes it
possible to obtain a correspondence between the Young’s modulus E (or the yield strength
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σy) and the whole set of the considered physical properties; and this correspondence is
reproduced not by an analytical expression, but by the internal structure of the formed
neural network. In fact, this feature of this methodology is an advantage when dealing
with a fairly large set of parameters.

An additional evaluation of the accuracy of the machine learning model was per-
formed by computing the MRE for different numbers of physical properties in the input of
the neural network. Figure 3c shows that at adding properties in the order of ρ, Tm, Tb, λ,
Cs, ma, rc, χ and Ei the MRE decreases from ∼58% to ∼13% for E and from ∼33% to ∼11%
for σy. A rapid decrease of the error is observed when the temperatures Tm and Tb as well
as the quantities Ei and χ have been added, which may be due to their multicollinearity.
Figure 3d shows that the Pearson correlation coefficients for the considered properties take
both positive and negative values in the range from −1 to 1 [60]. For example, the positive
correlation between the temperatures Tm and Tb is due to the fact that an increase in the
melting temperature leads to an increase in the boiling temperature [61]. An increase in the
atomic mass ma of the alloy components usually leads to an increase in its density ρ, which
leads to a positive correlation between ma and ρ [62,63]. The presence of the pronounced
negative correlation between the pairs rc, Ei and rc, χ is due to the fact that a decrease in
the covalent radius rc leads to an increase Ei and χ by increasing the electron density in
the atom [64,65].

4. Statistical Interpretation of the Results

In the present study, 50,000 different amorphous metal alloys were obtained by the
proposed method. All alloys were sorted according to the atomic number Z of the basic
chemical element and the number of components in the alloy. Using the trained machine
learning model, the values of E and σy were calculated for each alloy. Then, the average
value of the mechanical property was found for each X-based alloy consisting n components
(where n = 2, 3, . . . , 7). Here, X denotes a chemical element, the mass fraction of which in
the alloy is greater than that of other elements. For example, Al-based binary alloys Al90Fe10,
Al80Cu20, Al60Ni40, etc. were selected and the average values of E and σy were determined
for all these alloys. Similar calculations were performed for alloys based on other metals
with different number of components. Then, the dependence of the average values of E
and σy on the atomic number Z of the basic chemical element has been determined.

In the statistical interpretation, the results reveal that E and σy depend mainly on
the properties of the chemical element with the largest mass fraction. As seen in Figure 4,
changing the number of components in alloy has no significant effect on values of E and σy.
In the array of 50,000 different alloys obtained by the machine learning model, some alloys
with the highest Young’s modulus E and the yield strength σy were selected [see Table 2].
The results show that these alloys are mainly based on Ti, Cr, Fe, Co, Ni, Zr, Nb, Mo, Pd, Ta
and W. For example, these are Mo60B20W20, Co40B20Be20Al20, Cr40B20Nb10Pd10Ta10Si10 and
Cr30Mo20W20Pd10Gd10B10 alloys for which the mechanical properties are E > 300 GPa and
σy > 5.0 GPa. It is important to note that the results for alloys of these compositions were
not previously known, although alloys of some related compositions have been studied.
So, for example, for W46Ru37B17, Co43B31.5Fe20Ta5.5 and Co60B35Ta5 it was experimentally
established that E > 250 GPa and σy > 5.0 GPa [41,50]. Obtained results reveal that the
alloys based on Cr, Mo and W from the group VI-B of the Periodic Table of the Elements
have improved mechanical properties. Such the metals as Cr, Mo and W are refractory and
have very high hardness [66–68]. Then, their significant presence in an alloy improves its
strength. Note that this fact is also known in metallurgy, where these metals are widely
used to increase the hardness of steel alloys, to increase wear resistance and to form wear-
resistant coatings (e.g., alloys Cr-Co, Cr-Fe, Mo-Fe, Mo-Cr-Fe, W-Fe, W-Ni-Co) [69,70]. The
machine learning model predicts improved mechanical properties in the case of alloys
based on Ti, Cr, Fe, Co, Ni, Zr, Nb, Mo, etc. when these alloys are doped with other metals
(e.g., Be, B, Hf), nonmetals (e.g., Si, P) and lanthanides (e.g., La, Gd). The mechanical
properties of alloys based on Al, Mg, Ca, Cu, Zn, Ag, Au, Hf, lanthanides, etc. are inferior
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to those of the alloys based on Ti, Cr, Fe, Co, etc. It should be noted that the relatively high
values of E and σy purely for B and Si are due to statistical error, since B-based and Si-based
alloys were not used in the training stage of the machine learning model. However, alloys
containing B and Si were considered.

Figure 4. 3D plot of the dependence of the mechanical properties on the atomic number Z of the
basic chemical element in the alloy and on its number of components: (a) for the Young’s modulus E
and (b) for the yield strength σy.

In Table 3, we list 10 binary and ternary amorphous metal alloys selected from 50,000 al-
loys considered in this study. By simple comparison one can reveal that the predicted E is
mainly correlated with the mechanical properties of chemical element with the highest mass
fraction. For example, for amorphous Cr80B20, we find E ≈ 305 GPa, while the Young’s
modulus of pure crystalline Cr is E ≈ 279 GPa. In the case of amorphous W40Mo40B20, we
have E ≈ 318 GPa, while E is ∼410 GPa for pure crystalline W. The mechanical properties
can vary depending on the concentration of the doped chemical elements and on the class
to which these elements belong (metals, nonmetals, lanthanides, etc.). For example, the
predicted Young’s modulus for Ni40Cr40Co20 is E ≈ 58 GPa. At the same time, the presence
of Zr and Si in the Ni-based alloy doubles the Young’s modulus E (i.e., one has E ≈ 108 GPa
for Ni40Zr40Si20). For Ni40Mo40W20, the machine learning model predicts E ≈ 183 GPa,
where the refractory metals Mo and W are included [see Table 3]. The doping with refrac-
tory metals, nonmetals and lanthanides (e.g., B, Si, Gd, La) makes it possible to increase
the strength of these alloys, which is actively used in modern metallurgy to produce heat-
resistant alloys [71,72]. This simple quantitative analysis confirms that the properly selected
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composition and physical properties of the main chemical elements are most important in
determining the alloys that best match the required mechanical properties.

Table 2. Young’s modulus E and yield strength σy predicted by machine learning model for different
amorphous metal alloys. Here, the average accuracy is ∼88%.

Number of Components Alloy E, GPa Alloy σy, GPa

2 Cr80B20 305 Pd60B40 5.13
W60Hf40 271 W60Hf40 5.04

3 Mo60B20W20 319 Mo60B20Si20 5.35
Nb40Hf40B20 289 Ni60B20Sc20 5.17
Ni60B20W20 280 Pd60B20P20 4.31

4 Ag40B20Sc20Ta20 302 Co40B20Be20Al20 5.27
Zr40Ni20B20Be20 285 Nb40W20La20B20 4.88
Cr40B20Zr20Hf20 271 Ti40W20Pd20B20 4.70

5 Ti30Fe30B20Sn10Be10 296 Co40B30Ag10Gd10Si10 5.54
Pd40B20Si20P10Hf10 289 Fe50B20Mo10Ta10Ag10 5.39

6 Cr40B20Nb10Pd10Ta10Si10 310 Cr30Mo20W20Pd10Gd10B10 5.62
Pd40Be20Mo10Ti10B10Fe10 306 Mo40W20Pd10Gd10B10Cr10 5.53
W30B20Au20Be10Nb10Ag10 296 Ta20Nb20Al20Au20B10W10 5.06

7 W20Co20Nb20Ag10B10Be10Mg10 284 W20B20Ag20Nb10Si10Co10Pd10 5.24
Cr20Ag20Ti20B10Gd10Be10Mg10 234 Cr20Fe20W20Ca10B10Sn10Be10 3.78

Table 3. Young’s modulus E predicted by machine learning model for binary and ternary amorphous
metal alloys. Here, the average accuracy is ∼87%.

Alloy E, GPa Alloy E, GPa

Cr80B20 305 Cu80Mg20 60
W40Mo40B20 318 Cu60Mo40 154
Ni40Cr40Co20 58 W40Ag40B20 234
Ni40Zr40Si20 108 Cr40B40Gd20 217
Ni40Mo40W20 183 Cr40Nb40La20 196

5. Conclusions

In the present study, the machine learning model was applied to predict the Young’s
modulus E and the yield strength σy of amorphous metal alloys with different compositions.
More than 50,000 different alloys were determined as well as E and σy were evaluated
for each of them. It was found that the artificial neural network trained on the basis of
information about the atomic number of a chemical element, its atomic mass, covalent
radius, ionization energy, electronegativity, thermal conductivity, specific heat capacity,
density, melting temperature and boiling temperature allows us to correctly determine of E
and σy of amorphous metal alloys consisting 2 to 7 components and containing chemical
elements with atomic numbers from Z = 3 to Z = 79. Here, the mean relative error is
∼(12 ± 1)% that is the good accuracy for the direct propagation multilayer neural network.
The results of the statistical treatment made it possible to determine the chemical elements
with the largest mass fraction, whose presence in the alloy leads to a significant increase
in the strength of alloys. These chemical elements are B, Cr, Fe, Co, Ni, Nb, Mo, Pd and
W. At the same time, the quantities E and σy show a weak dependence on the number
of components in alloy. Thus, the most significant factors in the synthesis of alloys with
the desired mechanical properties are the properly selected composition and the physical
properties of the basic chemical element of alloy.



Metals 2023, 13, 812 11 of 13

Supplementary Materials: The physical properties of the chemical elements used in the machine
learning model can be found in Supplementary data and in Github. The following supporting informa-
tion can be downloaded at: https://www.mdpi.com/article/10.3390/met13040812/s1,
Table S1: Physical properties of chemical elements used in machine learning model

Author Contributions: Conceptualization, Supervision, A.V.M. and B.N.G.; Formal analysis, Writing-
original draft, B.N.G.; Visualization, Methodology, M.A.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation (project no. 19-12-00022,
https://rscf.ru/project/19-12-00022/, accessed on 20 April 2023).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on Github: https://
github.com/BulatGalimzyanov/ML_alloys.git (accessed on 20 April 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. R Rep. 2004, 44, 45–89. [CrossRef]
2. Chen, M. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011, 3, 82–90. [CrossRef]
3. Yeh, P.-Y.; Huang, J.C.; Jang, J.S.C.; Pan, C.-T.; Chen, C.-H.; Lin, C.-H. Recent Developments in Additive-Manufactured Intermetal-

lic Compounds for Bio-Implant Applications. J. Med. Biol. Eng. 2022, 42, 800–815. [CrossRef]
4. Huang, L.J.; Lin, H.J.; Wang, H.; Ouyang, L.Z.; Zhu, M. Amorphous alloys for hydrogen storage. J. Alloys Compd. 2023, 941, 168945.

[CrossRef]
5. Kruzic, J.J. Bulk Metallic Glasses as Structural Materials: A Review. Adv. Eng. Mater. 2016, 18, 1308–1331.
6. Louzguine-Luzgin, D.V.; Polkin, V.I. Properties of bulk metallic glasses. Russ. J. Non-Ferr. Met. 2017, 58, 80–92. [CrossRef]
7. Li, H.X.; Lu, Z.C.; Wang, S.L.; Wu, Y.; Lu, Z.P. Fe-based bulk metallic glasses: Glass formation, fabrication, properties and

applications. Prog. Mater. Sci. 2019, 103, 235–318. [CrossRef]
8. Malygin, G.A. Strength and plasticity of nanocrystalline materials and nanosized crystals. Phys. Usp. 2011, 54, 1091–1116.

[CrossRef]
9. Galimzyanov, B.N.; Doronina, M.A.; Mokshin, A.V. Excellent glass former Ni62Nb38 crystallizing under combined shear and

ultra-high pressure. J. Non-Cryst. Solids 2021, 572, 121102. [CrossRef]
10. Anikeev, S.G.; Artyukhova, N.V.; Shabalina, A.V.; Kulinich, S.A.; Hodorenko, V.N.; Kaftaranova, M.I.; Promakhov, V.V.; Gunter,

V.E. Preparation of porous TiNi-Ti alloy by diffusion sintering method and study of its composition, structure and martensitic
transformations. J. Alloys Compd. 2022, 900, 163559. [CrossRef]

11. Galimzyanov, B.N.; Mokshin, A.V. Mechanical response of mesoporous amorphous NiTi alloy to external deformations. Int. J.
Solids Struct. 2021, 224, 111047. [CrossRef]

12. Lesz, S. Effect of cooling rates on the structure, density and micro-indentation behavior of the Fe, Co-based bulk metallic glass.
Mater. Charact. 2017, 124, 97–106. [CrossRef]

13. Louzguine-Luzgin, D.V. Structural Changes in Metallic Glass-Forming Liquids on Cooling and Subsequent Vitrification in
Relationship with Their Properties. Materials 2022, 15, 7285. [CrossRef]

14. Tournier, R.F.; Ojovan, M.I. Multiple Melting Temperatures in Glass-Forming Melts. Sustainability 2022, 14, 2351. [CrossRef]
15. Ojovan, M.I.; Tournier, R.F. On Structural Rearrangements Near the Glass Transition Temperature in Amorphous Silica. Materials

2021, 14, 5235. [CrossRef]
16. Galimzyanov, B.N.; Yarullin, D.T.; Mokshin, A.V. Kinetics of inherent processes counteracting crystallization in supercooled

monatomic liquid. J. Phys. Condens. Matter 2022, 34, 454002.
17. Kramer, J. Der amorphe Zustand der Metalle. Z. Phys. 1937, 106, 675–691. [CrossRef]
18. Brenner, A.; Couch, D.E.; Williams, E.K. Electrodeposition of alloys of phosphorus with nickel or cobalt. J. Res. Nat. Bur. Stand.

1950, 44, 109–122. [CrossRef]
19. Duwez, P. Structure and Properties of Alloys Rapidly. Quenched from the Liquid State. Trans. Am. Soc. Metals 1967, 60, 607–633.
20. Pond, R., Jr.; Maddin, R. A method of producting rapidly solidified filamentary castings. Trans. TMS-AIME 1969, 245, 2475.
21. Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 1993, 63, 2342–2344.

[CrossRef]
22. Demetriou, M.D.; Kaltenboeck, G.; Suh, J.-Y.; Garrett, G.; Floyd, M.; Crewdson, C.; Hofmann, D.C; Kozachkov, H.; Wiest, A.;

Schramm, J.P.; et al. Glassy steel optimized for glass-forming ability and toughness. Appl. Phys. Lett. 2009, 95, 041907. [CrossRef]
23. Conner, R.D.; Li, Y.; Nix, W.D.; Johnson, W.L. Shear band spacing under bending of Zr-based metallic glass plates. Acta Mater.

2004, 52, 2429–2434. [CrossRef]

https://www.mdpi.com/article/10.3390/met13040812/s1
https://rscf.ru/project/19-12-00022/
https://github.com/BulatGalimzyanov/ML_alloys.git
https://github.com/BulatGalimzyanov/ML_alloys.git
http://doi.org/10.1016/j.mser.2004.03.001
http://dx.doi.org/10.1038/asiamat.2011.30
http://dx.doi.org/10.1007/s40846-022-00753-0
http://dx.doi.org/10.1016/j.jallcom.2023.168945
http://dx.doi.org/10.3103/S1067821217010084
http://dx.doi.org/10.1016/j.pmatsci.2019.01.003
http://dx.doi.org/10.3367/UFNe.0181.201111a.1129
http://dx.doi.org/10.1016/j.jnoncrysol.2021.121102
http://dx.doi.org/10.1016/j.jallcom.2021.163559
http://dx.doi.org/10.1016/j.ijsolstr.2021.111047
http://dx.doi.org/10.1016/j.matchar.2016.12.016
http://dx.doi.org/10.3390/ma15207285
http://dx.doi.org/10.3390/su14042351
http://dx.doi.org/10.3390/ma14185235
http://dx.doi.org/10.1007/BF01363210
http://dx.doi.org/10.6028/jres.044.009
http://dx.doi.org/10.1063/1.110520
http://dx.doi.org/10.1063/1.3184792
http://dx.doi.org/10.1016/j.actamat.2004.01.034


Metals 2023, 13, 812 12 of 13

24. Inoue, A.; Shen, B.L.; Chang, C.T. Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa. Intermetallics
2006, 14, 936–944. [CrossRef]

25. Zhang, H.W.; Subhash, G.; Jing, X.N.; Kecskes, L.J.; Dowding, R.J. Evaluation of hardness–yield strength relationships for bulk
metallic g lasses. Philos. Mag. Lett. 2006, 86, 333–345. [CrossRef]

26. Yuan, C.C.; Xi, X.K. On the correlation of Young’s modulus and the fracture strength of metallic glasses. J. Appl. Phys. 2011,
109, 033515. [CrossRef]

27. Mokshin, A.V.; Mokshin, V.V.; Mirziyarova, D.A. Formation of Regression Model for Analysis of Complex Systems Using
Methodology of Genetic Algorithms. Nonlinear Phenom. Complex Syst. 2020, 23, 317–326.

28. Mokshin, A.V.; Khabibullin, R.A. Is there a one-to-one correspondence between interparticle interactions and physical properties
of liquid? Phys. A Stat. Mech. Appl. 2022, 128297. [CrossRef]

29. White, A.A. Big data are shaping the future of materials science. MRS Bull. 2013, 38, 594–595. [CrossRef]
30. Rodrigues, J.F., Jr.; Florea, L.; de Oliveira, M.C.F.; Diamond, D.; Oliveira, O.N., Jr. Big data and machine learning for materials

science. Discov. Mater. 2021, 1, 12. [CrossRef]
31. Agrawal, A.; Choudhary, A. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in

materials science. APL Mater. 2016, 4, 053208. [CrossRef]
32. Tripathi, M.K.; Kumar, R.; Tripathi, R. Big-data driven approaches in materials science: A survey. Mater. Today Proc. 2020, 26,

1245–1249. [CrossRef]
33. Shokrollahi, Y.; Dong, P.; Gamage, P.T.; Patrawalla, N.; Kishore, V.; Mozafari, H.; Gu, L. Finite Element-Based Machine Learning

Model for Predicting the Mechanical Properties of Composite Hydrogels. Appl. Sci. 2022, 12, 10835. [CrossRef]
34. Merayo, D.; Rodríquez-Prieto, A.; Camacho, A.M. Prediction of Mechanical Properties by Artificial Neural Networks to Charac-

terize the Plastic Behavior of Aluminum Alloys. Materials 2020, 13, 5227. [CrossRef] [PubMed]
35. Ciupan, E.; Ciupan, M.; Jucan, D.C. Determining the Mechanical Properties of a New Composite Material using Artificial Neural

Networks. TJETT 2018, 66, 103–108.
36. Galimzyanov, B.N.; Doronina, M.A.; Mokshin, A.V. Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an

Artificial Neural Network. Materials 2023, 16, 1127. [CrossRef]
37. Xiong, J.; Shi, S.-Q.; Zhang, T.-Y. A machine-learning approach to predicting and understanding the properties of amorphous

metallic alloys. Mater. Des. 2020, 187, 108378. [CrossRef]
38. Khakurel, H.; Taufique, M.F.N.; Roy, A.; Balasubramanian, G.; Ouyang, G.; Cui, J.; Johnson, D.D.; Devanathan, R. Machine

learning assisted prediction of the Young’s modulus of compositionally complex alloys. Sci. Rep. 2021, 11, 17149. [CrossRef]
39. Amigo, N.; Palominos, S.; Valencia, F.J. Machine learning modeling for the prediction of plastic properties in metallic glasses. Sci.

Rep. 2023, 13, 348. [CrossRef]
40. Xiong, J.; Zhang, T.Y.; Shi, S.Q. Machine learning prediction of elastic properties and glass-forming ability of bulk metallic glasses.

MRS Commun. 2019, 9, 576–585. [CrossRef]
41. Galimzyanov, B.N.; Doronina, M.A.; Mokshin, A.V. Machine learning-based prediction of elastic properties of amorphous metal

alloys. Phys. A Stat. Mech. Appl. 2023, 617, 128678. [CrossRef]
42. Johnson, W.L.; Samwer, K. A Universal Criterion for Plastic Yielding of Metallic Glasses with a (T/Tg)2/3 Temperature Depen-

dence. Phys. Rev. Lett. 2005, 95, 195501. [CrossRef] [PubMed]
43. Jeon, J.; Seo, N.; Kim, H.-J.; Lee, M.-H.; Lim, H.-K.; Son, S.B.; Lee, S.-J. Inverse Design of Fe-Based Bulk Metallic Glasses Using

Machine Learning. Metals 2021, 11, 729. [CrossRef]
44. Inone, A. Bulk Amorphous Alloys: Preparation and Fundamental Characteristics (Materials Science Foundations); Trans Tech Publications:

Amsterdam, The Netherlands 1998.
45. Material Properties Database of the “Information Technologies in Physical Materials Science” Laboratory of Kazan Federal

University. Available online: http://itphyms.int.kpfu.ru/ (accessed on 27 March 2023).
46. Scientific Database of Materials and Their Properties from Lawrence Berkeley National Laboratory. Available online: https:

//materialsproject.org/ (accessed on 27 March 2023).
47. Wang, W.H. Correlations between elastic moduli and properties in bulk metallic glasses. J. Appl. Phys. 2006, 99, 093506. [CrossRef]
48. Wang, W.H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 2012, 57, 487–656.

[CrossRef]
49. Chen, X.-Q.; Niu, H.; Li, D.; Li, Y. Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 2011, 19,

1275–1281. [CrossRef]
50. Qu, R.T.; Liu, Z.Q.; Wang, R.F.; Zhang, Z.F. Yield strength and yield strain of metallic glasses and their correlations with glass

transition temperature. J. Alloys Compd. 2015, 637, 44–54. [CrossRef]
51. Chumachenko, K.; Iosifidis, A.; Gabbouj, M. Feedforward neural networks initialization based on discriminant learning. Neural

Netw. 2022, 146, 220–229. [CrossRef]
52. Sharma, S.; Sharma, S.; Athaiya, A. Activation functions in neural networks. IJEAST 2020, 4, 310–316. [CrossRef]
53. Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2009.
54. Li, J.; Cheng, J.; Shi, J.; Huang, F. Brief Introduction of Back Propagation (BP) Neural Network Algorithm and Its Improvement.

Adv. Comput. Sci. Inf. Eng. 2012, 169, 553–558.

http://dx.doi.org/10.1016/j.intermet.2006.01.038
http://dx.doi.org/10.1080/09500830600788935
http://dx.doi.org/10.1063/1.3544202
http://dx.doi.org/10.1016/j.physa.2022.128297
http://dx.doi.org/10.1557/mrs.2013.187
http://dx.doi.org/10.1007/s43939-021-00012-0
http://dx.doi.org/10.1063/1.4946894
http://dx.doi.org/10.1016/j.matpr.2020.02.249
http://dx.doi.org/10.3390/app122110835
http://dx.doi.org/10.3390/ma13225227
http://www.ncbi.nlm.nih.gov/pubmed/33228013
http://dx.doi.org/10.3390/ma16031127
http://dx.doi.org/10.1016/j.matdes.2019.108378
http://dx.doi.org/10.1038/s41598-021-96507-0
http://dx.doi.org/10.1038/s41598-023-27644-x
http://dx.doi.org/10.1557/mrc.2019.44
http://dx.doi.org/10.1016/j.physa.2023.128678
http://dx.doi.org/10.1103/PhysRevLett.95.195501
http://www.ncbi.nlm.nih.gov/pubmed/16383993
http://dx.doi.org/10.3390/met11050729
http://itphyms.int.kpfu.ru/
https://materialsproject.org/
https://materialsproject.org/
http://dx.doi.org/10.1063/1.2193060
http://dx.doi.org/10.1016/j.pmatsci.2011.07.001
http://dx.doi.org/10.1016/j.intermet.2011.03.026
http://dx.doi.org/10.1016/j.jallcom.2015.03.005
http://dx.doi.org/10.1016/j.neunet.2021.11.020
http://dx.doi.org/10.33564/IJEAST.2020.v04i12.054


Metals 2023, 13, 812 13 of 13

55. Yan, Z.; Zhong, S.; Lin, L.; Cui, Z. Adaptive Levenberg-Marquardt Algorithm: A New Optimization Strategy for Levenberg-
Marquardt Neural Networks. Mathematics 2021, 9, 2176. [CrossRef]

56. Sobhanifar, N.; Ahmadloo, E.; Azizi, S. Prediction of Two-Phase Heat Transfer Coefficients in a Horizontal Pipe for Different
Inclined Positions with Artificial Neural Networks. J. Heat Transf. 2015, 137, 061009. [CrossRef]

57. S̆ter, B. Selective Recurrent Neural Network. Neural Process. Lett. 2012, 38, 1–15. [CrossRef]
58. Turco, C.; Funari, M.F.; Teixeira, E.; Mateus, R. Artificial Neural Networks to Predict the Mechanical Properties of Natural

Fibre-Reinforced Compressed Earth Blocks (CEBs). Fibers 2021, 9, 78. [CrossRef]
59. Marques, A.E.; Prates, P.A.; Pereira, A.F.G.; Oliveira, M.C.; Fernandes, J.V.; Ribeiro, B.M. Performance Comparison of Parametric

and Non-Parametric Regression Models for Uncertainty Analysis of Sheet Metal Forming Processes. Metals 2020, 10, 457.
[CrossRef]

60. Jetly, V.; Chaudhury, B. Extracting electron scattering cross sections from swarm data using deep neural networks. Mach. Learn.
Sci. Technol. 2021, 2, 035025. [CrossRef]

61. Malyshev, V.; Makasheva, A. The Relation between the Heat of Melting Point, Boiling Point, and the Activation Energy of
Self-Diffusion in Accordance with the Concept of Randomized Particles. Open J. Phys. Chem. 2014, 4, 166–172. [CrossRef]

62. Kanematsu, N.; Inaniwa, T.; Nakao, M. Modeling of body tissues for Monte Carlo simulation of radiotherapy treatments planned
with conventional X-ray CT systems. Phys. Med. Biol. 2016, 61, 5037–5050. [CrossRef]

63. Karpechev, E.V.; Pshenichnov, I.A.; Karavicheva, T.L.; Kurepin, A.B.; Golubeva, M.B.; Guber, F.F.; Maevskaya, A.I.; Reshetin, A.I.;
Tiflov, V.V.; Topilskaya, N.S.; et al. Emission of forward neutrons by 158A GeV indium nuclei in collisions with Al, Cu, Sn and Pb.
Nucl. Phys. A 2014, 921, 60–84. [CrossRef]

64. Agmon, N. Covalent radii from ionization energies of isoelectronic series. Chem. Phys. Lett. 2014, 595–596, 214–219. [CrossRef]
65. Matovi, B.; Yano, T. Silicon Carbide and Other Carbides. Handb. Adv. Ceram. 2013, 225–244. [CrossRef]
66. Braithwaite, E.R.; Haber, J. Molybdenum: An Outline of Its Chemistry and Uses; Elsevier Science B. V.: Amsterdam,

The Netherlands, 1994.
67. Barnhart, J. Occurrences, uses and properties of chromium. Regul. Toxicol. Pharmacol. 1997, 26, S3–S7. [CrossRef] [PubMed]
68. Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.;

Barthe, M.F.; et al. Recent progress in research on tungsten materials for nuclear applications in Europe. J. Nucl. Mater. 2013,
432, 482–500. [CrossRef]

69. Yamanaka, K.; Mori, M.; Kuramoto, K.; Chiba, A. Development of new Co–Cr–W-based biomedical alloys: Effects of microalloying
and thermomechanical processing on microstructures and mechanical properties. Mater. Des. 2014, 55, 987–998. [CrossRef]

70. Baldinozzi, G.; Pontikis, V. Phenomenological potentials for the refractory metals Cr, Mo and W. J. Phys. Condens. Matter 2022,
34, 315702. [CrossRef] [PubMed]

71. Sanin, V.V.; Kaplansky, Y.Y.; Aheiev, M.I.; Levashov, E.A.; Petrzhik, M.I.; Bychkova, M.Y.; Samokhin, A.V.; Fadeev, A.A.; Sanin,
V.N. Structure and Properties of Heat-Resistant Alloys NiAl-Cr-Co-X (X = La, Mo, Zr, Ta, Re) and Fabrication of Powders for
Additive Manufacturing. Materials 2021, 14, 3144. [CrossRef] [PubMed]

72. Wang, L.; Shen, J. Effect of heat treatment on the microstructure and elevated temperature tensile property of Fe-doped
NiAl–Cr(Mo)–(Hf,Dy) eutectic alloy. Mater. Sci. Eng. A 2016, 654, 177–183. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/math9172176
http://dx.doi.org/10.1115/1.4029865
http://dx.doi.org/10.1007/s11063-012-9259-4
http://dx.doi.org/10.3390/fib9120078
http://dx.doi.org/10.3390/met10040457
http://dx.doi.org/10.1088/2632-2153/abf15a
http://dx.doi.org/10.4236/ojpc.2014.44019
http://dx.doi.org/10.1088/0031-9155/61/13/5037
http://dx.doi.org/10.1016/j.nuclphysa.2013.11.003
http://dx.doi.org/10.1016/j.cplett.2014.01.037
http://dx.doi.org/10.1016/B978-0-12-385469-8.00014-9
http://dx.doi.org/10.1006/rtph.1997.1132
http://www.ncbi.nlm.nih.gov/pubmed/9380835
http://dx.doi.org/10.1016/j.jnucmat.2012.08.018
http://dx.doi.org/10.1016/j.matdes.2013.10.052
http://dx.doi.org/10.1088/1361-648X/ac73ce
http://www.ncbi.nlm.nih.gov/pubmed/35617941
http://dx.doi.org/10.3390/ma14123144
http://www.ncbi.nlm.nih.gov/pubmed/34201081
http://dx.doi.org/10.1016/j.msea.2015.12.043

	Introduction
	Method for Determining the Mechanical Properties of Amorphous Metal Alloys
	General Strategy of the Method
	Machine Learning Model: Structure and Training
	Validation of the Machine Learning Model

	Properties Importance Scores
	Statistical Interpretation of the Results
	Conclusions
	References

