КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ ИНСТИТУТ ФИЗИКИ Кафедра радиоэлектроники

М.Н. ОВЧИННИКОВ

ВОЛНОВЫЕ ГИДРОДИНАМИЧЕСКИЕ МЕ-ТОДЫ ИССЛЕДОВАНИЯ ФИЛЬТРАЦИОННЫХ СВОЙСТВ ФЛЮИДО-НАСЫЩЕННЫХ ПЛАСТОВ

Казань – 2020

УДК 532.5 БК 22.2536 22.311

Принято на заседании учебно-методической комиссии Института физики Протокол № 05 от 15 мая 2020 года

Рецензенты:

доктор технических наук, зав. лаб. подземной гидродинамики ФИЦ КазНЦ РАН, профессор М.Х.Н. Хайруллин; доктор физико-математических наук, заведующий кафедрой математических методов в геологии КФУ, профессор М.Г. Храмченков

Овчинников М.Н.

Волновые гидродинамические методы исследования фильтрационных свойств флюидонасыщенных пластов /

М.Н. Овчинников. – Казань: Казан. ун-т, 2020. – 121 с.

В данном учебном пособии рассматриваются гидродинамические волновые методы воздействия на флюидонасыщенные пористые и трещиновато-пористые пласты с целью определения их фильтрационных параметров, таких как гидропроводность и пьезопроводность. Данное пособие предназначено для студентов физико-математических и технических специальностей, желающих освоить гидроволновые методы исследования и имеющих базовые знания об уравнениях математической физики, специальных функциях и гидродинамике. Изложение ведется преимущественно в рамках терминологии радиофизического представления о волновых процессах.

> © Овчинников М.Н., 2020 © Казанский университет, 2020

Содержание.

Список обозначений	6
Введение.	8
Раздел 1. Теория метода фильтрационных волн давления	9
1.1. Примеры натурных исследований пластов методом ФВД	9
1.2. Расчетные формулы классической модели упругого режима	11
фильтрации	
Раздел 2. Модели фильтрации	15
2.1. Модель 1	15
2.2. Модель 2	16
2.3. Модель 3	17
2.4. Модель 4	17
2.5. Модель 5	19
2.6. Модель 6	21
2.7. Волны давления в зонально-неоднородных средах	24
2.8. Набор тестов для идентификации моделей фильтрации и	30
интерпретации результатов исследований пластов методом ФВД	
2.8.1. Тест стабильности сигналов в методе ФВД	31
2.8.2. Тест «прямоугольника»	31
2.8.3. Тест третьей гармоники	32
2.8.4. Тест на нелинейность	32
2.8.5. Тест «фазовой скорости»	32
2.8.6. Тест на линейность и однородность околоскважинного	33
пространства и межскважинных интервалов	
2.8.7. Тест 2 на однородность пласта по гидропроводности в	33
ближней и дальней зонах	
2.8.8. Тест на неоднородность и неравновесность	34
2.8.9. Оценки безразмерных параметров $r \sqrt{\frac{\omega}{\chi}}$	34

и
$$r_{\sqrt{\omega/\chi}} \left\{ \frac{(1+\omega^2 \tau_q^2)}{(1+\omega^2 \tau_p^2)} \right\}^{1/4}$$

2.8.10. Оценка параметров
$$r_c \sqrt{\omega/\chi}$$
 и $r_c \sqrt{\omega/\chi} \left\{ \frac{(1+\omega^2 \tau_q^2)}{(1+\omega^2 \tau_p^2)} \right\}^{1/4}$ 34

2.9. Амплитудно-частотная и фазо-частотная характеристики	34
пластов в методе $\Phi B \square$ для линейных моделей	
Раздел 3. Распространение одиночных импульсов давления в	43
пластах	
Раздел 4. О радиусе влияния гидродинамических возмущений	48
при исследованиях пластов методом волн давления	
Раздел 5. Вопросы обработки результатов исследований	52
межскважинного пространства методом ФВД	
5.1. О форме сигналов	52
5.2. О компенсации отбора и закачки при исследованиях методом	53
ФВД	
5.3. О применении Фурье – разложений	54
5.4. Начиная с какого момента можно считать режим колебаний	55
квазиустановившимся?	
5.5. О дебите при самопрослушивании	58
5.6. О знаке дебита	58
Раздел 6. Охлаждение пластов в результате периодической закачки	61
холодных агентов	
Раздел 7. Поперечные деформации пород, вызванные фильтрацией	68
в методе волн давления	
Заключение	71

Приложение 1. Фундаментальные решения линейных уравнений	72
фильтрации	
Модель 1	72
Модель 2	72
Модель 3	73
Модель 4	74
Приложение 2. Расчеты фильтрационных параметров пластов с	75
использованием аппроксимаций функций Кельвина	
Приложение 3. Расчеты давления P(t) и функции $P(\xi,t)$	78
(к разделу 7)	80
Приложение 4. Волны давления при плоско-параллельной	
фильтрации в одномерной системе	83
Приложение 5. Расчеты амплитуд давлений и разностей фаз в	
методе ФВД для релаксационных теорий	83
Приложение 6. Уравнения ФВД в безразмерных переменных	84
Список использованных источников	86
Задачи и вопросы	93

СПИСОК ОБОЗНАЧЕНИЙ

P, *p* – давление

- *p_c* амплитуда давления на забое возмущающей скважины
- *p_r* амплитуда давления на забое реагирующей скважины
- *q* дебит
- *q_c* амплитуда дебита на возмущающей скважине
- *r* расстояние от оси скважины, расстояние между скважинами
- *r*_{*} расстояние до удаленной точки
- *t* время
- *k* проницаемость
- *h* толщина пласта
- ho-плотность жидкости
- μ вязкость жидкости
- β коэффициент упругоемкости
- χ– пьезопроводность
- *є* гидропроводность (также коэфф. Джоуля-Томсона в разделе 6)
- r_c (приведенный) радиус скважины
- *g*₀ предельный (начальный) градиент давления
- *w*, *W* скорость фильтрации
- τ_q время релаксации по дебиту
- τ_p время релаксации по давлению
- *Т* период колебаний дебита скважины
- Т-также температура (в разделе 6)
- т постоянная размерности времени
- *\omega* круговая частота
- $\Delta \varphi$ разность фаз
- δ_q фаза гармоники дебита
- δ_c фаза гармоники давления на возмущающей скважине

- δ_r фаза гармоники давления на реагирующей скважине
- *K*₀ (*x*) функция Бесселя мнимого аргумента второго рода нулевого порядка
- *K*₁ (*x*) функция Бесселя мнимого аргумента второго рода первого порядка
- *I*₀ (*x*) модифицированная функция Бесселя мнимого аргумента первого рода нулевого порядка
- *J*₀ функция Бесселя
- *Ei* (*x*) интегральная показательная функция
- $\theta(t)$ единичная функция Хевисайда
- $\delta(t) функция Дирака$
- ker (x), kei (x) (Ker (x), Kei (x)) специальные функции Кельвина
- Н глубина залегания пласта
- *z* координата
- Е модуль Юнга
- *σ* коэффициент Пуассона горных пород
- *и*, *u*_z, *u*_r -- вектор поперечных смещений и его компоненты
- *и*_{zz} поперечные деформации
- σ_z , τ_{rz} компоненты тензора напряжений
- *P*(*ξ*,*t*) изображение давления в представлении Ханкеля
- ξ переменная размерности обратной длины
- А коэффициент обмена жидкостью между блоками и трещинами
- С_{*p*} удельная изобарная теплоемкость жидкости
- c_n , λ_n коэффициенты теплоемкости и теплопроводности пласта.

ВВЕДЕНИЕ

Исторически рассматриваемые волновые методы исследования флюидонасыщенных пластов берут начало в 50-60-х годах прошлого века [5, 52]. Сначала как теоретические, затем и как экспериментальные. Позже были рассмотрены вопросы неравновесности потоков [1,12,19-20,25,31], фильтрация в трещиновато-пористых средах [2,11,18,33,48], взаимодействие фильтрационных пластовых и деформационных горных процессов [47], и другие модели.

Использование волновых методов, таких как фильтрационные гармонические волны давления, в приложениях гидродинамики, имеет определенные преимущества по отношению к широко используемым импульсным методам типа кривых восстановления давления. В первом случае система реагирует с точки зрения математического описания на возмущение в виде гармонической функции или совокупности гармонических функций, во втором,- на возмущение в виде функции Хевисайда. Одиночный же импульс давления, распространяющийся в пласте, в предельном случае ультракоротких времен можно рассматривать как реакцию на возмущение типа дельта-функции Дирака.

К настоящему времени накоплен значительный опыт экспериментальных работ [6-9,17-18,36,38-40,42-45], моделирования, интерпретации [10,21,23,49] и использования циклических гидродинамических методов при разработке нефтяных месторождений [4,51].

Текст данного пособия предполагает, что читатели знакомы с основами теории фильтрации жидкостей и использованием нестационарных методов исследования пластов. Общие подходы к этим вопросам изложены с разных позиций, например, в [3,16,32,53-54].

8

РАЗДЕЛ 1. ТЕОРИЯ МЕТОДА ФИЛЬТРАЦИОННЫХ ВОЛН ДАВЛЕ-НИЯ

1.1. Примеры натурных исследований пластов методом ФВД

Рассмотрим пример исследования межскважинных интервалов методом фильтрационных волн давления для случая однопластовой системы с терригенным коллектором [37,41]. На рис.1.1 показано изменение дебита нагнетания на возмущающей скважине, на рис.1.2 – соответствующее изменение давления на возмущающей скважине, а на рис.1.3 – изменение давления на реагирующей скважине. Колебания дебита в скважине, на которой задаются периодические изменения дебита (возмущающей скважины) в режиме нагнетание–простой задавались сначала с периодами 24 часа (показано 2 периода), а затем 8 часов (показано 3 периода). Из этих рисунков видно существование фазового сдвига между колебаниями дебита и давления на возмущающей скважине; уменьшение амплитуд сигналов, регистрируемых на принимающей скважине при уменьшении периода колебаний дебита.

Рис.1.1. Изменение дебита на возмущающей скважине.

Рис.1.2. Изменение давления на возмущающей скважине.

Рис.1.3. Изменение давления на реагирующей скважине.

Анализ амплитуд и фаз гармоник Фурье – разложения полученных сигналов (кривых изменения дебита, давления на возмущающей скважине и

давления на реагирующей скважине) позволяет рассчитать такие фильтрационные параметры пласта, как гидропроводность ε , пьезопроводность χ и приведенный радиус скважины r_c .

1.2. Расчетные формулы «классической» модели упругого режима фильтрации

Расчетные формулы и подходы для интерпретации результатов экспериментальных исследований с использованием рассматриваемого метода были получены и исследованы, в частности, С.Н.Бузиновым и И.Д.Умрихиным [5] и Ю.М.Молоковичем [25, 26].

В рамках модели упругого режима фильтрации по закону Дарси [55]

$$\vec{w} = -\frac{k}{\mu} \nabla P , \qquad (1.1)$$

линеаризованного уравнения неразрывности фильтрационного потока

$$div\vec{w} + \beta^* \,\partial P / \partial t = 0 \tag{1.2}$$

и уравнения состояния для капельно-сжимаемой жидкости и упругой пористой среды в виде

$$\rho = \rho_0 [1 + \beta_{\mathfrak{K}} (P - P_0)], \qquad (1.3)$$

$$m = m_0 + \beta_c (P - P_0),$$
 1.4)

дифференциальное уравнение относительно давления, описывающее нестационарную плоско-радиальную фильтрацию (уравнение пьезопроводности) будет иметь вид [53-54, 56]

$$\chi \Delta P = \partial P / \partial t \,. \tag{1.5}$$

Здесь \vec{W} – скорость фильтрации, k – проницаемость, μ –вязкость, P – давление, t – время, χ – пьезопроводность, r – расстояние от скважины.

Для установившегося периодического режима фильтрации в однородном и изотропном бесконечном пласте в цилиндрической системе координат, когда на возмущающей скважине задано периодическое изменение дебита (граничное условие функции источника), получим

$$q(t) = q_0 + \sum_{n=1}^{\infty} \left(a_n \cos \omega_n t + b_n \sin \omega_n t \right) = q_0 + \sum_{n=1}^{\infty} q_n \cos \left(\omega_n t - \delta_n \right),$$
(1.6)

где

$$\omega_{n} = 2\pi n / T , \quad q_{0} = \frac{1}{T} \int_{0}^{T} q(t) dt , \quad a_{n} = \frac{2}{T} \int_{0}^{T} q(t) \cos \omega_{n} t dt ,$$
$$b_{n} = \frac{2}{T} \int_{0}^{T} q(t) \sin \omega_{n} t dt , \quad q_{n} = \sqrt{\left(a_{n}^{2} + b_{n}^{2}\right)} , \quad tg\delta_{n} = b_{n} / a_{n} . \quad (1.7)$$

Тогда решение уравнения (1.5), описывающее изменение давления на возмущающей скважине (при $r = r_c$), имеет вид:

$$P(r_c, t) = P_{co} - \sum_{n=1}^{\infty} P_{cn} \cos(\omega_n t - \delta_n - \delta_{cn}), \qquad (1.8)$$

где

$$\frac{1}{2\pi\varepsilon} \frac{q_n}{X_{cn}} \left[\frac{Ker^2 X_{cn} + Kei^2 X_{cn}}{Ker_1^2 X_{cn} + Kei_1^2 X_{cn}} \right]^{1/2} = P_{cn} , \qquad (1.9)$$

$$\delta_{cn} = -\frac{\pi}{4} - \operatorname{arctg} \frac{\operatorname{Ker}_{1} X_{cn} \operatorname{Kei} X_{cn} - \operatorname{Ker} X_{cn} \operatorname{Kei}_{1} X_{cn}}{\operatorname{Ker}_{1} X_{cn} \operatorname{Ker} X_{cn} + \operatorname{Kei}_{1} X_{cn} \operatorname{Kei} X_{cn}} , \qquad (1.10)$$

$$X_{cn} = r_c \left(\omega_n / \chi \right)^{1/2}. \tag{1.11}$$

Здесь $KerX_{cn}, Ker_1X_{cn}, KeiX_{cn}, Kei_1X_{cn}$ -функции Кельвина 0 и 1 порядков, P_{c0} - постоянная составляющая давления, P_{cn} - амплитуда n-ой гармоники давления, q_n - амплитуда n-ой гармоники дебита, δ_{cn} - разность фаз между n-ми гармониками дебита и давления, χ - пьезопроводность пласта, \mathcal{E} гидропроводность пласта, r_c - приведенный радиус скважины. Такой режим исследования системы пласт-скважина называют самопрослушиванием скважины, поскольку исследуется реакция изменения давления при изменении дебита на одной и той же скважине. Значения величин P_{c0} , P_{cn} , q_n , δ_{cn} находятся по данным эксперимента на основе Фурье-анализа экспериментальных кривых q(t) и $P_c(t)$ и позволяют определить гидродинамические параметры системы «пласт-скважина» в околоскважинном (вблизи возмущающей скважины) пространстве в виде

$$\chi / r_c^2 = \omega_n / X_{cn}^2 = 2\pi / T_n X_{cn}^2 , \qquad (1.12)$$

$$\varepsilon = \frac{q_n}{2\pi P_{cn} X_{cn}} \left[\frac{Ker^2 X_{cn} + Kei^2 X_{cn}}{Ker_1^2 X_{cn} + Kei_1^2 X_{cn}} \right]^{1/2}.$$
 (1.13)

При значении безразмерного параметра *X*_{cn} <<1 для расчета параметров можно использовать приближенные формулы:

$$\delta_{cn} = \operatorname{arctg} \frac{\pi}{4\ln 2/\gamma X_{cn}}, \qquad (1.14)$$

$$\chi/r_c^2 = (\gamma/2)^2 \omega_n \exp(\pi/2tg\delta_{cn}), \qquad (1.15)$$

$$\varepsilon = q_n / 8P_{cn} | \sin \delta_{cn} |. \tag{1.16}$$

Здесь у = 1.781... – постоянная Эйлера.

Используя современные математические пакеты, можно найти искомые фильтрационные параметры при произвольных значениях безразмерных $X_{cn} = r_c (\omega_n / \chi)^{1/2}$. В Приложении 2 показаны некоторые аппроксимации функций Кельвина.

В произвольной точке пласта *r* (например, в реагирующей скважине, когда r>>r_c) решение (1.5) будет для установившихся в пласте колебаний выглядеть как

$$P(r,t) = P_o - \sum_{n=1}^{\infty} P_{rn} \cos(\omega_n t - \delta_n - \Delta_n), \qquad (1.17)$$

где

$$\frac{1}{2\pi\varepsilon} \frac{q_n}{X_{cn}} \left[\frac{Ker^2 X_n + Kei^2 X_n}{Ker_1^2 X_{cn} + Kei_1^2 X_{cn}} \right]^{1/2} = P_{rn} , \qquad (1.18)$$

$$\Delta_n = \operatorname{arctg} \frac{\operatorname{KerX}_n \operatorname{Kei}_1 X_{cn} - \operatorname{Ker}_1 X_{cn} \operatorname{Kei} X_n}{\operatorname{Ker}_1 X_{cn} \operatorname{Ker} X_n + \operatorname{Kei}_1 X_{cn} \operatorname{Kei} X_n} - \frac{\pi}{4} , \qquad (1.19)$$

$$X_n = r \left(\omega_n / \chi \right)^{1/2}. \tag{1.20}$$

Здесь P_{rn} - амплитуда *n*-ой гармоники давления в реагирующей скважине (или иной произвольной точке пласта), Δ_n - разность фаз между *n*-ми гармониками дебита на возмущающей и давления на реагирующей скважине, ε - средняя гидропроводность пласта, r_c -приведенный радиус скважины.

Формулы для расчетов гидродинамических параметров пласта в межскважинных интервалах:

$$\chi = \omega_n \, \frac{r^2}{X_n^2} \,, \tag{1.21}$$

$$\varepsilon = \frac{q_n}{2\pi P_{rn} X_{cn}} \left[\frac{Ker^2 X_n + Kei^2 X_n}{Ker_1^2 X_{cn} + Kei_1^2 X_{cn}} \right]^{1/2},$$
(1.22)

где X_n находится решением уравнения (1.19), а X_{cn} определяется из данных самопрослушивания задающей скважины (1.10).

Если выполняется условие $X_n >> 1$, можно использовать для расчетов фильтрационных параметров пластов в межскважинных интервалах более простые формулы:

$$\chi = \frac{\omega_n r^2}{2(\Delta_n - \pi/8)^2} , \qquad (1.23)$$

$$\varepsilon = \frac{q_n \exp(\pi/8 - \Delta_n)}{2^{7/4} \pi^{1/2} P_{rn} \left(\Delta_n - \pi/8\right)^{1/2}}.$$
 (24)

Отметим, что значения гидропроводностей в (1.16) и (1.24) совпадут только в однородном пласте.

РАЗДЕЛ 2. МОДЕЛИ ФИЛЬТРАЦИИ

Помимо модели (1.1-1.5) существуют и иные модели для описания фильтрационных потоков. На выбор модели влияют свойства пористой среды и флюида. Ниже рассмотрены среды с трешиноватостью, релаксационные и иные модели.

2.1. Модель 1

Модель классического упругого режима фильтрации (модель В.Н.Щелкачева по [26]). Приложение этой модели к методу ФВД было рассмотрено выше.

Для этой модели используем закон Дарси в виде

$$\vec{w}(r,t) = -\frac{k}{\mu} \nabla p(r,t), \qquad (2.1)$$

уравнение для давления в случае плоскорадиальной фильтрации будет

$$\frac{\partial p(r,t)}{\partial t} = \chi \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} p(r,t).$$
(2.2)

Эта модель весьма удовлетворительно описывает фильтрацию в поровых коллекторах. Для нее фазовая скорость волн давления зависит от частоты следующим образом

$$v_{\phi} = \sqrt{2\omega\chi}.$$
 (2.3)

Так, на рис.2.1 показаны сплошной линией – тренд аппроксимации для модели 2 и кружочками показаны значения линейного тренда для модели 1.

Рис.2.1. Зависимость фазовой скорости от корня из частоты. Экспериментальные данные и аппроксимации по моделям 1 и 2 [41].

2.2. Модель 2

Фильтрация с конечной скоростью распространения возмущений (модель С.А.Христиановича по [26]). Отличается от предыдущего случая тем, что нестационарная фильтрация описывается уравнением гиперболического типа с конечной скоростью распространения возмущений. Неравновесность закона фильтрации учитывается путем введения времени релаксации τ_a в закон фильтрации

$$\vec{w}(r,t) + \tau_q \partial \vec{w}(r,t) / \partial t = -\frac{k}{\mu} \nabla p(r,t), \qquad (2.4)$$

уравнение для давления в случае плоскорадиальной фильтрации записывается в виде

$$\tau_q \frac{\partial^2 p(r,t)}{\partial t^2} + \frac{\partial p(r,t)}{\partial t} = \chi \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} p(r,t).$$
(2.5)

Фазовая скорость волн давления в этом случае будет

$$v_{\Phi} = \frac{\sqrt{\omega\chi}}{(1+\omega^2\tau_q^2)^{1/4}\cos(\frac{1}{2}arctg(\frac{1}{\omega\tau_q}))}$$
 (2.6)

2.3. Модель 3

Фильтрация в трещиновато-пористых средах – модель Г.И.Баренблатта [2,26] (в упрощенной постановке). Вводится постоянная времени, характеризующая переток жидкости между подсистемами блокового и трещинного пространств- τ_p .

Закон фильтрации будет

$$\vec{w}(r,t) = -\frac{k}{\mu} \nabla \left[p(r,t) + \tau_p \frac{\partial \vec{w}(r,t)}{\partial t} \right], \qquad (2.7)$$

а уравнение для давления в случае плоскорадиальной фильтрации,

$$\frac{\partial p(r,t)}{\partial t} = \chi \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} \left[p(r,t) + \tau_p \frac{\partial p(r,t)}{\partial t} \right].$$
(2.8)

и фазовая скорость ФВД будет

$$v_{\Phi} = \frac{\sqrt{\omega\chi}}{\left(1 + \omega^2 \tau_p^2\right)^{-1/4} \cos\left(\frac{1}{2} \operatorname{arctg}\left(\frac{1}{\omega\tau_p}\right)\right)}.$$
(2.9)

2.4. Модель 4

Двухрелаксационная модель Ю.М.Молоковича [28,41]. Неравновесные эффекты учитываются законом фильтрации вида

$$\vec{w}(r,t) + \tau_q \frac{\partial \vec{w}(r,t)}{\partial t} = -\frac{k}{\mu} \nabla \left[p(r,t) + \tau_p \frac{\partial p(r,t)}{\partial t} \right].$$
(2.10)

Для плоскорадиальной фильтрации приводит к дифференциальному уравнению для давления параболического типа с бесконечной скоростью распространения возмущений:

$$\tau_q \frac{\partial^2 p(r,t)}{\partial t^2} + \frac{\partial p(r,t)}{\partial t} = \chi \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} \left[p(r,t) + \tau_p \frac{\partial p(r,t)}{\partial t} \right]. \quad (2.11)$$

Для сред с трещиноватостью, используя гипотезу Баренблатта [2] и модель Уоррена и Рута [59] можно ввести параметры размерности времени $\tau_1 = \beta_1 \mu l^2 / \alpha k_1, \tau_2 = \beta_2 \mu l^2 / \alpha k_2, \tau = \tau_1 \tau_2 / (\tau_1 + \tau_2)$. Таким образом, уравнение вида (2.11) также описывает и фильтрацию в трещиновато-пористых средах.

Фазовая скорость ФВД будет

$$\nu_{\Phi} = \frac{\sqrt{\omega\chi}}{\left(\frac{1+\omega^2\tau_q^2}{1+\omega^2\tau_p^2}\right)^{1/4} \cos\left\{\frac{1}{2}arctg\left[\frac{1+\omega^2\tau_p\tau_q}{\omega(\tau_p-\tau_q)}\right]\right\}}.$$
(2.9)

Данную модель можно рассматривать в терминах расширенной необратимой термодинамики, представив (2.11) в виде

$$\tau_q \frac{\partial^2 p(r,t)}{\partial t^2} + \frac{\partial p(r,t)}{\partial t} = \chi \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial p(r,t)}{\partial r} + l^2 \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial p(r,t)}{\partial r}, \quad (2.13)$$

где τ_q – параметр временной нелокальности фильтрационного релаксационного процесса, а $l = \sqrt{\chi \tau_p}$ – характерный масштаб пространственной нелокальности (корреляционная длина).

Отметим, что рассмотренные модели 1-4 являются линейными. Фундаментальные решения уравнения пьезопроводности в моделях 1-4 приведены в Приложении 2.

В [26, 28] также подробно описана специфика задания начальных условий для релаксационных моделей.

2.5. Модель 5

Модель фильтрации неньютоновской вязко-пластичной жидкости. Это уже нелинейная модель. В подходе А.Х. Мирзаджанзаде [24] с введением предельного начального градиента давления – g₀ закон фильтрации можно записать в виде

$$w(r,t) = -\frac{k}{\mu} \left(\nabla p(r,t) - g_0 \frac{\nabla p}{|\nabla p|} \right), \quad \nabla p > g_0$$

0,
$$\nabla p \le g_0 . \tag{2.14}$$

В модели с предельным градиентом давления при выполнении условия (2.14) наблюдается эффект трансформации первоначально гармонических сигналов волн давления в квазипрямоугольные, отмеченный в [37]. Это связано с «обрезанием» компонент решения уравнения пьезопроводности с малыми градиентами давления. Действительно, такая ситуация наблюдается и на возмущающей скважине, и на реагирующей, что показано на рис.2.2а и рис.2.26.

Отметим, что, начиная с некоторых предельных значений градиента давления $\left| \frac{\partial p}{\partial r} \right| = g_0$, фильтрация прекращается, и сигналы попросту не будут доходить до реагирующей скважины.

Таким образом, восстановление квази-прямоугольной формы линии сигнала на удаленной скважине может служить диагностическим признаком того, что в данной среде актуально рассмотрение модели с предельным градиентом давления.

Рис.2.2а. Изменения давления на возмущающей скважине для $g_0 = 83$ Па/м в случае фильтрации вязко-пластичной жидкости.

Рис.2.26. Пример изменения давления на контрольной скважине для *g*₀=83 Па/м в случае фильтрации вязко-пластичной жидкости.

2.6. Модель 6

Нелинейные эффекты следует рассматривать, в частности, при описании фильтрации с учетом деформации коллекторов. Прежде всего, речь идет о зависимости проницаемости от давления, что сильно проявляется, например, в средах с трещиноватостью при смыкании и размыкании трещин.

Закон фильтрации можно записать как

$$\vec{w}(r,t) = -\nabla p(r,t)k(p)/\mu, \qquad (2.15)$$

а уравнение для давления в случае плоскорадиальной фильтрации

$$\frac{\partial p(r,t)}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left[r \chi(p) \frac{\partial p(r,t)}{\partial r} \right].$$
(2.16)

Рассмотрим случай нелинейной среды с зависимостью проницаемости от давления в виде [41]

$$k = k_0 \exp(b(p - p_0))$$
(2.17)

Рис.2.3. Изменения давлений на возмущающей скважине для b=0, 50, 100, 150 и 200 МПа⁻¹.

Результаты численного расчета давления при значениях параметра *b* показаны на рис.2.3. Одно из проявлений нелинейности заключается в том, что виды кривых изменений давления на возмущающей скважине на четных и нечетных полупериодах в методе волн давления существенно отличаются друг от друга, что связано с различным временем пребывания системы в состояниях с пониженным значением проницаемости на протяжении этих полупериодов. Различие же в кривых изменения давления в удаленной точке – реагирующей скважине незначительно, поскольку существенным образом эффект нелинейности проявляется лишь вблизи скважины (в данной постановке экспериментов), а на удалении от нее изменение давления по отношению к пластовому давлению невелико.

Рис.2.4. Пример натурного эксперимента. Изменение забойного давления скважины при проведении самопрослушивания в методе ФВД.
 Пористый коллектор - треугольники, трещиновато-пористый коллектор – полые квадратики.

Пример из промысловой практики показан на рис.2.4 [41]. Здесь чисто поровый терригенный коллектор демонстрирует линейное, а трещиновато-поровый карбонатный коллектор – нелинейное поведение.

Таким образом, использование метода ФВД позволяет верифицировать фильтрационные модели путем реализации в натурных условиях соответствующих гидродинамических экспериментов на различных частотах воздействия на исследуемый пласт.

Наличие нелинейности вида (2.16) приводит к снижению эффективной гидропроводности в околоскважинном пространстве (рис.2.5).

Рис.2.5. Зависимость эффективной гидропроводности от амплитуды изменений давления на возмущающей скважине при различных частотах (рад/с) изменений расхода на ней.

Проявление нелинейности в межскважинном пространстве связано со значительным перераспределением энергии между гармониками сигнала и ростом вклада четных гармоник в суммарный сигнал, несмотря на то, что

на возмущающей скважине они не генерируются в силу прямоугольной изначально формы первоначального сигнала по расходу.

На рис. 2.6 показано изменение отношений амплитуд вторых и первых гармоник сигнала по давлению и четвертных и третьих гармоник по давлению при различных частотах волн давления. Мы видим, что с ростом частоты наблюдается значительное увеличение вклада четных гармоник, причем независимо от значений амплитуды расхода на возмущающей скважине.

Рис.2.6. Вклад четных гармоник по сравнению с ближайшими нечетными на принимающей скважине.

2.7. Волны давления в зонально-неоднородных средах

При исследованиях фильтрационных параметров пластов в межскважинных интервалах актуальна проблема определения неоднородностей естественного (например, распределения пористостей, толщин и проницаемостей) и технологического (например, эффекты, связанные с вытеснением одной жидкостью другой) характера.

Так, при эксплуатации нефтяных месторождений методом заводнения в целях оценки текущего состояния коллектора может использоваться модель поршневого вытеснения. Пусть имеется пласт, у которого пьезопроводность равна χ_1 в круге $r_c < r < \rho$, и нагнетательная вертикальная скважина, в которую закачивается жидкость с вязкостью μ_1 . Вне этого круга – пьезопроводность равна χ_2 , вязкость жидкости - μ_2 . При создании волн в пласте возникнут периодические колебания давления, и решение для давления при установившемся режиме в точке наблюдения *r* будет выглядеть как [29]

$$p_{2}(r,t) = \operatorname{Re}\left\{\sum_{n=0}^{\infty} |B| K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{2}}}r\right) \frac{I_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) + I_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) K_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) e^{i\left(\omega_{n}t+\frac{\pi}{2}\right)}\right\} \\ I_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{2}}}\rho\right) + \lambda I_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) K_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{2}}}\rho\right) e^{i\left(\omega_{n}t+\frac{\pi}{2}\right)}\right\}.$$

$$(2.18)$$

Здесь *В* – константа, пропорциональная расходу жидкости. Ниже приведен вывод этого уравнения в соответствии с [29, 37].

Допустим, что имеется скважина, которая создает плоско-радиальный поток в пласте. Считается, что один из флюидов, характеризующийся вязкостью μ_1 , распространился на расстояние ρ (не путать с плотностью жидкости). Остальная часть пласта заполнена жидкостью, характеризующейся вязкостью μ_2 . Дебит скважины меняется периодически как

$$q(t) = \sum_{n=0}^{\infty} C_n \sin \omega_n t , \qquad (2.19)$$

тогда уравнения фильтрации для областей 1 и 2 имеют вид

$$(0 < r < \rho) \qquad \frac{\partial p_1}{\partial t} = \chi_1 \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial p_1}{\partial r} \right), \qquad (2.20)$$

$$(\rho < r)$$
 $\frac{\partial p_2}{\partial t} = \chi_2 \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial p_2}{\partial r} \right).$ (2.21)

Здесь χ_1 и χ_2 – пьезопроводности областей 1 и 2.

Решение (2.20) и (2.21) будем искать при следующих граничных условиях:

$$\frac{2\pi\kappa h}{\mu_1} \lim_{r \to 0} \left(r \frac{\partial p_1}{\partial r} \right) = \sum_{n=0}^{\infty} C_n \sin \omega_n t , \qquad (2.22)$$

$$(r = \rho)$$
 $p_1 = p_2,$ (2.23)

$$(r = \rho)$$
 $\frac{1}{\mu_1} \frac{\partial p_1}{\partial r} = \frac{1}{\mu_2} \frac{\partial p_2}{\partial r},$ (2.24)

где *h* – толщина пласта.

Решение для давления запишем в виде

$$p_1 = \operatorname{Re}\sum_{n=0}^{\infty} p_{1n} e^{i\omega_n t},$$
 (2.27)

$$p_2 = \operatorname{Re}\sum_{n=0}^{\infty} p_{2n} e^{i\omega_n t} . \qquad (2.28)$$

Подставляя (2.27) и (2.28) в (2.23), получаем уравнения для p_{1n} и p_{2n} :

$$\frac{d^2 p_{1n}}{dr^2} + \frac{1}{r} \frac{dp_{1n}}{dr} - \frac{i\omega_n}{\chi_1} p_{1n} = 0, \qquad (2.29)$$

$$\frac{d^2 p_{2n}}{dr^2} + \frac{1}{r} \frac{dp_{2n}}{dr} - \frac{i\omega_n}{\chi_2} p_{2n} = 0.$$
(2.30)

Уравнения (2.29,2.30) являются уравнениями Бесселя, поэтому общее решение можно записать в виде:

$$(0 < r < \rho) \qquad p_{1n} = AI_0 \left(\sqrt{\frac{i\omega_n}{\chi_1}} r \right) + BK_0 \left(\sqrt{\frac{i\omega_n}{\chi_1}} r \right), \qquad (2.31)$$

$$p_{2n} = CK_0 \left(\sqrt{\frac{i\omega}{\chi_2}} r \right), \qquad (\rho < r). \tag{2.32}$$

Константы *А*, *В* и *С* находятся с помощью граничных условий (2.24-26). Используя (2.24), находим $B = i \frac{C_n \mu_1}{2\pi\kappa h}$.

Из условий (2.25, 2.26) находим уравнения на константы А и С :

$$AI_0\left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) + BK_0\left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) = CK_0\left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right),\tag{2.33}$$

$$\sqrt{\frac{\chi_2}{\chi_1}} \frac{\mu_2}{\mu_1} \left(AI_1\left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) - BK_1\left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) \right) = -CK_1\left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right).$$
(2.34)

Решая эту систему, получаем

$$A = B \frac{K_1 \left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) K_0 \left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right) - \lambda K_0 \left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) K_1 \left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right)}{I_1 \left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) K_0 \left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right) + \lambda I_0 \left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) K_1 \left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right)}, \qquad (2.35)$$

$$C = B \frac{I_1 \left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) K_0 \left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right) + I_0 \left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) K_1 \left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right)}{I_1 \left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) K_0 \left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right) + \lambda I_0 \left(\sqrt{\frac{i\omega_n}{\chi_1}}\rho\right) K_1 \left(\sqrt{\frac{i\omega_n}{\chi_2}}\rho\right)}.$$
(2.36)

Параметр λ здесь определяется как $\lambda = \mu_1 \sqrt{\chi_1} / \mu_2 \sqrt{\chi_2}$.

Рассмотрим приближение, когда $\sqrt{\frac{i\omega_n}{\chi_i}}\rho \ge 0.5$, что обычно реализует-

ся на практике. В этом случае, используя представление

$$I_0\left(\sqrt{\frac{i\omega_n}{\chi_i}}r\right) = I_1\left(\sqrt{\frac{i\omega_n}{\chi_i}}r\right) = \frac{e^{\sqrt{\frac{i\omega_n}{\chi_i}}r}}{\sqrt{2\pi\sqrt{\frac{i\omega_n}{\chi_i}}r}},$$
(2.37)

$$K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{i}}}r\right) = K_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{i}}}r\right) = \frac{\sqrt{\pi}e^{-\sqrt{\frac{i\omega_{n}}{\chi_{i}}}r}}{\sqrt{2}\sqrt{\frac{i\omega_{n}}{\chi_{i}}}r}$$
(2.38)

получим для давления во второй зоне (индекс 2):

$$p_{2}(r,t) = \operatorname{Re}\left\{\sum_{n=0}^{\infty} |B| K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{2}}}r\right) \frac{I_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) + I_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) K_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right)}{I_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{2}}}\rho\right) + \lambda I_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right) K_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{2}}}\rho\right)}e^{i\left(\omega_{n}t + \frac{\pi}{2}\right)}\right\}}$$

$$(2.39)$$

$$\frac{I_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right)K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right)+I_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right)K_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right)}{I_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right)K_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{2}}}\rho\right)+\lambda I_{0}\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho\right)K_{1}\left(\sqrt{\frac{i\omega_{n}}{\chi_{2}}}\rho\right)} = \frac{1}{\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\rho}\frac{2}{1+\lambda}\sqrt{\sqrt{\frac{i\omega_{n}}{\chi_{1}}}\sqrt{\frac{i\omega_{n}}{\chi_{2}}}\rho^{2}}e^{-\sqrt{i\omega_{n}}\rho\left(\frac{1}{\sqrt{\chi_{1}}}\frac{1}{\sqrt{\chi_{2}}}\right)} = \frac{2}{1+\lambda}\left(\frac{\chi_{1}}{\chi_{2}}\right)^{1/4}e^{-\rho\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}}-\sqrt{\frac{i\omega_{n}}{\chi_{2}}}\right)}$$

(2.40)

В результате,

$$p_{2}(r,t) = \operatorname{Re}\left\{\sum_{n=0}^{\infty} |B| \sqrt{\frac{\pi}{2\sqrt{\frac{i\omega_{n}}{\chi_{2}}}r}} e^{-\sqrt{\frac{i\omega_{n}}{\chi_{2}}}r} \frac{2}{1+\lambda} e^{-\rho\left(\sqrt{\frac{i\omega_{n}}{\chi_{1}}} \sqrt{\frac{i\omega_{n}}{\chi_{2}}}\right)} \left(\frac{\chi_{1}}{\chi_{2}}\right)^{1/4} e^{i\left(\omega_{n}t + \frac{\pi}{2}\right)}\right\}.$$
 (2.41)

Теперь определим

$$p_{2}(r,t) = \sqrt{\frac{2\pi}{\sqrt{\frac{1}{\chi_{1}}r}}} \frac{1}{1+\lambda} \operatorname{Re}\left\{\sum_{n=0}^{\infty} \frac{|B|}{\sqrt[4]{\omega_{n}}} e^{-\sqrt{i\omega_{n}}\left[\frac{r}{\sqrt{\chi_{2}}} + \rho\left(\frac{1}{\sqrt{\chi_{1}}} - \frac{1}{\sqrt{\chi_{2}}}\right)\right]} e^{i\left(\omega_{n}t + \frac{3\pi}{8}\right)}\right\}.$$
 (2.42)

Используя соотношение $\sqrt{i} = \frac{1}{\sqrt{2}} (1+i)$, получим

$$p_{2}(r,t) = \sqrt{\frac{\pi}{2\frac{r}{\sqrt{\chi_{1}}}}} \frac{1}{1+\lambda} \sum_{n=0}^{\infty} \frac{|B|}{\sqrt[4]{\omega_{n}}} exp\left\{-\sqrt{\frac{\omega_{n}}{2\chi_{1}}}\left[r+\rho\left(\sqrt{\frac{\chi_{2}}{\chi_{1}}}-1\right)\right]\right\}\right\}$$

$$\cos\left\{\omega_{n}t + \frac{3\pi}{8} - \sqrt{\frac{\omega_{n}}{2\chi_{2}}}\left[r+\rho\left(\sqrt{\frac{\chi_{2}}{\chi_{1}}}-1\right)\right]\right\}.$$
(2.43)

Таким образом, расстояние ρ вычисляется как

$$\rho = \left(\omega t + \frac{3\pi}{8} - r\sqrt{\frac{\omega}{2\chi_2}}\right) / \left(\sqrt{\frac{\omega}{2\chi_1}} - \sqrt{\frac{\omega}{2\chi_2}}\right).$$
(2.44)

В итоге при $0 < r < \rho$ получаем:

$$p_{1}(r,t) = \sqrt{\frac{\pi}{2\frac{r}{\sqrt{\chi_{1}}}}} \sum_{n=0}^{\infty} \frac{|B|}{\sqrt[4]{\omega_{n}}} exp\left(-\sqrt{\frac{\omega_{n}}{2\chi_{1}}}r\right) \left[\left(\frac{1-\lambda}{1+\lambda}\right)exp\left(-\sqrt{\frac{\omega_{n}}{2\chi_{1}}}(2\rho - r)\right)\right] exp\left(-\sqrt{\frac{\omega_{n}}{2\chi_{1}}}(2\rho - r)\right) + \cos\left(\omega_{n}t + \frac{3\pi}{8} - \sqrt{\frac{\omega_{n}}{2\chi_{1}}}r\right)\right],$$

$$(2.45)$$

а при *r>*р

$$p_{2}(r,t) = \sqrt{\frac{\pi}{\frac{1}{2\sqrt{\chi_{1}}}r}} \sum_{n=0}^{\infty} \frac{|B|}{\sqrt[4]{\omega_{n}}} \frac{1}{1+\lambda} exp\left\{-\sqrt{\frac{\omega_{n}}{2\chi_{2}}}\left[r + \rho\left(\sqrt{\frac{\chi_{2}}{\chi_{1}}} - 1\right)\right]\right\}$$

$$\cos\left(\omega_{n}t + \frac{3\pi}{8} - \sqrt{\frac{\omega_{n}}{2\chi_{2}}}\left[r + \rho\left(\sqrt{\frac{\chi_{2}}{\chi_{1}}} - 1\right)\right]\right).$$
(2.46)

2.8. Набор тестов для идентификации моделей фильтрации и интерпретации результатов исследований пластов методом ФВД

Определение фильтрационных параметров пластов предполагает использование адекватных гидродинамических моделей для описания фильтрации. Каким же образом определить для конкретных натурных условий пригодность использования той или иной модели?

В данном разделе приводится подборка различных тестов [41] в рамках метода ФВД. Эти тестовые эксперименты могут помочь в решении поставленного выше вопроса. Тесты основаны на распространении волн с анализом соответствующих результатов.

Предполагается, что в процессе проведения экспериментов можно изменять как периоды колебаний дебитов или давлений на возмущающей скважине, так и их амплитуды. Разумеется, увеличение числа различных периодов задания ФВД и значений амплитуд дебитов на возмущающей скважине расширяет возможности дальнейшего анализа. Однако любой исследователь при проведении экспериментов сталкивается с временными и технологическими ограничениями. Поэтому в качестве сокращенного варианта изменений периодов ФВД можно предложить следующую последовательность: 4 периода с периодом Т, 4 периода с периодом Т/2 и еще 4 периода с периодом Т/3. В результате, для основных гармоник Фурье–разложения (1–ой, 3–ей, 5–ой) мы получим 8 различных мод колебаний с периодами: Т, Т/3, Т/5, Т/2, Т/6, Т/10, Т/3 (теперь это первая гармоника для периода Т/3), Т/9, Т/15.

Сам период T обычно должен быть сравним по порядку величины с параметром r^2/χ . Возможности изменения величины дебитов определяются конкретными технологическими условиями и, если такие возможности имеются, то желательно обеспечить изменение его значений в разы. После проведения исследований производится Фурье – анализ полученных кривых: изменений во времени дебита и давления на возмущающей скважине и

30

давления на реагирующей. В результате проведения вышеописанных процедур мы получаем наборы данных о значениях амплитуд и фаз гармоник дебитов и давлений на возмущающей скважине, амплитуд и фаз давлений на реагирующей скважине. После этого можно провести следующие тесты.

2.8.1. Тест стабильности сигналов в методе ФВД

Описываемые ниже процедуры - это гидродинамические эксперименты для проверки используемой аппаратуры и предварительного вывода о принципиальной возможности применения метода в конкретных условиях, а также для идентификации моделей.

По данным экспериментов вычисляются амплитуды и фазы Фурье – гармоник кривых дебитов и давлений для каждого отдельного периода сигнала, находятся средние, среднеквадратичные отклонения. Прежде всего, в этом тесте нас интересуют кривые зависимостей забойного давления от времени на возмущающей скважине, выступающие в качестве задающих сигналов. Обычно отличие текущих значений этих величин для отдельных периодов от средних не превышает единиц процентов. В случае если текущие значения амплитуд соответствующих гармоник отличаются от средних более чем на единицы процентов, видимо, следует рассматривать и рассчитывать значения параметров по отдельным периодам, соотносящимся по времени друг с другом.

2.8.2. Тест прямоугольника

Этот тест направлен на выявление возможного влияния на регистрируемые сигналы наличия нелинейного фактора в виде предельного градиента давления. Если при уменьшении амплитуды сигнала и увеличении частоты на реагирующей скважине возникает эффект увеличения вклада четных гармоник, мы имеем дело с эффектом фильтрации с начальным градиентом сдвига. То же самое относится и к форме сигнала на возмущающей скважине. В этом случае требуются дополнительные исследования для опреде-

31

ления значения начального градиента давления g_0 и учета соответствующей поправки в общий процесс.

2.8.3. Тест третьей гармоники.

Данные по анализу изменения давлений с гармоникой Фурье-анализа с периодом T/3 в этом тесте могут служить контрольными по отношению к первой гармонике для линейных моделей фильтрации, когда мы задаем сначала колебания дебита на возмущающей скважине с периодом T, а затем с периодом T/3. Так, если определяется пьезопроводность в виде

$$\chi = \frac{\omega_n r^2}{2(\Delta_n - \pi/8)^2} , \qquad (2.47)$$

где $\Delta \varphi_1$ – соответствующая разность фаз, то для третьей гармоники должно выполняться

$$\Delta \varphi_3 = \sqrt{3} (\Delta \varphi_1 - \pi/8) + \pi/8. \tag{2.48}$$

2.8.4. Тест на нелинейность

В соответствии с материалами, изложенными ранее, производится Фурье – анализ раздельно для четных и нечетных полупериодов зависимостей давления на возмущающей скважине от времени. Неэквивалентность формы кривых изменения далвения на возмущающей скважине для четных и нечетных полупериодов будет проявлением нелинейного фильтрационного процесса. При этом следует учесть эффекты отклонения кривых изменений дебита от сигналов прямоугольной формы, если они существенны.

2.8.5. Тест фазовой скорости

Вычисляем фазовую скорость ФВД. Для этого при расчетах можно использовать формулу

$$V_{\phi}(\omega) = \frac{2\pi r}{(\delta_r - \delta_c)T} = \frac{r\omega}{(\delta_r - \delta_c)}, \qquad (2.49)$$

где расстояние между скважинами считается известным, фазы – вычисленными, колебания ФВД установившимися.

В случае, если зависимость фазовой скорости от частоты пропорциональна $\sqrt{\omega}$, мы имеем дело с моделью 1, при отклонении от закона «корня», возможно, следует использовать модели 2, 3, 4 или иные.

2.8.6. Тест на линейность и однородность околоскважинного пространства и межскважинных интервалов

Увеличивая или уменьшая величину дебита $q^i(\omega)$ на возмущающей скважине, сравниваются получающиеся отношения амплитуд сигналов. Из формул раздела 1 известно, что для линейных теорий при проведении экспериментов на фиксированной частоте отношения амплитуд дебитов и давлений для одной и той же гармоники должны сохраняться величины:

$$\frac{q^{i}(\omega)}{p^{i}_{c}(\omega)} \stackrel{\mathbf{M}}{=} \frac{q^{i}(\omega)}{p^{i}_{r}(\omega)}.$$
(2.50)

Значительные расхождения (более единиц процентов) в значениях этих отношений могут указывать на наличие нелинейности фильтрационного процесса или неоднородность пласта.

2.8.7. Тест 2 на однородность пласта по гидропроводности в ближней и дальней зонах

Вычисляем значения гидропроводности по данным межскважинного зондирования и на возмущающей скважине из формул (1.16) и (1.24). Значительное несовпадение значений гидропроводности может говорить о неоднородности пласта. Здесь можно использовать терминологию «ближней и дальней зон».

2.8.8. Тест на неоднородность и неравновесность

Вычисляем зависимость от частоты отношений давлений и дебитов и сдвигов фаз на возмущающей и принимающей скважинах и проверяем, в какой степени эти зависимости соответствуют теоретическим.

2.8.9. Оценки безразмерных параметров

$$r \sqrt{\omega/\chi}$$
 H $r \sqrt{\omega/\chi} \left\{ \frac{(1+\omega^2 \tau_q^2)}{(1+\omega^2 \tau_p^2)} \right\}^{1/4}$

для релаксационных моделей. Если значение параметра меньше 5, нужно использовать точные решения из раздела 1.

2.8.10. Оценка параметров
$$r_c \sqrt{\omega/\chi}$$
 и $r_c \sqrt{\omega/\chi} \left\{ \frac{(1+\omega^2 \tau_q^2)}{(1+\omega^2 \tau_p^2)} \right\}^{1/4}$

для релаксационных теорий. Если значения этих параметров больше 0.1, нужно использовать точные решения главы 1.

Приведенный набор тестов может быть дополнен и уточнен. Способы разделения нелинейных эффектов и учета неоднородностей требуют дальнейших исследований.

2.9. Амплитудно-частотная и фазо-частотная характеристики пластов в методе ФВД для линейных моделей

При исследовании объектов природной среды методами линейного отклика на внешнее возмущение возможен подход, рассматривающий их как линейные системы, имеющие входные и выходные параметры [27],[30]. Такие системы имеют свои статические и динамические характеристики. Как известно, отклик системы на воздействие в виде гармонического сигнала называется комплексной передаточной функцией F(jω).

34

В промысловых условиях трудно обеспечить гармонический входной сигнал, проще всего задавать квази-прямоугольные импульсы. При этом любой периодический сигнал представляет собой сумму гармонических сигналов. Тогда выходной сигнал разлагается по тем же гармоническим функциям и устанавливается соответствие между гармониками с одинаковыми номерами.

Если выходной сигнал регистрировать на том же входе, т.е. совместить вход и выход, то регистрируемая величина должна иметь другую физическую природу по сравнению с входным сигналом. Воздействовать на пластовую систему можно, например, периодическим изменением дебита, а регистрировать изменение давления. Такая постановка эксперимента носит название «самопрослушивание». Если вход и выход разведены, то регистрируемая величина может иметь ту же физическую природу. Применительно к скважинам такая постановка исследования носит название «гидропрослушивание» или межскважинное прослушивание (прозвучивание, томография и т.п.).

Рассмотрим т.н. самопрослушивание. Пусть на пласт воздействует гармонический сигнал давления. В комплексной форме его можно записать в виде

$$x_{\rm BX}(t) = A_p(i\omega)\exp(i\omega t), \qquad (2.51)$$

где A_p - комплексная амплитуда давления, ω -циклическая частота. Выходной сигнал в силу линейности системы будет иметь ту же частоту

$$y_{\rm Bbix}(t) = A_Q(i\omega)\exp(i\omega t), \qquad (2.52)$$

Так как $y_{\text{вых}}(t) = F(i\omega)x_{\text{вх}}(t)$, то

$$F(i\omega) = A_Q(i\omega) / A_p(i\omega).$$
(2.53)

Последнее уравнение можно представить в виде

$$|F(i\omega)| = |A_Q(i\omega)|/|A_p(i\omega)| = A_Q/A_p, \qquad (2.54)$$

$$\Delta \varphi(\omega) = \varphi_Q - \varphi_p. \tag{2.55}$$

Выражение (2.54) называется амплитудно-частотной характеристикой (АЧХ), выражение (2.55) – фазо-частотной характеристикой (ФЧХ).

Из теории линейного отклика известно, что передаточную функцию системы можно представить в виде произведения передаточных функций простых подсистем, если они соединены последовательно. Амплитуда передаточной функции сложной системы будет равна произведению, а фаза – сумме фаз соответствующих характеристик подсистем.

Допустим, фильтрация в трещиновато-пористой среде происходит по неравновесному закону и описывается линейным уравнением пьезопроводности комбинированного вида, состоящим из наложения на релаксационную модель 4 с временами релаксации τ_p и τ_q на модель трещиноватопористой среды с постоянными размерности времени τ_1 и τ_2 , характеризующими свойства трещинного и блокового пространств

$$\chi_1 \tau_1 \Delta \left\{ P_1 + \left(\tau_1 + \tau_p\right) \frac{\partial P_1}{\partial t} + \tau_2 \tau_p \frac{\partial^2 P_1}{\partial t^2} \right\} = (\tau_1 + \tau_2) \frac{\partial P_1}{\partial t} + \left(\chi_1 + \tau_1 \tau_q + \tau_2 \tau_q\right) \frac{\partial^2 P_1}{\partial t^2} + \tau_1 \tau_2 \tau_q \frac{\partial^3 P_1}{\partial t^3}, \quad (2.56)$$

где χ_1 – пьезопроводность трещинного пространства, и ниже будет введено $\tau = (\tau_1 \tau_2)/(\tau_1 + \tau_2)$ и ε_1 - гидропроводность трещинного пространства.

Тогда передаточная функция модели фильтрации по неравновесному закону в трещиновато-пористой среде будет иметь вид
$$F(i\omega) = 2\pi\varepsilon_{1}\sqrt{\left(\frac{r_{c}^{2}}{\chi_{1}}\omega\right)} \exp\left[i\left(\frac{\pi}{4}+\pi n\right)\right]\sqrt{\frac{\tau_{2}}{\tau}\frac{\sqrt{1+\omega^{2}\tau^{2}}}{\sqrt{1+\omega^{2}\tau_{2}^{2}}}}exp\left\{\frac{1}{2}i[arctg(\omega\tau)-arctg(\omega\tau_{2})]\right\}\sqrt{\frac{\sqrt{1+\omega^{2}\tau_{p}^{2}}}{\sqrt{1+\omega^{2}\tau_{q}^{2}}}}exp\left\{\frac{1}{2}i[arctg(\omega\tau_{p})-arctg(\omega\tau_{q})]\right\}.$$

$$(2.57)$$

Здесь она представлена в форме трех групп сомножителей, что позволяет проследить формирование передаточных функций от однородного терригенного коллектора через передаточную функцию трещиноватопористого пласта к функции трещиновато-пористого пласта с неравновесным законом фильтрации.

Примеры амплитудно-частотной и фазо-частотной характеристик показаны на рис.2.7. Экспериментальные данные взяты из таблиц в [27]. На этом рисунке точки- экспериментальные данные, линии- расчетные кривые с учетом времен релаксации. Отметим, что без учета времен релаксации не удается описать приведенные экспериментальные данные в рамках классических моделей ни при каких значениях параметров пьезопроводности и гидропроводности.

Часто для графического представления комплексной передаточной функции используют диаграммы Найквиста, где по оси абсцисс откладывают $Re = \cos(\varphi) A_Q / A_p$ -действительную часть, а по оси ординат $Im = \sin(\varphi) A_Q / A_p$ -мнимую часть комплексной передаточной функции [37].

Для случая неравновесной фильтрации диаграммы Найквиста представлены на рис.2.8.

Рис.2.7. Амплитудно-частотная и фазо-частотная характеристики системы пласт-скважина.

Рис.2.8. Диаграмма Найквиста для неравновесного закона фильтрации.

1 -
$$\tau_p = 3600 \text{ c}, \ \tau_q = 1 \text{ c}; 2 - \tau_p = 10000 \text{ c}, \ \tau_q = 1 \text{ c}.$$

Рис.2.9. Диаграмма Найквиста для неравновесного закона фильтрации. 1 - $\tau_p = 3600$ c, $\tau_q = 1$ c; 2 - $\tau_p = 3600$ c, $\tau_q = 100$ c; 3 - $\tau_p = 3600$ c, $\tau_q = 300$ c; 4 - $\tau_p = 3600$ c, $\tau_q = 1000$ c;

Рис.2.10. Диаграмма Найквиста трещиновато-пористого пласта. 1 - $\tau_2 = 3600$ с, $\tau^* = 1$ с; 2 - $\tau_2 = 10000$ с, $\tau^* = 1$ с.

Зависимость характера диаграммы от величины параметра τ_q показана на рис.2.9. На скважине задаются прямоугольные периодические импульсы дебита (отбор-простой) и рассчитывается давление. Каждой точке графика соответствует определенный период гидродинамического воздействия.

Диаграммы Найквиста для трещиновато-пористого пласта приведены на рис.2.10. Для общего случая диаграммы представлены на рис.2.11.

Рис.2.11. Диаграмма Найквиста. 1- $\tau_p = 3600c$, $\tau_q = 1 c$, $\tau_2 = 1c$, $\tau^* = 1c$, 2- $\tau_p = 3600c$, $\tau_q = 1000 c$, $\tau_2 = 1c$, $\tau^* = 1c$, 3- $\tau_p = 3600c$, $\tau_q = 1 c$, $\tau_2 = 3600c$, $\tau^* = 1c$, 4- $\tau_p = 3600c$, $\tau_q = 1 c$, $\tau_2 = 3600c$, $\tau^* = 1000c$, 5- $\tau_p = 3600c$, $\tau_q = 1000 c$, $\tau_2 = 3600c$, $\tau^* = 1000c$, 6- $\tau_p = 1c$, $\tau_q = 1 c$, $\tau_2 = 3600c$, $\tau^* = 1000c$,

На диаграмме представлен интервал периодов 0.5-24 τ_p . Основными параметрами, формирующими диаграмму, являются τ_p , τ_q . При значимых величинах последнего параметра происходит переход ветви диаграммы, соответствующей малым периодам, в первый квадрант и «уход» от пересечения с осью ординат.

Ниже показаны примеры для реальных гидродинамических экспериментов [27].

Рис. 2.12. Фазо-частотная характеристика пласта ($\tau_p = 10000$ c, $\tau_q = 10$ c, $\tau_2 = 3600$ c, $\tau^* = 1$ c).

Рис. 2.13. Амплитудно-частотная характеристика пласта ($\tau_p = 10000$ c, $\tau_q = 10$ c, $\tau_2 = 3600$ c, $\tau^* = 1$ c).

Совместное использование частотных и переходных характеристик обеспечивает дополнительную возможность оценки экспериментальных и модельных результатов.

РАЗДЕЛ 3. РАСПРОСТРАНЕНИЕ ОДИНОЧНЫХ ИМПУЛЬСОВ ДАВЛЕНИЯ В ПЛАСТАХ [5,41]

В этом разделе рассматривается распространение одиночных импульсов давления, вызванных кратковременным пуском или остановкой скважины и определяется, в какой момент t в произвольной точке r пласта изменение давления давление p(r,t) будет иметь максимум.

Изменение давления p(t) в произвольной точке пласта для точечного источника-стока в любой момент времени при пуске скважины с произвольным дебитом q(t) можно записать в виде свертки

$$p(r,t) = \frac{1}{4\pi\varepsilon} \int_{0}^{t} q(t') G(t-t') dt', \qquad (3.1)$$

где G(t) является фундаментальным решением соответствующего уравнения фильтрации (см. Приложение 1).

Рассмотрим различия в динамике импульсов давления в модели 1 и модели 2. Фундаментальные решения для них

$$G_{1}(t) = \frac{\exp\left(-\frac{r^{2}}{4\chi t}\right)}{t}, \qquad (3.2)$$

$$G_{2}(t) = \frac{2\exp\left(-\frac{t}{2\tau_{q}}\right)}{\sqrt{t^{2} - \frac{r^{2}\tau_{q}}{\chi}}}ch\left[\frac{\sqrt{t^{2} - \frac{r^{2}\tau_{q}}{\chi}}}{2\tau_{q}}\right]\theta\left(t - r\sqrt{\frac{\tau_{q}}{\chi}}\right). \qquad (3.3)$$

Будем считать, что дебит q(t) задается в виде прямоугольного импульса длительностью T, т.е.

$$q(t) = q_0 \left[\theta(t) - \theta(t - T) \right]. \tag{3.4}$$

Пример такого задания дебита показан на рис.3.1, сплошной кривой 1.

Продифференцируем (3.1) по t:

$$\frac{\partial p(r,t)}{\partial t} = 0 = \frac{1}{4\pi\varepsilon} \left[q(t')G(t-t')_{t'=t} + \int_{0}^{t} q(t')\frac{\partial G(t-t')}{\partial t'}dt' \right].$$
(3.5)

Учитывая, что для (3.4)

$$\frac{\partial q(t')}{\partial t'} = q_0 \left[\delta(t') - \delta(t' - T) \right], \qquad (3.6)$$

в модели 1 получим

$$\frac{\exp\left(-\frac{r^2}{4\chi t}\right)}{t} - \theta(t-T)\frac{\exp\left(-\frac{r^2}{4\chi(T-t)}\right)}{T-t} = 0$$
(3.7)

Отсюда можно получить, что для любых точек r максимум давления p(r,t) появляется на временах $t_{\max} > T$, а для произвольного времени t местоположение максимума $r_{\max}(t)$ дается выражением

$$r_{\max}(t) = \left\{ 4\chi t \left(\frac{t}{T} - 1\right) \ln\left(\frac{t}{t - T}\right) \theta(t - T) \right\}^{1/2}.$$
(3.8)

Аналогичное решение получено и в [5].

Рассмотрим модель 2. Мы приходим к более сложному соотношению

Теперь максимумы давления в точке *r* появятся только на временах $t > T + r_{\sqrt{\frac{\tau_q}{\chi}}}$. Здесь скорость $\sqrt{\chi/\tau_q}$ определяет запаздывание, связанное с конечностью скорости распространения возмущений в уравнениях гиперболического типа.

На рис.3.1 показаны результаты вычислений отклика давления в пласте в точке r = 200 м при $\chi = 1$ м²/сек на задание импульса дебита в виде прямоугольника (кривая 1) для вариантов времен $\tau_q = 0$ (кривая 2), что соответствует модели 1, $\tau_q = 1000$ сек (кривая 3) и $\tau_q = 10000$ сек (кривая 4) для модели 2. Все кривые нормированы на свои максимальные значения. Длительность импульса дебита составляла 12 часов, или 43200 сек.

Мы видим, что увеличение времени релаксации при прочих неизменных параметрах приводит к тому, что сигнал становится менее размытым («восстанавливается первичная «прямоугольность»), а максимум наступает позже.

Рис.3.1. Дебит на возмущающей скважине – кривая 1, изменения давлений в точке r = 200 м, нормированные на свои максимальные значения для вариантов времен $\tau_q = 0$ – кривая 2, $\tau_q = 1000$ сек – кривая 3 и $\tau_q = 10000$ сек – кривая 4.

На рис.3.2 показаны значения местоположений максимумов при различных временах наблюдения, рассчитанные на основе модели 1 для $\chi = 1 \text{m}^2$ /сек (уравнение (6.8)) – кривая 1 и модели 2 (уравнение (6.9)) – кривая 2. Длительность импульса дебита T составляла 1000 сек.

Рис.3.2. Местоположения *г*_{тах} для моделей 1 и 2.

На основании анализа вышеприведенных графиков по уровню отклонения реальной кривой от модельной кривой, описывающей фильтрацию по модели 1 типа, можно реализовать тест на отличие фильтрационной модели от классического варианта для функции линейного отклика по давлению.

РАЗДЕЛ 4. О РАДИУСЕ ВЛИЯНИЯ ГИДРОДИНАМИЧЕСКИХ ВОЗ-МУЩЕНИЙ ПРИ ИССЛЕДОВАНИЯХ ПЛАСТОВ МЕТОДОМ ВОЛН ДАВЛЕНИЯ

Для оценивания времени проведения гидродинамических исследований скважин по методу фильтрационных волн давления и глубины зондирования пласта требуется задать продолжительность периодов воздействия и амплитуду изменений давления на возмущающей скважине. При этом, пороговое значение регистрируемого давления, обозначаемое далее как $P_{\kappa p}$, носит условный характер. Для метода ФВД таким значением по амплитуде давления ниже выбрано $P_{\kappa p} = 10^3$ Па [37].

При проведении межскважинного зондирования с периодом T (и, соответственно, циклической частотой $2\pi/T$) в системе с вертикальными скважинами можно использовать выражения для расчетов амплитуды давления регистрируемого на реагирующей скважине, величина которого в нашем исследовании должна быть равна или превосходить пороговое $P_{\kappa p}$

$$P_{r} = P_{\kappa p} = \frac{1}{2\pi\varepsilon} \frac{q}{X_{c}} \left[\frac{Ker^{2}X + Kei^{2}X}{Ker_{1}^{2}X_{c} + Kei_{1}^{2}X_{c}} \right]^{1/2}.$$
 (4.1)

При этом амплитуда давления на возмущающей скважине рассчитывается по формуле

$$P_{c} = \frac{1}{2\pi\varepsilon} \frac{q}{X_{c}} \left[\frac{Ker^{2}X_{c} + Kei^{2}X_{c}}{Ker_{1}^{2}X_{c} + Kei_{1}^{2}X_{c}} \right]^{1/2}.$$
(4.2)

Будем считать, что значения гидропроводности є и пьезопроводности χ известны из предварительных оценок. Таким образом, для определения времени проведения эксперимента необходимо найти математическую связь между безразмерным параметром X и давлением $P_{\kappa p}$. Решаем уравнение вида

$$\frac{1}{X_c} \left[\frac{Ker^2 X + Kei^2 X}{Ker_1^2 X_c + Kei_1^2 X_c} \right]^{1/2} = \frac{2\pi\varepsilon P_{\kappa p}}{q} = D .$$

$$(4.3)$$

(4.4)

Отметим, что для большинства ситуаций выражение $X_c \left(Ker_1^2 X_c + Kei_c^2 X_c \right)^{1/2}$ примерно равно единице, поскольку $\left(Ker_1^2 X_c + Kei_c^2 X_c \right)^{1/2} \approx 1/X_c$

при малых $X_c (X_c \ll 1)$. Графически решение уравнения (4.3) показано на рис.4.1. В случае, когда значение выражения $X_c (Ker_1^2 X_c + Kei_c^2 X_c)^{1/2}$ значимо отклоняется от единицы, следует ввести поправку в значение параметра *D*, которая рассчитывается по результатам экспериментов.

Рис.4.1. Зависимость параметра $X = r(\omega/\chi)^{1/2}$ от параметра $D = 2\pi a P_{sp}/q$.

Разобьем решение (4.3), показанное на рис.4.1, на три интервала с интерполяцией решений вида X=X(lnD) на каждом из них кубическими полиномами. Оказалось, что с весьма хорошим приближением ($\mathbb{R}^2>0.9999$) можно рассчитывать значения вычисляемых параметров по нижеприведенным формулам таблицы 4.1. Зная X=X(lnD), можно получить формулы для расчета условного радиуса влияния в рассматриваемом интервале изменений параметра D в зависимости от параметров среды, устанавливаемого периода воздействия и амплитуды дебита возмущающей скважины и, соответственно, расчета необходимого периода воздействия в зависимости от параметров среды, расстояния между возмущающей и реагирующей скважинами и дебита возмущающей скважины. Здесь интервалу № I при $10^{-7} < D$ $< 10^{-1}$ соответствуют безразмерный параметр X^{I} , радиус влияния $r_{\kappa p}^{I}$, характерный период $T_{\kappa ap}^{I}$, интервалу № II при $10^{-1} < D < 1 - X^{I}$, $r_{\kappa p}^{II}$, T^{II} интервалу № III при $1 < D < 5 - X^{I}$, $r_{\kappa p}^{III}$, $T_{\kappa ap}^{III}$.

Таблица 4.1.

Формулы для расчетов радиусов и периодов воздействия для различных интервалов значений параметра $D = 2\pi a P_{\kappa p} / q$.

Диапазон	Расчетные соотношения
10 ⁻⁷ < D < 10 ⁻¹	$X^{I} = r(\omega/\chi)^{1/2} = 0.152629 - 1.107688(\ln D) + 0.018864(\ln D)^{2} + 0.000467(\ln D)^{3}$
	$r_{xp}^{I} = \frac{1}{\sqrt{2\pi}} \sqrt{\chi T} \begin{bmatrix} 0.152629 - 1.107688(\ln D) + \\ 0.018864(\ln D)^{2} + 0.000467(\ln D)^{3} \end{bmatrix}$
	$T_{xap}^{I} = \frac{2\pi}{\left[0.152629 - 1.107688(\ln D) + + 0.018864(\ln D)^{2} + 0.000467(\ln D)^{3}\right]^{2}} \frac{r^{2}}{\chi}$
$10^{-1} < D < 1$	$X^{II} = r(\omega/\chi)^{1/2} = 0.554114 - 0.731551(\ln D) + 0.135496(\ln D)^2 + 0.012328(\ln D)^3$
	$r_{xp}^{II} = \frac{1}{\sqrt{2\pi}} \sqrt{\chi T} \begin{bmatrix} 0.554114 - 0.731551(\ln D) + \\ +0.135496(\ln D)^2 + 0.012328(\ln D)^3 \end{bmatrix}$
	$T_{[xap}^{II} = \frac{2\pi}{\left[0.554114 - 0.731551(\ln D) + + 0.135496(\ln D)^2 + 0.012328(\ln D)^3\right]^2} \frac{r^2}{\chi}$
1 < D < 5	$X^{III} = r(\omega/\chi)^{1/2} = 0.557442 - 0.739750(\ln D) + 0.298024(\ln D)^2 - 0.031217(\ln D)^3$

$$r_{\kappa p}^{III} = \frac{1}{\sqrt{2\pi}} \sqrt{\chi T} \begin{bmatrix} 0.557442 - 0.739750(\ln D) + \\ + 0.298024(\ln D)^2 - 0.031217(\ln D)^3 \end{bmatrix}$$
$$T_{\kappa a p}^{III} = \frac{2\pi}{\begin{bmatrix} 0.557442 - 0.739750(\ln D) + \\ + 0.298024(\ln D)^2 - 0.031217(\ln D)^3 \end{bmatrix}^2} \frac{r^2}{\chi}$$

Сравним полученные решения с решением задачи о пуске узкой скважины с постоянным дебитом [35,37]. Изменение давления в точке наблюдения *r* в этом случае можно вычислить по формуле

$$\delta P = \frac{q}{4\pi\varepsilon} Ei \left(-\frac{r_{\rm kp}^2}{4\chi t} \right), \tag{4.5}$$

где Ei – интегральная показательная функция. При выполнении условий $\chi t >> r_{sp}^2$ и D << 1, можно приближенно вычислить радиус зондирования как $r_{sp} = (2/\sqrt{\gamma})\sqrt{\chi t}$ и характерное время воздействия для достижения изменения давления P_{sp} на удалении от скважины на расстояние r как $T_{sap} \approx (\gamma/4)(r^2/\chi).$

Отметим, что для весьма приближенных расчетов при значении безразмерного параметра X > 3 (что соответствует первому из рассматриваемых диапазонов изменения D) можно использовать формулы вида $r_{\kappa p}^{I} = \sqrt{\chi T} \ln \sqrt{q/8 \epsilon P_{\kappa p}}$ и $T_{xap}^{I} = (r^{2} / \chi) / \ln^{2} \sqrt{q/8 \epsilon P_{\kappa p}}$.

Как и следовало ожидать, определяющий вклад в оценочные расчеты вносят выражения $\sqrt{\chi t}$ и (r^2/χ) , которые входят в вышеприведенные формулы.

Таким образом, полученные результаты позволяют провести количественную оценку характерного времени проведения гидродинамических экспериментов методом волн давления и методами многоимпульсного зондирования пластов для систем вертикальных скважин.

РАЗДЕЛ 5. ВОПРОСЫ ОБРАБОТКИ РЕЗУЛЬТАТОВ ИССЛЕДОВА-НИЙ МЕЖСКВАЖИННОГО ПРОСТРАНСТВА МЕТОДОМ ФВД

Проведение исследований межскважинного пространства методом ФВД имеет ряд особенностей, поэтому следует сделать несколько замечаний в отношении интерпретации получаемых результатов [41].

5.1. О форме сигналов

Ниже мы будем называть формой сигнала вид зависимости дебита q(t) или забойного давления $p_c(t)$ от времени. В теории метода ФВД обычно рассматриваются задачи, в которых колебания дебитов скважин с периодом $T = 2\pi/\omega$ задаются либо гармоническими функциями вида

$$q(t) = q_0 \sin(\omega t), \tag{5.1}$$

$$q(t) = q_0 \cos(\omega t), \tag{5.2}$$

либо дебиты задаются в виде последовательности сигналов прямоугольной формы с суммарным за период дебитом, равным нулю, когда закачка и отбор скомпенсированы

$$q(t) = q_0 \left[\sum_{n=0}^{\infty} \frac{2}{\pi} \frac{\sin((2n+1)\omega_0 t)}{(2n+1)} \right],$$
(5.3)

либо в виде не скомпенсированного по полупериодам дебита в режиме «нагнетание-простой»

$$q(t) = q_0 \left[\frac{1}{2} + \sum_{n=0}^{\infty} \frac{2}{\pi} \frac{\sin((2n+1)\omega_0 t)}{(2n+1)} \right].$$
(5.4)

Периодическая часть сигнала по дебиту, в результате, записывается в виде

$$q_{\pi ep} = \sum_{n=0}^{\infty} q_n \cos(\omega_n t + \delta_n), \qquad (5.5)$$

где $(\omega_n t + \delta_n)$ – фаза n–ой гармоники, при этом сдвиг фазы δ_n теперь не будет равным нулю, в отличие от идеализированных сигналов прямоугольной формы, описываемых формулами (5.3) и (5.4).

5. 2. О компенсации отбора и закачки при исследованиях методом ФВД

На практике бывает затруднительно задавать колебания дебитов таким образом, чтобы объем закачанной (отобранной) жидкости в скважину за первые полпериода был бы равен объему, отобранному (закаченному) из скважины за вторые полпериода. Обычно происходит смена режимов «закачка – простой», «отбор – простой» или их комбинации. При этом в пласте возникает и со временем нарастает не скомпенсированный объем закачанной или отобранной жидкости. В результате, наблюдается общее повышение (понижение) давления, что видно из рис.5.1. Здесь показано общее решение для изменения давления (кривая 1) в фиксированной точке наблюдения, которое представляет собой суперпозицию решения для собственно гармонических фильтрационных волн давления (кривая 2) и решения задачи о пуске скважины с постоянным дебитом (кривая 3). Для линейных систем при разделении вкладов этих двух процессов в общее решение должны получиться одни и те же значения параметров пластов. Этот факт может быть использован для контроля вычислений.

53

Рис.5.1. Пример расчета давления в контрольной точке при задании на возмущающей скважине дебита в виде суммы периодической и постоянной составляющих дебита.

5.3. О применении Фурье – разложений

К настоящему времени создано достаточно большое число методов количественного анализа сложных сигналов, хотя главенствующим остается метод Фурье.

По результатам измерений дебитов и давлений, полученных методом ФВД, обычно осуществляется Фурье – анализ сигналов (изменений во времени этих дебитов и давлений) и сравниваются амплитуды и фазы соответствующих гармоник разложения. Далее, по отношениям амплитуд и разностям фаз соответствующих гармоник вычисляются фильтрационные параметры пластов (ФПП). Нужно отметить, что подобный способ определения ФПП применим только для линейных систем, хотя, формально, для сравнения и выявления особенностей сигналов можно произвести и Фурье – разложение для нелинейных систем. Следует отметить, что в условиях квазиустановившего режима ФВД, Фурье–анализ дает возможность определить фазу каждой гармоники с точностью до $2\pi n$, где n – целое. Этот факт следует иметь в виду при подсчетах разностей фаз, особенно для гармоник с большими номерами.

А какую предельную (максимальную) частоту мы можем анализировать в рамках метода гармонических фильтрационных волн давления при дискретном задании временных отсчетов с шагом Δt ? В соответствии с теоремой Шеннона–Котельникова такой частотой будет частота Найквиста

$$\omega_{\rm KD} = \pi / \Delta t \,, \tag{5.6}$$

поскольку понятно, что мы не можем анализировать высокочастотные компоненты сигналов при больших временных промежутках между отдельными актами изменений.

В масштабах временных можно ввести понятие критического периода, получаемого из (5.6)

$$T_{\rm kp} = 2\pi/\omega_{\rm kp} = 2\Delta t . \tag{5.7}$$

5.4. Начиная с какого момента можно считать режим колебаний квазиустановившимся?

При анализе данных, полученных в ходе экспериментов по ФВД, исходят из того, что режим волн давления является квазиустановившимся во всей области наблюдения. Здесь следует подчеркнуть, что это, обычно, справедливо для возмущающей скважины, начиная с 3–4 периодов колебаний [5]. Что же касается контрольной скважины, то момент установления квазистационарных колебаний давления будет определяться конкретными условиями задачи – значениями параметров пласта. Понятно, что гидродинамический эксперимент не может проводиться слишком долго в силу технико–экономических причин. В результате, обработку данных для контрольной скважины также начинают с 3–4 периодов колебаний, что может привнести ошибку до единиц процентов в определении ФПП. Приближенно эффект влияния начальных условий может быть записан в виде [5]

$$\frac{\Delta p(t)}{q_0} 2\pi\varepsilon \approx \ker x \sin \omega t + keix \cos \omega t + \frac{\exp\left(-\frac{r^2}{2\chi t}\right)}{2\omega t}$$
(5.8)

при задании дебита по закону (4.1) и

$$\frac{\Delta p(t)}{q_0} 2\pi\varepsilon \approx \ker x \sin \omega t - keix \cos \omega t + + \frac{\exp\left(-\frac{r^2}{4\chi t}\right)}{2\omega^2 t^2} \left(1 - \frac{r^2}{4\chi t}\right) - -3! \frac{\exp\left(-\frac{r^2}{4\chi t}\right)}{2\omega^4 t^4} \left[1 - 3\frac{r^2}{4\chi t} + \frac{3}{2}\left(\frac{r^2}{4\chi t}\right)^2 - \frac{1}{6}\left(\frac{r^2}{4\chi t}\right)^3 + \dots\right]$$
(5.9)

при задании дебита в виде (4.2), где влияние начальных условий описывается негармоническими по времени членами, вклад которых уменьшается со временем.

Кроме того, мы видим, что имеется определенная неэквивалентность в задании дебитов на возмущающей скважине [41] по закону синуса (5.1) или по закону косинуса (5.2). Эта неэквивалентность обусловлена тем, что объемы жидкости при закачке и отборе на скомпенсированы. Так, на рис.5.2 показано применение формул при задании дебита скважины по закону (5.1) (кривая 1) и по закону (5.2) (кривая 2). Во втором случае процесс установления стационарного режима ФВД протекает быстрее, что нетрудно заметить, проанализировав приближенные выражения (5.8) и (5.9).

Рис.5.2. Значения изменения давлений в контрольной точке при задании дебита в виде (4.1) – кривая 1 и (4.2) – кривая 2.

Таким образом, время установления квазистационарного режима определяется параметрами исследуемой системы и условиями эксперимента. Отметим, что при интерпретации результатов гидродинамических экспериментов обычно приходится выделять фоновые изменения давления в точке наблюдения, связанные не с условиями проведения эксперимента, а с работой соседних скважин. При этом фоновое давление и непериодические по времени составляющие изменения давления аппроксимируются набором полиномов или экспонент, а для дальнейшего анализа оставляют лишь периодические составляющие. Что же касается последних, то в некоторых ситуациях, очевидно, следует принимать во внимание, что обработка результатов ФВД на ранних стадиях может привести к неточностям при определении параметров пластов. Одним из тестов для определения степени квазистационарности процесса могут служить исследования динамики разности фаз и отношений амплитуд 1 и 3, 1 и 5 гармоник.

57

5.5. О дебите при самопрослушивании

При проведении исследований методом самопрослушивания в определенных ситуациях, прежде всего при высоких частотах изменения дебита, требуется учет реального дебита жидкости, втекающей в пласт или вытекающей из него, в условиях, когда расходомер-дебитомер находится на устье скважины. Действительно, при перепаде давления в 10 МПА на режимах «нагнетание–простой» и при объеме пространства ствола скважины до 100 куб.м, речь может идти о несвоевременно учтенном объеме жидкости в размере до 1 куб.м.

Поправку можно рассчитать приближенно, учитывая следующие составляющие изменения давления в скважине: подъем уровня в трубах, подъем уровня в затрубье, сжатие жидкости в скважинном пространстве [37]

$$S_{TP} \frac{\partial \Delta h_T(t)}{\partial t}\Big|_{t \le T_p} \Longrightarrow S_3 \frac{\partial \Delta h_3(t)}{\partial t}\Big|_{t \le T_3} \Longrightarrow V_{c\kappa\sigma} \beta_{\mathcal{H}} \frac{\partial p_c(t)}{\partial t}\Big|_{t > T_3}, \qquad (5.10)$$

где S_{TP} – площадь трубок, S_3 – площадь затрубья, h_T – высота уровня в трубках, h_3 – высота уровня в затрубье, $V_{c\kappa b}$ – объем скважинного пространства, $\beta_{\kappa c}$ – сжимаемость жидкости, T_p – время заполнения уровня трубок, T_3 – время заполнения уровня в затрубье.

5.6. О знаке дебита

Кому-то этот вопрос может показаться очевидным, однако именно с ним связаны, порой, ошибки при интерпретации данных ФВД на режиме самопрослушивания скважин.

Дело в том, что имеется произвол в выборе знака дебита при определении его через давление на стенке скважины.

Так, в одних источниках задается

$$q = -2\pi\varepsilon \left(r \frac{\partial p}{\partial r} \right) \Big|_{r=r_c}, \qquad (5.11)$$

а в других как

$$q = 2\pi\varepsilon \left(r \frac{\partial p}{\partial r} \right) \Big|_{r=r_c}$$
(5.12)

Допустим, мы задаем периодический режим изменения дебита на нагнетательной скважине в режиме нагнетание–простой. Как будет выглядеть график для дебита? Теперь при определении (5.11) график изменения дебита будет выглядеть перевернутым, как показано на рис.5.3, кривая 1, а в рамках определения (5.12) этот же график будет выглядеть, как показано на рис.5.3, кривая 2. Соответствующие кривые первых гармоник Фурье– разложения показаны кривыми 3 и 4. Мы видим, что в зависимости от определения (1) или (2) возникает или не возникает дополнительный фазовый сдвиг, равный π .

Рис.5.3. Изменения дебита на возмущающей скважине

Это различие в знаках дебитов весьма существенно при определении сдвига фаз между соответствующими гармониками Фурье – разложения при проведении самопрослушивания скважин. Так, если в первом случае разность фаз между гармониками дебита и давления составит $\Delta \varphi$, то для другого случая она составит $\pi + \Delta \varphi$.

К счастью, природа «не знает» наших определений, а в формулах для вычисления конкретных фильтрационных параметров стоят тригонометрические функции *tg* и *sin*:

$$\frac{\chi}{r_c^2} = \frac{\gamma^2}{4} \omega \exp \frac{\pi}{2tg(\Delta \varphi)}, \qquad (5.13)$$

а, как известно,

$$tg\Delta\varphi = tg(\pi + \Delta\varphi)_{\rm H} \left|\sin\Delta\varphi\right| = \left|\sin(\pi + \Delta\varphi)\right|.$$
(5.14)

РАЗДЕЛ 6. ОХЛАЖДЕНИЕ ПЛАСТОВ В РЕЗУЛЬТАТЕ ПЕРИОДИ-ЧЕСКОЙ ЗАКАЧКИ ХОЛОДНЫХ АГЕНТОВ

В данном разделе приводится сокращенный вариант описания и моделирования метода ФВД в условиях неизотермической фильтрации, изложенный в [22]. Рассмотрим вопрос о температурных изменениях, происходящих в пласте в результате периодических закачек жидкостей с температурой флюида, отличной от пластовой.

Для нахождения давления применим модель 1 -классического упругого режима (модель Щелкачева). Запишем уравнение энергии для пласта в пренебрежении кондуктивной составляющей теплопередачи по сравнению с конвективной в виде

$$c_n \frac{\partial T}{\partial t} = c_p (-\rho v) \left(\frac{\partial T}{\partial r} + \varepsilon \frac{\partial P}{\partial t}\right) + \frac{\partial}{\partial x} \left(\lambda_n \frac{\partial T}{\partial x}\right), \qquad (6.1)$$

где T – температура, x – вертикальная координата, направленная вниз, ρ – плотность флюида, v – скорость фильтрации, c_p – удельная изобарная теплоемкость жидкости, c_n , λ_n – коэффициенты теплоемкости и теплопроводности пласта, здесь ε - коэффициент Джоуля-Томсона.

В окружающих пласт породах распределение температуры описывается уравнением теплопроводности

$$\frac{\lambda_0}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) + \lambda_0 \frac{\partial^2 T}{\partial x^2} = c_0 \frac{\partial T}{\partial t}, \qquad r_c < r < R_k, \quad t > 0, \tag{6.2}$$

а индекс «0» означает, что параметры относятся к окружающим пласт породам.

На границе кровли и подошвы пласта соблюдаются условия сопряжения: равенство температур и тепловых потоков

$$[T] = 0, \quad \left[\lambda \frac{\partial T}{\partial x}\right] = 0, \quad npu \quad x = l, \quad l+h, \qquad (6.3)$$

где *l*,*l* + *h*-координаты подошвы и кровли пласта.

В качестве начального используем невозмущенное геотермическое распределение температур, которое на данном интервале можно представить в виде линейной функции от глубины $T(r, x) = T_H + \Gamma x$. На контуре питания поддерживается невозмущенная температура. На скважине будем задавать температуру нагнетаемой воды в виде (отсчет глубины идет от поверхности земли)

$$r = r_c, \quad x \le l + h, \quad T(r, x) = T_B,$$
(6.4)

а ниже пласта зададим условие симметрии

$$r = r_c$$
, $x > l + h$, $\frac{\partial T}{\partial r} = 0$. (6.5)

Для решения поставленных задач выписываются разностные аналоги. Ниже, при моделировании теплофизические параметры полагались следующими: теплоемкость пород -840 Дж/(кг*К), теплопроводность – 1.8 Вт/(м*К), что соответствует средним значениям для песчаника. Теплоемкость воды - 410 Дж/(кг*К), теплопроводность–0.5 Вт/(м*К). Свойства пласта пересчитывались с учетом пористости 20%. Проницаемость пласта полагалась равной 0.5 дарси. При задании дебита учитывалось, что средние дебиты нагнетания составляют 100-1000 м³/сут, а толщины пласта 5-10 м. Значение коэффициента Джоуля-Томсона для воды около 0. 2 °С/МПа, для нефти в два раза больше. Для типичных репрессий около единиц МПа вклад нагрева за счет термодинамического эффекта Джоуля-Томсона будет несущественным.

Первая группа расчетов выполнена в предположении, что режим нагнетания является стационарным с постоянным дебитом на протяжении всей истории разработки. Толщина пласта 5 м, температура закачиваемой воды 10 °C (рис.6.1).

Часто при разработке месторождений нефти в условиях заводнения, закачка рабочего агента ведется не постоянно, а периодически. Рассмотрим случай периодической закачки с периодом 4 месяца, когда 2 месяца холод-

ная вода поступает в пласт, 2 месяца – нет (рис.6.2). Индексы кривых здесь и далее соответствуют расстоянию точки наблюдения до скважины в метрах. Если сравнить со случаем стационарной закачки с тем же дебитом, видно, что на расстоянии 58 метров разница температур составляет 1.5°C, на расстоянии 110 м - 4°C, на расстоянии 330 м при периодической закачке начальная температура вообще не изменилась. Для нескольких десятков метров околоскважинной области уменьшение реального времени закачки вдвое ничего не изменило.

Рис.6.1. Распределение температуры при длительности закачки 50 лет с дебитом 43 м³/сут на единицу толщины пласта.

Аналогичные расчеты были выполнены и для периода 12 месяцев, когда полгода закачка производится, полгода – нет, результат остался прежним. Более того, все периодические закачки при соотношении времени работы и простоя 1:1 дают практически один результат, который соответству-

вдвое

Рис. 6.2. Динамика охлаждения пласта и окружающих пород через 50 лет периодической закачки при дебите 43 м³/сут на единицу толщины пласта.

На рис.6.3 представлены три модельные кривые: стационарной закачки с дебитом 43 м³/сут. на единицу толщины пласта, и две периодические с периодами 4 и 12 месяцев при дебите 86 м³/сут., которые вследствие наложения невозможно различить, за исключением интервала пласта.

Таким образом, в первом приближении, на больших временах, когда процессы теплообмена являются квазистационарными, охлаждение определяется суммарным количеством тепла, или суммой произведений объема закачанной жидкости на разницу температур пласта и внедряемого агента.

Динамику температуры в пласте на периодических режимах можно просмотреть на рис.6.4-6. На рис.6.4 представлен случай 12 месячного периода с соотношением длительности режимов закачка - простой 1:1 при относительно малом дебите 8.64 м³/сут на единицу мощности пласта. Температура пласта изменяется с общей тенденцией к снижению.

Рис. 6.3. Динамика охлаждения пласта и окружающих пород через 30 лет на расстоянии 58 м от скважины с периодами T = 4 (звездочки) и T = 12 (сплошная линия) месяцев.

Рис. 6.4. Динамика охлаждения пласта при дебите 8.6 4м³/сут.

Рис. 6.5. Динамика охлаждения пласта при дебите 43 м³/сут и соотношении закачка простой 1:1.

Рис. 6.6. Динамика охлаждения пласта при дебите 43 м³/сут и соотношении закачка простой 1:9.

На рис.6.5 представлены расчеты для случая, когда дебит увеличен в 5 раз по сравнению с предыдущим, прочие параметры сохранены. Это привело к увеличению амплитуды колебаний и увеличению охвата охлаждением по простиранию пласта.

Для того же дебита изменим соотношение времен закачка - простой до 1:9. Это увеличило амплитуду колебаний температуры (рис.6.6 по сравнению с рис.6.5), сделало форму линии температурных изменений несимметричной, уменьшило глубину проникновения охлаждения. Изменение температуры для случая стационарной закачки показано для расстояния 9 м от скважины. Эта линия уже не является несущей для такого несимметричного колебательного процесса и смещена в сторону более низких температур.

РАЗДЕЛ 7. ПОПЕРЕЧНЫЕ ДЕФОРМАЦИИ ПОРОД, ВЫЗВАННЫЕ ФИЛЬТРАЦИЕЙ В МЕТОДЕ ВОЛН ДАВЛЕНИЯ

Периодические изменения давления в пласте приведут и к периодическим изменениям смещений и деформаций горных пород, что может быть использовано для контроля процесса фильтрации [13-15, 34, 46-47]. Рассмотрим насыщенный флюидом пласт толщиной h, залегающий на глубине H. Предположим, что пласт разбурен одиночной скважиной, через которую осуществляется движение флюида, выполняется условие h << H. Далее для определения деформаций в пласте будем следовать методике, предложенной в работах [13-15].

В силу аксиальной симметрии задачи используется цилиндрическая система координат (r, z, φ) , при этом ось z совпадает с осью скважины, плоскость z = H перпендикулярна силе тяжести и является свободной поверхностью. Плоскость z = 0 совпадает с серединной плоскостью пласта. Пласт считается однородным, движение жидкости осесимметричным. Предполагается, что горная порода характеризуется усредненным коэффициентом Пуассона σ и модулем Юнга E, пласт характеризуется жесткостью поперечных деформаций E_{π}/h , где E_{π} есть модуль Юнга скелета пласта.

Решение задачи о смещениях свободной поверхности и деформациях сводится к нахождению вектора смещений *u* среды. Уравнение, которому удовлетворяет *u*, имеет вид

$$grad(div \,\boldsymbol{u}) - \frac{1 - 2\sigma}{2(1 - \sigma)} rot(rot \,\boldsymbol{u}) = 0.$$
(7.1)

Граничные условия для этого уравнения записываются в виде [14]

$$\sigma_{z} = \tau_{rz} = 0 \quad (z = H),$$

$$\Delta \sigma_{z} = \Delta \tau_{rz} = \Delta u_{r} = 0,$$

$$\Delta u_{z} = (\sigma_{z} + p(r,t))h/E_{\pi} \quad (z = h/2 \approx 0),$$
(7.2)

где σ_z и τ_{rz} – компоненты тензора напряжений, u_z и u_r являются соответственно вертикальной и горизонтальной компонентами вектора **u**, значок " Δ " в (7.2) означает разность (скачок) соответствующей величины на границе «горная порода» – «пласт», p(r,t) – давление в пласте, которое определяется из уравнения фильтрации. Заметим, что условие ($z = h/2 \approx 0$) для Δu_z является разумным в случае, когда h < < H.

Все величины в (7.2) могут быть вычислены точно, используя представление Папковича–Найбера для компонент тензора напряжения и вектора u в терминах гармонических функций Φ и φ в виде интегралов Ханкеля (Hankel)

$$p(r,t) = \int_{0}^{\infty} P(\xi,t) J_{0}(\xi r) \xi d\xi, \qquad (7.3)$$

$$\sigma_{z} = 2(1-\sigma) \frac{\partial \Phi}{\partial z} - z \frac{\partial^{2} \Phi}{\partial z^{2}} - \frac{\partial^{2} \varphi}{\partial z^{2}}, \qquad (7.3)$$

$$\tau_{rz} = \frac{\partial}{\partial r} \left[(1-2\sigma) \Phi - z \frac{\partial \Phi}{\partial z} - \frac{\partial \varphi}{\partial z} \right], \qquad (7.4)$$

$$u_{z} = \frac{1+\sigma}{E} \left[(3-4\sigma) \Phi - z \frac{\partial \Phi}{\partial z} - \frac{\partial \varphi}{\partial z} \right], \qquad (7.4)$$

где J_0 – функция Бесселя (Bessel). Формула для смещений свободной поверхности горной породы $u_z(z = H)$ будет

$$u_{z}(r,t,z=H) = \frac{4(1-\sigma^{2})H}{E}\int_{0}^{\infty} d\xi \xi J_{0}(\xi r) exp(-H\xi) \frac{(1+H\xi)P(\xi,t)}{a+H\xi f(\xi)}, \quad (7.5)$$

где

$$a = \frac{4(1-\sigma^2)HE_{\pi}}{Eh}, \quad f(\xi) = 1 - (1 + 2H\xi + 2H^2\xi^2) \exp(-2H\xi),$$

а для деформаций как

$$u_{zz}(r,t,z=H) = -\frac{16\sigma(1+\sigma)H^2}{E}\int_{0}^{\infty} d\xi \frac{\xi^3 J_0(\xi r) \exp(-H\xi)P(\xi,t)}{a + \xi H f(\xi)}.$$
 (7.6)

Теперь необходимо определить вид функции $P(\xi,t)$. С учетом сжимаемости пласта и в пренебрежении смещениями пород в плоскости пласта, классическое уравнение фильтрации можно модифицировать в виде

$$c\frac{\partial p}{\partial t} + d\frac{\partial \sigma_z}{\partial t} = \frac{k}{\mu}\nabla^2 p, \qquad (7.7)$$

где k – проницаемость пласта, μ – вязкость флюида, а параметры c и d определяются через упругие свойства пласта и флюида. Для случая постоянной вертикальной нагрузки, создаваемой весом массива горной породы, из условия непрерывности на непроницаемой кровле и подошве пласта

следует, что $\frac{\partial p}{\partial t} = \frac{\partial \sigma_z}{\partial t}$, и (7.7) сводится к уравнению пьезопроводности

для фильтрационного давления:

$$\partial p/\partial t = \chi \Delta p$$
 (7.8)

$$\partial p/\partial t = \chi \Delta (p + \tau \partial p/\partial t)$$
 (7.9)

с коэффициентом пьезопроводности пласта $\chi = k/[\mu(c+d)]$ и τ - постоянная размерности времени, характеризующая обмен жидкостью между блоками и трещинами.

Для последнего уравнения функция $P(\xi, t)$ имеет вид

$$P(\xi,t) = \frac{\chi}{2\pi\varepsilon} \frac{1}{(1+\chi\tau\xi^2)^2} \int_0^t dt' q(t-t') \exp(-\frac{t'\chi\xi^2}{1+\chi\tau\xi^2}), \qquad (7.10)$$

а при задании в возмущающей скважине дебита в виде периодической функции $q(t) = q_0 \sin \omega t$ с периодом $T = 2\pi/\omega$, функция $P(\xi, t)$ запишется (для времен t >> T) как

$$P(\xi,t) = \frac{q_0}{2\pi\varepsilon} \frac{\chi}{(1+\chi\tau\xi^2)^2} \left[\frac{b}{\omega^2 + b^2} \sin\omega t - \frac{\omega\cos\omega t}{\omega^2 + b^2} + \frac{\omega}{\omega^2 + b^2} \exp(-bt) \right], (7.11)$$

где $b = \chi \xi^2 / (1 + \chi \tau \xi^2)$, ε - гидропроводность пласта.

Согласно другому способу задания нагрузки, изменения порогового давления в пласте связываются со смещениями массива горной породы. В этом случае (7.8) сводится к интегро-дифференциальному уравнению

$$\frac{\partial}{\partial t} \left[p - \alpha \int_{0}^{\infty} \frac{\xi^{2} F(\xi, t)}{\xi + \lambda} J_{0}(\xi r) d\xi \right] = \chi \nabla^{2} p.$$
(7.12)

Здесь $F(\xi, t) = \int_0^\infty y p(y, t) J_0(\xi y) dy, \lambda = a/H, \alpha$ - безразмерный коэффициент, определяемый сжимаемостями пород и флюида.

ЗАКЛЮЧЕНИЕ

Развитие метода ФВД, изначально разработанного для условий однородного и изотропного пористого кругового пласта при однофазной изотермической фильтрации в рамках модели упругого режима, в настоящее время идет по направлениям приближения к реальным условиям, таким как расширение класса моделей фильтрации, используемых при интерпретации результатов; использование метода в различных типах скважин; развитие измерительных возможностей с применением современной аппаратуры и типов датчиков.

При этом, актуальными остаются задачи сокращения времени проведения исследования (методика эксперимента); повышения достоверности результатов (интерпретация); проведения исследований без остановки скважин (техника эксперимента).

71

ПРИЛОЖЕНИЕ 1. ФУНДАМЕНТАЛЬНЫЕ РЕШЕНИЯ ЛИНЕЙ-НЫХ УРАВНЕНИЙ ФИЛЬТРАЦИИ [41,28]

Модель 1

Уравнение пьезопроводности в случае плоскорадиальной фильтрации:

$$\frac{\partial p(r,t)}{\partial t} = \chi \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial p(r,t)}{\partial r}, \qquad (\Pi 1.1)$$

фундаментальное решение уравнения (П1.1)

$$G = \frac{\exp\left(-\frac{r^2}{4\chi t}\right)}{t}.$$
 (II1.2)

Для точечного стока-источника решение для изменения давления в пласте, начиная с момента времени t = 0, при задании произвольного дебита q(t) на длительно простаивавшей одиночной скважине запишется с использованием (П1.2) в виде свертки:

$$\Delta p(r,t) = \frac{1}{4\pi\varepsilon} \int_{0}^{t} q(t-t') \frac{\exp\left(-\frac{r^{2}}{4\chi t'}\right)}{t'} dt' \qquad (\Pi 1.3)$$

Модель 2

Уравнение для давления в случае плоскорадиальной фильтрации

$$\tau_q \frac{\partial^2 p(r,t)}{\partial t^2} + \frac{\partial p(r,t)}{\partial t} = \chi \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial p(r,t)}{\partial r}, \qquad (\Pi 1.4)$$

фундаментальное решение для (П1.4):
$$G_{q} = \frac{\exp\left(-\frac{t}{2\tau_{q}}\right)}{\sqrt{t^{2} - \frac{r^{2}\tau_{q}}{\chi}}} \cosh\left(\frac{\sqrt{t^{2} - \frac{r^{2}\tau_{q}}{\chi}}}{2\tau_{q}}\right) \theta\left(t - r\sqrt{\frac{\tau_{q}}{\chi}}\right). \tag{II1.5}$$

Решение для давления в виде свертки с использованием (П1.5):

$$\Delta p(r,t) = \frac{1}{4\pi\varepsilon} \int_{0}^{t} q(t-t') \frac{\exp\left(-\frac{t'}{2\tau_q}\right)}{\sqrt{t'^2 - \frac{r^2\tau_q}{\chi}}} 2\cosh\left(\frac{\sqrt{t'^2 - \frac{r^2\tau_q}{\chi}}}{2\tau_q}\right) dt'$$
(II1.6)

Модель 3

Уравнение пьезопроводности в случае плоскорадиальной фильтрации:

$$\frac{\partial p(r,t)}{\partial t} = \frac{\chi}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} \left(p(r,t) + \tau_p \frac{\partial p(r,t)}{\partial t} \right), \qquad (\Pi 1.7)$$

фундаментальное решение уравнения (П1.7):

$$G_{p} = \frac{1}{t} \int_{0}^{\infty} J_{1}(z) \left[1 - \exp\left(-\frac{tz^{2}\chi}{r^{2} + z^{2}\chi\tau_{p}}\right) \right] dz$$
(II1.8)

Решение для давления в виде свертки:

$$\Delta p(r,t) = \frac{1}{4\pi\varepsilon} \int_{0}^{t} \frac{q(t-t')}{t'} \int_{0}^{\infty} J_{1}(z) \left[1 - \exp\left(-\frac{t'\chi z^{2}}{r^{2} + z^{2}\chi\tau_{p}}\right) \right] dz dt'$$
(II1.9)

Модель 4

Уравнение пьезопроводности в случае плоскорадиальной фильтрации:

$$\tau_{q} \frac{\partial^{2} p(r,t)}{\partial t^{2}} + \frac{\partial p(r,t)}{\partial t} = \chi \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} \left(p(r,t) + \tau_{p} \frac{\partial p(r,t)}{\partial t} \right), \quad (\Pi 1.10)$$

фундаментальное решение

$$G_{pq} = \frac{\exp\left(-\frac{\tau_q r^2}{\tau_p 4 \chi t}\right)}{t} \left[1 - r_\sqrt{\frac{\tau_p - \tau_q}{\tau_p^2 \chi}} \times \int_0^\infty J_1\left(zr_\sqrt{\frac{\tau_p - \tau_q}{\tau_p^2 \chi}}\right) \exp\left(-\frac{z^2}{\tau_p t}\left[\frac{t^2}{1 + z^2} + \frac{r^2 \tau_q}{4\chi}\right]\right) dz\right]$$
(II1.11)

Решение для давления в виде свертки:

$$\Delta p(r,t) = \frac{1}{4\pi\varepsilon} \int_{0}^{t} \frac{q(t-t')}{t'} \exp\left(-\frac{\tau_{q}r^{2}}{\tau_{p}4\chi t'}\right)$$

$$\times \left[1 - r_{\sqrt{\frac{\tau_{p} - \tau_{q}}{\tau_{p}^{2}}}} \int_{0}^{\infty} J_{1}\left(zr_{\sqrt{\frac{\tau_{p} - \tau_{q}}{\tau_{p}^{2}\chi}}}\right)$$

$$\times \exp\left(-\frac{z^{2}}{\tau_{p}t'}\left[\frac{t'^{2}}{1+z^{2}} + \frac{r^{2}\tau_{q}}{4\chi}\right]\right)\right] dt' dz \qquad (\Pi 1.12)$$

ПРИЛОЖЕНИЕ 2. РАСЧЕТЫ ФИЛЬТРАЦИОННЫХ ПАРАМЕТРОВ ПЛАСТОВ С ИСПОЛЬЗОВАНИЕМ АППРОКСИМАЦИЙ ФУНКЦИЙ КЕЛЬВИНА [37]

При выполнении условий

$$X_c = r\sqrt{\omega/\chi} \ll 1, \tag{II2.1}$$

И

$$X = r\sqrt{\omega/\chi} >> 1 \tag{(II2.2)}$$

можно использовать приближенные формулы для расчетов ФПП в условиях ФВД.

При невыполнении этих условий можно использовать следующие приближения, использующие разложения функций по полиномам или дробно-рациональные аппроксимации Паде.

Для X_c при δ_c в диапазоне $0.08 < \delta_c < 0.576$:

$$X_{c} = 28.28531\delta_{c}^{4} - 25.98811\delta_{c}^{3} + 11.41709\delta_{c}^{2} - 1.79908\delta_{c} + 0.090795$$
(II2.3)

ИЛИ

$$X_{c} = \frac{1.42924\delta_{c}^{2} - 0.17849\delta_{c} + 0.0001}{-0.54261\delta_{c}^{2} - 0.77557\delta_{c} + 1.0},$$
 (II2.4)

для δ_c в диапазоне $0.563 < \delta_c < 0.74$:

$$X_c = 223784\delta_c^5 - 708725\delta_c^4 + 896855\delta_c^3 - 5667120\delta_c^2 + 178784\delta_c - 22524$$
, (П2.5)
для δ_c в диапазоне $0.74 < \delta_c < 0.778$:

$$X_{c} = 3899067040\delta_{c}^{5} - 14711456600\delta_{c}^{4} + 22202186700\delta_{c}^{3} - 16752921450\delta_{c}^{2} + 6320329502\delta_{c} + 953746388$$
(II2.6)

Для расчетов гидропроводности можно использовать следующие приближения.

Обозначим

$$A = \left[\frac{Ker^{2}X_{c} + Kei^{2}X_{c}}{Ker_{1}^{2}X_{c} + Kei_{1}^{2}X_{c}}\right]^{1/2}.$$
(II2.9)

При 0.0001 < X_c < 1:

$$A = 13.1804258X_{c}^{6} + 43.7863064X_{c}^{5} - 57.2761793X_{c}^{4} + 37.9781479X_{c}^{3}$$

-14.1711829 $X_{c}^{2} + 3.58734242X_{c} + 0.0095523555$ (II2.10)

При *1* < *X*_c < 7:

$$A = 0.000150830X_c^5 - 0.00357794X_c^4 + 0.0335762X_c^3 - 0.159152968X_c^2 + 0.404411788X_c + 0.457778596$$
(II2.11)

При 7 < *X_c* < 50:

$$A = 2.20503 \cdot 10^{-10} X_c^6 + 3.8573 \cdot 10^{-8} X_c^5 - 2.72584 \cdot 10^{-6} X_c^4 + 1.0039 \cdot 10^{-4} X_c^3 - 2.072608 X_c^2 + 0.02391228 X_c + 0.856816565$$

(П2.12)

Аппроксимация комплекса $K_1 = X_c \sqrt{Ker_1^2 X_c + Kei_1^2 X_c}$ в диапазоне $10^{-2} < X_c < 0.5$ выглядит как: $K_1 = X_c \sqrt{Ker_1^2 X_c + Kei_1^2 X_c} = 0.190279 X_c^3 - 0.392836 X_c^2 - 0.001089 X_c + 1.000023$ (П2.13)

ИЛИ

$$K_{1} = X_{c} \sqrt{Ker_{1}^{2}X_{c} + Kei_{1}^{2}X_{c}} = \frac{2.76206 + 1.601X_{c} - 0.36062X_{c}^{2}}{2.76206 + 1.59931X_{c} + 0.76847X_{c}^{2}}, \quad (\Pi 2.14)$$

комплекса

$$K_{2} = \frac{1}{X_{c}} \left[\frac{Ker^{2}X_{c} + Kei^{2}X_{c}}{Ker_{1}^{2}X_{c} + Kei_{1}^{2}X_{c}} \right]^{1/2}$$
(II2.15)

как

$$K_{2} = -1.000568X_{c} + 1.375669 + 0.152899X_{c}^{-1} - 0.001539X_{c}^{-2} \quad (\Pi 2.16)$$

ИЛИ

$$K_{2} = \frac{1}{X_{c}} \frac{0.01 - 1.10521X_{c} + 22.22382X_{c}^{2}}{1 + 42.2822X_{c} - 20.49895X_{c}^{2}}.$$
 (II2.17)

В диапазоне 0.5 < X < 5,

$$X = \frac{0.05558 \,\Delta^2 + 1.83448 \,\Delta - 0.32154}{1.55074 + \frac{0.17889797 \,\delta_c^2 - 0.02234159 \,\delta_c + 0.000012}{0.54261 \,\delta_c^2 + 0.77557 \,\delta_c - 1} - 0.23309 \left(\frac{1.42924 \,\delta_c^2 - 0.17849 \,\delta_c + 0.0001}{0.54261 \,\delta_c^2 + 0.77557 \,\delta_c - 1}\right)^2}{(\Pi 2.18)}$$

Расчет гидропроводности:

$$\varepsilon = \frac{q}{2\pi P_r X_c} \left[\frac{Ker^2 X + Kei^2 X}{Ker_1^2 X_c + Kei_1^2 X_c} \right]^{1/2} = \frac{q}{2\pi P_r} K, \qquad (\Pi 2.19)$$

здесь комплекс

$$K = \frac{1}{X_c} \left[\frac{Ker^2 X + Kei^2 X}{Ker_1^2 X_c + Kei_1^2 X_c} \right]^{1/2}$$
(II2.20)

который при $0 < X_c < 0.5$ и 0.5 < X < 5 хорошо аппроксимируется функцией

$$K = \frac{\left(0.024327X^{3} - 0.089270X^{2} + 0.728386X + 0.894979\right)}{\left(1.90279X_{c}^{3} - 0.3928367X_{c}^{2} - 0.001089X_{c} + 1.000023\right)} \frac{Exp(-X)}{X^{1/2}}.$$
 (II2.21)

ПРИЛОЖЕНИЕ 3. РАСЧЕТЫ ДАВЛЕНИЯ Р(Т) И ФУНКЦИИ $P(\xi, t)$ (К РАЗДЕЛУ 7)

Дебит на возмущающей скважине задаем в виде прямоугольных импульсов

$$q(t) = q_0 \left[\frac{1}{2} + \sum_{n=0}^{\infty} \frac{2}{\pi} \frac{\sin\left[(2n+1)\frac{2\pi t}{T}\right]}{2n+1} \right].$$
 (II3.1)

Тогда решение для давления
$$p(r,t)$$
 будет
 $p(r,t) = \frac{q_0}{4\pi\varepsilon} \int_0^t \frac{e^{-\frac{r^2}{4\chi(t-t')}}}{2(t-t')} dt' + \frac{q_0}{2\pi\varepsilon} \int_0^t \sum_{n=0}^\infty \frac{2}{\pi} \frac{\sin\left[(2n+1)\frac{2\pi t'}{T}\right]}{2n+1} \frac{e^{-\frac{r^2}{4\chi(t-t')}}}{2(t-t')}.$ (ПЗ.2)

Далее находим изображение $P(\xi,t)$ для

$$p(r,t) = \int_{0}^{\infty} d\xi \xi P(\xi,t) J(r\xi), \qquad (\Pi 3.3)$$

применяя

$$\frac{e^{-\frac{r^2}{4\chi(t-t')}}}{2(t-t')} = \chi \int_0^\infty d\xi \xi e^{-(t-t')\chi\xi^2} J_0(r,\xi), \qquad (\Pi 3.4)$$

получим

$$P(\xi,t) = \chi \frac{q_0}{2\pi\varepsilon} \int_0^t dt' \,\xi e^{-(t-t')\chi\xi^2} \left[\frac{1}{2} + \sum_{n=0}^\infty \frac{2}{\pi} \frac{\sin\left[(2n+1)\frac{2\pi t'}{T}\right]}{2n+1} \right].$$
(II3.5)

Интегрируя по t', в итоге получаем

$$P(\xi,t) = \chi \frac{q_0}{2\pi\varepsilon} \left[\frac{1}{2\chi\xi^2} \left(1 - e^{-t\chi\xi^2} \right) + \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+1} \frac{1}{\chi^2 \xi^4} + \left[\frac{2\pi(2n+1)}{T} \right]^2 \cdot \left\{ \chi\xi^2 \sin\left[\frac{2\pi(2n+1)t}{T} \right] - \frac{2\pi(2n+1)}{T} \cos\left[\frac{2\pi(2n+1)t}{T} \right] + e^{-t\chi\xi^2} \frac{2\pi(2n+1)}{T} \right\} \right]$$
(II3.6)

Это выражение является точной формулой для $P(\xi,t)$.

После суммирования получим

$$P(\xi,t) = \frac{q_0}{4\pi\varepsilon\xi^2} \left[1 - e^{-\pi a(n+x)} + e^{-\pi a(n+x)} th\left(\frac{\pi a}{2}\right) + (-1)^n \left\{ 1 - \frac{e^{\frac{\pi a(1-2x)}{2}}}{ch\frac{\pi a}{2}} \right\} \right], \quad (\Pi 3.7)$$

$$0 \le x \le 1.$$

ПРИЛОЖЕНИЕ 4. ВОЛНЫ ДАВЛЕНИЯ ПРИ ПЛОСКО-ПАРАЛЛЕЛЬНОЙ ФИЛЬТРАЦИИ В ОДНОМЕРНОЙ СИСТЕМЕ [2]

Задача 1

Найти решение уравнения

$$\frac{\partial p(x,t)}{\partial t} = \chi \frac{\partial^2}{\partial x^2} \left(p(x,t) \right) \tag{II4.1}$$

с нулевыми начальными данными и граничными условиями

$$p(0,t) = p_0, \quad p(\infty,t) = 0.$$
 (II4.2)

Решение (сравните с решением для уравнения теплопроводности):

$$p(x,t) = p_0 \operatorname{erfc}\left(\frac{x}{2\sqrt{\chi t}}\right). \tag{II4.3}$$

Задача 2

Найти решение уравнения

$$\frac{\partial p(x,t)}{\partial t} = \chi \frac{\partial^2}{\partial x^2} (p(x,t))$$
(II4.4)

с нулевыми начальными данными и граничными условиями

$$\frac{\partial p}{\partial t}_{x=0} = \frac{\mu}{k} \frac{q_0}{S}, \quad p(\infty, t) = 0.$$
(II4.5)

Решение.

$$p(x,t) = \frac{\mu}{k} \frac{q_0}{S} \left[2\sqrt{\frac{\chi t}{\pi}} \exp\left(-\frac{x^2}{4\chi t}\right) - x \operatorname{erfc}\left(\frac{x}{2\sqrt{\chi t}}\right) \right]. \tag{II4.6}$$

Задача З

Найти решение уравнения

$$\frac{\partial p(x,t)}{\partial t} = \chi \frac{\partial^2}{\partial x^2} \left(p(x,t) \right) \tag{II4.7}$$

с нулевыми начальными данными и граничными условиями

$$p(0,t) = p_1 \sin(\omega t), \ p(\infty,t) = 0.$$
 (II4.8)

Решение

$$p(x,t) = p_1 \exp\left(-x\sqrt{\frac{\omega}{2\chi}}\right) \sin\left(\omega t - x\sqrt{\frac{\omega}{2\chi}}\right). \tag{II4.9}$$

Задача 4

Найти решение уравнения

$$\tau_{w} \frac{\partial^{2} p(x,t)}{\partial t^{2}} + \frac{\partial p(x,t)}{\partial t} = \chi \frac{\partial^{2}}{\partial x^{2}} \left(p(x,t) + \tau_{p} \frac{\partial p(x,t)}{\partial t} \right)$$
(II4.10)

с нулевыми начальными данными и граничными условиями

$$p(0,t) = p_0, \quad p(\infty,t) = 0.$$
 (II4.11)

Решение.

$$p(x,t) = p \int_{0} \left[1 - \frac{1}{\pi} \int_{0}^{\infty} \sin\left(x \sqrt{\frac{\xi(1 - \tau_w \xi)}{\chi(1 - \tau_w \xi)}}\right) \frac{e^{-\xi t}}{\xi} d\xi \right]. \tag{II4.12}$$

Задача 5

Найти решение уравнения

$$\tau_{w} \frac{\partial^{2} p(x,t)}{\partial t^{2}} + \frac{\partial p(x,t)}{\partial t} = \chi \frac{\partial^{2}}{\partial x^{2}} \left(p(x,t) + \tau_{p} \frac{\partial p(x,t)}{\partial t} \right)$$
(II4.13)

с нулевыми начальными данными и граничными условиями

$$\frac{\partial p}{\partial t}_{x=0} = \frac{\mu}{k} \frac{q_0}{S}, \quad p(\infty, t) = 0.$$
(II4.14)

Решение.

$$p(x,t) = -\frac{\mu}{k} \frac{q_0}{S} \begin{cases} \left[2\sqrt{\frac{\chi t}{\pi}} \exp\left(-\frac{x^2}{4\chi t}\right) - x \operatorname{erfc}\left(\frac{x}{2\sqrt{\chi t}}\right) \right] - \\ \int_{0}^{\infty} \left[\sqrt{\frac{\chi(1-\tau_w\xi)}{\xi(1-\tau_w\xi)}} \cos\left(x\sqrt{\frac{\xi(1-\tau_w\xi)}{\chi(1-\tau_w\xi)}}\right) - \sqrt{\frac{\chi}{\xi}} \cos\left(x\sqrt{\frac{\xi}{\chi}}\right) \right] \frac{e^{-\xi t}}{\xi} d\xi + \int_{\frac{1}{\tau_w}}^{\frac{1}{\tau_p}} \sqrt{\frac{\chi}{\xi}} \cos\left(x\sqrt{\frac{\xi}{\chi}}\right) \frac{e^{-\xi t}}{\xi} d\xi \end{cases}$$
(II4.15)

Задача б

Найти решение уравнения

$$\tau_{w} \frac{\partial^{2} p(x,t)}{\partial t^{2}} + \frac{\partial p(x,t)}{\partial t} = \chi \frac{\partial^{2}}{\partial x^{2}} \left(p(x,t) + \tau_{p} \frac{\partial p(x,t)}{\partial t} \right)$$
(II4.16)

с нулевыми начальными данными и граничными условиями

$$p(0,t) = p_1 \sin(\omega t)_{\mathrm{H}} p(\infty,t) = 0.$$
 (II4.17)

Решение

$$p(x,t) = p_1 \exp\left(-x\sqrt{\frac{\omega}{2\chi}}\right) \sqrt[4]{\frac{1+\tau_w^2\omega^2}{1+\tau_p^2\omega^2}} \cos\left(\frac{\pi}{4} - \frac{1}{2}\operatorname{arctg}\frac{(\tau_p - \tau_w)\omega}{1+\tau_p\tau_w\omega^2}\right)$$
$$\sin\left(\omega t - \frac{\pi}{4} - -x\sqrt{\frac{\omega}{2\chi}}\sqrt[4]{\frac{1+\tau_w^2\omega^2}{1+\tau_p^2\omega^2}} \sin\left(\frac{\pi}{4} - \frac{1}{2}\operatorname{arctg}\frac{(\tau_p - \tau_w)\omega}{1+\tau_p\tau_w\omega^2}\right)\right) \quad .$$
(II4.18)

ПРИЛОЖЕНИЕ 5. РАСЧЕТЫ АМПЛИТУД ДАВЛЕНИЙ И РАЗНО-СТЕЙ ФАЗ В МЕТОДЕ ФВД ДЛЯ РЕЛАКСАЦИОННЫХ ТЕОРИЙ [26,28]

В данном приложении формулы (1.8-1.11) распространены на случай нелокальных (релаксационных) моделей 2-4 с соответствующими параметрами нелокальности в виде параметров размерности времени.

Соотношение между амплитудами и фазами дебита и давления можно представить в виде [26]

$$P\cos(\omega t + \delta_{p1}) = \frac{q}{2\pi\sigma_1} Re\left\{\frac{BesselK(0, z_c)}{z_c B \ esselK(1, z_c)} \exp(i\omega t + i\delta_q)\right\}$$
$$= \frac{q}{2\pi\sigma_1} Re\{(X + iY) \exp(i\omega t + i\delta_q)\}, \tag{II5.1}$$

где

$$z_{c} = |z_{c}|\exp(i(\pi/4 - 1/2 (\operatorname{arctg}(\omega\tau) - \operatorname{arctg}(\omega\tau_{2})))), |z_{c}| = \sqrt{(1 + 2)^{2}} \frac{1}{4}$$

$$r_{c} \sqrt{\frac{\omega}{\chi_{1}}} \left(\frac{1+\omega^{2}\tau^{2}}{1+\omega^{2}\tau_{2}^{2}}\right)^{1/4}.$$
 (II5.2)

Отсюда

$$2\pi\sigma_1 \frac{P}{q} = (X^2 + Y^2)^{1/2}, \qquad (\Pi 5.3)$$

$$\delta_q - \delta_p = \operatorname{arctg}(Y/X) \,. \tag{II5.4}$$

Когда $|z_c| \ll 1\;$ можно записать для амплитуды давления

$$P = \frac{q}{2\pi\sigma_1} \sqrt{\left(ln\frac{\gamma|z_c|}{2}\right)^2 + \left(\frac{\pi}{4} - \frac{1}{2}\left(arctg(\omega\tau) - arctg(\omega\tau_2)\right)\right)^2}$$
(II5.5)

и для разности фаз

$$\Delta_{qp} = \delta_q - \delta_p = \operatorname{arctg} \frac{\left(\frac{\pi}{4} - \frac{1}{2} \left(\operatorname{arctg}(\omega\tau) - \operatorname{arctg}(\omega\tau_2)\right)\right)}{\left|\ln\frac{\gamma|z_c|}{2}\right|}.$$
 (II5.6)

ПРИЛОЖЕНИЕ 6. УРАВНЕНИЯ ФВД В БЕЗРАЗМЕРНЫХ ПЕРЕ-МЕННЫХ [58, 30]

Запишем уравнение пьезопроводности в виде

$$\frac{\partial p_d}{\partial r_d} = \frac{1}{r_d} \frac{\partial}{\partial r_d} \left(r_d \frac{\partial p_d}{\partial r_d} \right) \tag{6.1}$$

при начальном условии

$$P_d(r_d, t_d = 0) = 0 (6.2)$$

и граничных условиях для бесконечного пласта и периодического изменения дебита на одиночной скважине в виде

$$P_d(\infty, t_d) = 0, \tag{6.3}$$

$$r_d \frac{\partial p_d}{\partial r_d} (|r_d = 1) = \sin(\omega_d t_d).$$
(6.4)

Здесь введены обозначения для безразмерных расстояния, давления и времени.

$$r_d = r/r_c, \tag{6.5}$$

$$p_d = 2\pi k h(p_k - p(r, t)) / \mu q_0, \tag{6.6}$$

$$t_d = kt/(\mu\beta^* r_c^2). \tag{6.7}$$

Тогда решение для давления в изображениях по Лапласу для периодического граничного условия по дебиту с периодом *T* будет

$$\bar{p}_d(r_d, u) = \int_0^\infty p_d(r_d, t_d) \exp(-ut_d) dt_d = \frac{\omega_d}{\omega_d^2 + u^2} \frac{K_0(r_d\sqrt{u})}{\sqrt{u}K_1(\sqrt{u})}, (6.8)$$

где

$$\omega_d = 2\pi\mu\beta^* r_c^2/kT. \tag{6.9}$$

Для больших времен, когда $t_d >> 1$, приближенное решение для метода ФВД будет

$$p_d(r_d, t_d) \approx \ker(r_d \sqrt{\omega_d}) \sin(\omega_d t_d) + \ker(r_d \sqrt{\omega_d}) \cos(\omega_d t_d).$$
 (6.10)

Квазистационарное решение задачи (для установившегося периодического режима работы) с гармонически меняющимся дебитом скважины получим из решения в виде свертки для отклика системы на функцию Хевисайда и связью в образах преобразований Лапласа и Фурье [58]. Здесь

$$p(t) = \int_0^t g(t)g(t-\tau)d\tau,$$
 (6.11)

$$P_d(r_d, t_d = 0) = 0, (6.12)$$

$$P(\omega, t) = \exp(i\omega t) \int_0^t g(t - \tau) \exp(-i\omega(t - \tau)) d\tau =$$
$$\exp(i\omega t) \int_0^t g(x) \exp(-i\omega x) d\tau \qquad (6.13)$$

и при $t \to \infty$

$$\frac{P(\omega,t)}{q(t)} = H(i\omega) = \int_{-\infty}^{\infty} g(x) \exp(-i\omega x) \, dx = \hat{g}(t) \tag{6.14}$$

с введением понятий комплексной передаточной функции

$$H(i\omega) = [u\bar{p}(u)]_{u=i\omega} = i\omega\bar{p}(i\omega), \qquad (6.16)$$

амплитудно-частотной

$$A = H(i\omega) \tag{6.16}$$

и фазо-частотной

$$\varphi = \arg H(i\omega) \tag{6.17}$$

функций.

Решение задачи о работе скважины с гармонически меняющимся дебитом для бесконечного пласта в рамках этого подхода можно записать в виде

$$H(i\omega_d) = \left[u\overline{p}_d\right]_{u=i\omega_d} = K_0 \left(r_d \sqrt{i\omega_d}\right) = \ker\left(r_d \sqrt{\omega_d}\right) + \ker\left(r_d \sqrt{\omega_d}\right).$$
(6.18)

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Алишаев М.Г. К учету явлений запаздывания в теории фильтрации/ М.Г. Алишаев, А.Х. Мирзаджанзаде //Изв.ВУЗов Нефть и газ.- 1975.-№ 6.-С.71-74.
- Баренблатт Г.И. Движение жидкостей и газов в природных пластах / Г.И. Баренблатт, В.М. Ентов, В.М. Рыжик. - М.: Недра, 1984. - 211с.
- Басниев К.С. Подземная гидромеханика / К.С. Басниев, И.Н. Кочина, В.М. Максимов.- М.: Недра, 1993.- 416 с.
- Боксерман А.А. О циклическом воздействии на пласты с двойной пористостью при вытеснении нефти водой / А.А. Боксерман, Б.В. Шалимов //Изв.АН СССР. Сер. Механика жидкости и газа.-1967.-№ 2.-С.168-174.
- 5. Бузинов С.Н., Умрихин И.Д. Исследование пластов и скважин при упругом режиме фильтрации.- М.: Недра, 1964.- 273с.
- Гаврилов А.Г., Закиров Р.Х., Штанин А.В. Исследование трещиноватопористых коллекторов методом фильтрационных волн давления.// Исследования по подземной гидромеханике.- Казань: Изд. Казанского унта, 1983.-Вып.6.-С.25-31.
- 7. Гаврилов А.Г., Матюшкин И.Ф., Штанин А.В. и др. Устройство для регулирования потока жидкости. Авт. св-во №1626035.-1990.
- Гаврилов А.Г., Штанин А.В. Аппаратура и методика проведения промысловых гидродинамических исследований пластов и скважин.//Сб. Некоторые вопросы контроля разработки нефтяных месторождений.-ПК физфака КГУ.-Казань.-2004.-С.45-56.
- Гаврилов А.Г., Марданшин А.Н., Овчинников М.Н., Штанин А.В. Исследования призабойной зоны скважины методом высокочастотного фильтрационного зондирования. // Электронный журнал "Нефтегазовое дело".-2006.: http://www.ogbus.ru/authors/Gavrilov/Gavrilov_1.pdf.
- 10. Голубев Г.В. Получение периодических решений уравнения нелинейной фильтрации при движении жидкости в трещиновато-пористом пласте

по криволинейному закону в блоках/ Г.В. Голубев // Матер. 4-ой межд. конф. «Циклы», Ставрополь: СевКавГТУ.-2004.- Ч. 2.-С. 68-72.

- Гольф-Рахт Г.Д. Основы нефте-промысловой разработки трещиноватых коллекторов / Г.Д. Голф-Рахт. - М.: Недра, 1986.-608 с.
- Динариев О.Ю. О релаксационных процессах в низкопроницаемых пористых материалах/ О.Ю. Динариев, О.В. Николаев//ИФЖ.-1990.-Т.58.-№1.-С.142-153.
- Дияшев Р.Н., Костерин А.В., Скворцов Э.И. Фильтрация в деформируемых нефтяных пластах / Р.Н. Дияшев, А.В. Костерин, Э.В. Скворцов. -Казань: изд-во Казан. матем. общества, 1999.- 238 с.
- 14. Ентов В.М. Об изменении напряженно-деформированного состояния горных пород при изменении давления в насыщенном жидкостью пласте / В.М. Ентов, Т.А. Малахова // Изв. АН СССР, МТТ.-1974.- №6.-С.53-65.
- Ентов В.М. К теории неравновесных эффектов при фильтрации неоднородных жидкостей/ В.М. Ентов// Изв. АН СССР, МЖГ. - 1980. - №3. -С.52-58.
- Желтов Ю.П. Механика нефтегазоносного пласта/ Ю.П. Желтов. М.: Недра, 1975.- 216 с.
- 17. Иктисанов В.А. Определение фильтрационных параметров пластов и реологических свойств дисперсных систем при разработке нефтяных месторождений/ В.А. Иктисанов.-М.: ОАО «ВНИИОЭНГ», 2001.-212 с.
- Исследование особенностей фильтрации жидкости в карбонатных коллекторах/ А.А. Давлетшин, Г.Г. Куштанова [и др.] // Нефтяное хозяйство.-1998.-N 7.-C.30-32.
- 19. Исаев Р.Г. Построение наиболее общего дифференциального уравнения неустановившейся фильтрации обобщённого пластового флюида в продуктивных пластах с наследственностью// Изв. Северо-Кавказского научного центра высшей школы. Сер. Технические науки.- 1973.- №3.-С.89-91.

- 20. Исаев Р.Г. Об основных особенностях неустановившейся фильтрации газа в глубинных реологических пластах с наследственной проницаемостью// Математический анализ и его приложения.- 1984.- С.29-33.
- 21. Конюхов В.М. Математическое моделирование вытеснения нефти водой при циклическом воздействии на трещиновато-пористый пласт/ В.М. Конюхов, А.В. Костерин, А.Н. Чекалин //ИФЖ.- Т.73.-№4.- Июльавгуст, 2000.- С.695-703.
- 22. Куштанова Г.Г. Температурный контроль разработки месторождений нефти и газа/ Г.Г. Куштанова. Казань: Новое знание, 2003-178с.
- 23. Куштанова Г.Г. Некоторые особенности нестационарной фильтрации в трещиновато-пористых коллекторах [электронный ресурс] / Г.Г.Куштанова // Нефтегазовое дело.-июнь, 2007.- Режим доступа: <u>http://www.ogbus.ru/authors/Kushtanova/Kushtanova_2.pdf</u>, свободный
- 24. Мирзаджанзаде А.Х. Огибалов П.М. Термо- вязко -упругость и пластичность в промысловой механике / А.Х. Мирзаджанзаде, П.М. Огибалов.- М.: Недра, 1973.- 279с.
- Молокович Ю.М., Непримеров Н.Н., Пикуза В.И., Штанин А.В. Релаксационная фильтрация. Казань, Изд-во Казанского университета, 1980, 136с.
- Молокович Ю.М. Пьезометрия окрестности скважин. Теоретические основы./ Ю.М.Молокович, А.И.Марков, А.А.Давлетшин, Г.Г.Куштанова– Казань: изд-во ДАС, 2000.- 203 с.
- 27. Молокович Ю.М. Выработка трещиновато-пористого коллектора нестационарным дренированием / Ю.М.Молокович, А.И.Марков, Э.И.Сулейманов, Р.Г.Фархуллин, Г.Г.Куштанова [и др.]. Казань: изд-во Регентъ, 2000 -156 с.
- 28. Молокович Ю.М. Неравновесная фильтрация и ее применение в нефтепромысловой практике. М.-Ижевск.- НИЦ «Регулярная и хаотическая динамика».- Институт компьютерных исследований.-2006.-214 с.

- 29. Молокович Ю.М., Шкуро А.С. Использование волн давления для определения границы раздела двух сред, имеющих различные коэффициенты пьезопроводности. Сб. Вопросы усовершенствования разработки нефтяных месторождений Татарии. Казань, Изд-во КГУ, 1962, с. 17-38.
- 30. Морозов Фильтрационные волны давления в пористых и трещиноватопористых средах. Механика жидкости и газа Вестник Нижегородского университета им. Н.И. Лобачевского, 2011, № 4 (3), с. 996-998.
- Мукук К.В. Элементы гидравлики релаксирующих аномальных систем / К.В. Мукук. – Ташкент: ФАН, 1980.
- Николаевский В.Н. Геомеханика и флюидодинамика / В.Н. Николаевский. М.: Недра. 1996. 447 с.
- Нустров В.С. Фильтрация неньютоновской жидкости в трещиноватопористой среде/ В.С. Нустров, А.В. Пластинин // ИФЖ.-1993.-т.64. - № 4.-С.449-455.
- 34. Овчинников М.Н. Деформации горных пород при периодическом режиме фильтрации / М.Н. Овчинников, А.Ю.Завидонов, С.П. Евтушенко // Инженерно-физический журнал.- 2001.-№ 15.-С.13-16.
- 35. Овчинников М.Н. Об одном методе идентификации моделей фильтрации // Известия вузов. Нефть и газ. – 2002. - № 4. - С.22 - 25.
- 36. Овчинников М.Н. Контроль геофизических и гидродинамических параметров пластов как элемент управления заводнением нефтяных месторождений / М.Н.Овчинников, А.Т.Панарин, А.Н.Чекалин // НТВ Каротажник.- 2000.- №61.-С.62-66.
- 37. Овчинников М.Н., Метод фильтрационных волн давления как средство исследования нефтяных месторождений / М.Н. Овчинников, Г.Г. Куштанова, А.Г. Гаврилов, В.Л. Одиванов. – Казань: Изд-во Казан. гос. ун-та, 2008. – 148с.
- 38. Овчинников М.Н. Результаты математического моделирования процесса выработки остаточных запасов заводненных зон на примере участка Центрально-Азнакаевской площади. Дифференциальный геолого-

промысловый анализ, постоянно действующая модель и технологическая схема разработки месторождений / М.Н Овчинников, А.Г.Гаврилов, Н.Н.Непримеров, Ю.Н.Прошин, А.Н.Чекалин, А.В.Штанин //Георесурсы.- 2001.- № 4.-С. 33-34.

- 39. Овчинников, М.Н. Средства контроля гидродинамических потоков в скважинных условиях и расчеты фильтрационных параметров пластов: учеб.-метод. пособие / М.Н. Овчинников, Г.Г. Куштанова, А.Г. Гаврилов, – Казань: Казан. ун-т. - 2016. –С. 96 . п.л. 5,6. http://repository.kpfu.ru/?p_id=13927
- 40. Овчинников М. Н. Радиоэлектронные системы контроля параметров флюидонасыщенных пластов: учеб.-метод. пособие / М.Н. Овчинников, Г.Г. Куштанова, А.Г. Гаврилов, В.Л. Одиванов. – Казань: Казан. ун-т, 2017. – 90 с. <u>http://repository.kpfu.ru/?p_id=151280</u>
- Овчинников М.Н. Интерпретация результатов исследований пластов методом фильтрационных волн давления. –Казань: ЗАО «Новое знание», 2003.-84с.
- 42. Одиванов В.Л. Специфика задач автоматизации гидродинамических исследований на нефтяных месторождениях / В. Л. Одиванов, М.Н. Овчинников, А.Г. Гаврилов. – Автоматизация, телемеханизация и связь в нефтяной промышленности, №1 2009 с.9-23.
- 43. Одиванов В.Л. Программно-аппаратный комплекс для автоматизации гидродинамических исследований призабойной зоны скважин /
 В.Л.Одиванов, А.Г.Гаврилов, А.В.Штанин // Приборы.- 2008.- №6.-С.43-46
- 44. Патент 2109130 РФ, МПК Е 21 В 43/16. "Способ извлечения нефти из трещиновато-пористого пласта-коллектора /А.А. Давлетшин, Г.Г. Куштанова, А.И. Марков, Ю.М.Молокович, Р.Х. Муслимов, О.А. Никашев, Э.И. Сулейманов, Р.Г. Фархуллин.-№ 96111794/03; заяв.4.06.96; опубл.20.04. 98. Бюл.№ 11.- 18 с.: ил.
- 45. Патент 2166069 РФ, МПК Е 21 В 43/20. Способ разработки нефтяных 90

месторождений в условиях заводнения/ Овчинников М.Н., Куштанова Г.Г.- № 2000110967/03; заяв. 28.04.2000; опубл.27.04.2001. Бюл. № 12.-10с.

- 46. Патент 2188320 РФ, МПК Е 21 В 49/00, 47/06. Способ определения распределения давления и границ неоднородностей пласта / Овчинников М.Н., Завидонов А.Ю., Куштанова Г.Г. № 2001102010/03; заяв. 22.01.2001; опубл. 27.08.2002. Бюл. № 24.-12с.: ил.
- 47. А.С. 697704 СССР. Способ определения коэффициента гидропьезопроводности пласта/ Умрихин И.Д., Бузинов С.Н., Куренков О.В., Ентов В.М., Малахова Т.А.- Бюл.№42, 1979.
- Рамазанов Т.К., Рустамов Я.Р. Фильтрация жидкости в линейно-упругих трещиновато-пористых породах // Изв. ВУЗов. Нефть и газ. -1990.-№11.- С.42.
- 49. Хайруллин М.Х., Хисамов Р,С., Шамсиев М.Н., Фархуллин Р.Г. Интерпретация результатов гидродинамических исследований скважин методами регуляризации. – М.-Ижевск: НИЦ «Регулярная и хаотическая динамика; Институт компьютерных исследований.- 2006.-172с.
- 50. Христианович С.А. Неустановившееся течение жидкости и газа в пористой среде при резких изменениях давления во времени или больших градиентах пористостью/ С.А. Христианович.- Новосибирск: Наука, 1985.
- 51. Цинкова О.Э. К вопросу о механизме циклического воздействия на нефтяные пласты/ О.Э.Цинкова // МЖГ, 1980.-№3.-С.58-67.
- 52. Чарный И.А. Об одном методе определения параметров пласта по наблюдениям неустановившегося режима притока к скважинам/ И.А.Чарный, И.Д.Умрихин. -М.: Углетехиздат, 1957.- 47 с.
- 53. Щелкачев В. Н. Основные уравнения движения упругой жидкости в упругой среде/ В.Н. Щелкачев// Докл. АН СССР.- 1945.- Т. 52, №2.- С. 103-106.

- 54. Щелкачев В. Н. Исследование однофазного движения упругой жидкости в упругой пористой среде// Докл. АН СССР.- 1946.- Т. 52, №3.
- 55. Darcy A. Les fontaines publicues de la ville de Dyon / A.Darcy.- Paris: Victor Dalmont, 1856.
- 56. Muskat M. The flow of compressible fluids through porous media and som problems of heatconduction/ M. Muskat// Physics.- 1934.-V.5.-№3.- P. 71-94.
- 57. Ovchinnikov M.N., ZavidonovA.Yu. 2008. Searching for an optimum frequency. Georesources. 1: 21-22.
- 58. Van Everdingen A.F. The application of the Laplace transformation to flow problems in reservoirs/ A.F.Van Everdingen, W. Hurst//. J. of Retrol. Tech.-1949.- V.1.-№12.- P. 305-323.
- 59. Warren J.E., Root P.J. The behaviour of naturally fractured reservoirs // Soc. Pet. Eng. J.-1963.-P. 245-255.

ЗАДАЧИ И ВОПРОСЫ 1.ТЕСТЫ ДЛЯ ВЕРИФИКАЦИИ МОДЕЛЕЙ ФИЛЬТРАЦИИ

Разработать экспериментально реализуемые тесты - гидродинамические натурные эксперименты для верификации фильтрационных моделей с использованием метода волн давления.

Задача 1.1

Разработайте формулировку временного критерия, когда колебания в методе фильтрационных волн давления можно считать установившимися.

Задача 1.2

Разработайте гидродинамические экспериментальные тесты для определения линейности рассматриваемых систем.

Задача 1.3

Разработайте тесты для определения зональной неоднородности пласта.

Задача 1.4

Разработайте тесты для определения применимости принципа локального термодинамического равновесия.

Задача 1.5

Разработайте тесты для верификации моделей фильтрации (1-4).

2. АППРОКСИМАЦИИ ФУНКЦИЙ КЕЛЬВИНА

Задача 2.1

Определить значения Xc для δc в диапазоне $0.08 < \delta c < 0.576$ с использованием аппроксимации в виде полинома 4 степени.

Задача 2.2

Определить значения Xc для δc в диапазоне 0.08 $< \delta c < 0.576$ с использованием аппроксимаций Паде в виде отношения полиномов второй степени.

Задача 2.3

Определить значения Xc для δc в диапазоне 0.563 < δc < 0.74 с использованием аппроксимации в виде полинома 4 степени.

Задача 2.4

93

Определить значения Xc для δc в диапазоне $0.563 < \delta c < 0.74$ с использованием аппроксимаций Паде в виде отношения полиномов второй степени.

Задача 2.5

Определить значения Xc для δc в диапазоне $0.74 < \delta c < 0.778$ с использованием аппроксимации в виде полинома 4 степени.

Задача 2.6

Определить значения Xc для δc в диапазоне $0.74 < \delta c < 0.778$ с использованием аппроксимаций Паде в виде отношения полиномов второй степени.

3. СКОРОСТИ ФИЛЬТРАЦИОННЫХ ВОЛН ДАВЛЕНИЯ

Задача 3.1

Найдите фазовую скорость для модели 1.

Задача 3.2

Найдите фазовую скорость для модели 2.

Задача 3.3

Найдите фазовую скорость для модели 3.

Задача 3.4

Найдите фазовую скорость для модели 4.

Задача 3.5

Найдите групповую скорость для модели 1.

Задача 3.6

Найдите групповую скорость для модели 2.

Задача 4.7.

Найдите групповую скорость для модели 3.

Задача 4.8

Найдите групповую скорость для модели 4.

4. АМПЛИТУДНО-ЧАСТОТНЫЕ (АЧХ) И ФАЗО-ЧАСТОТНЫЕ (ФЧХ) ХАРАКТЕРИСТИКИ ВОЛН ДАВЛЕНИЯ

Задача 4.1

Опишите АЧХ для модели 1 (режим самопрослушивания).

Задача 4.2

Опишите ФЧХ для модели 1 (режим самопрослушивания).

Задача 4.3

Опишите АЧХ для модели 2 (режим самопрослушивания).

Задача 4.4

Опишите ФЧХ для модели 2 (режим самопрослушивания).

Задача 4.5

Опишите АЧХ для модели 3 (режим самопрослушивания).

Задача 4.6

Опишите ФЧХ для модели 3 (режим самопрослушивания).

Задача 4.7

Опишите АЧХ для модели 4 (режим самопрослушивания).

Задача 4.8

Опишите ФЧХ для модели 4 (режим самопрослушивания).

Задача 4.9

Построить и проанализировать диаграмму Найквиста для модели 1.

Задача 4.10

Построить и проанализировать диаграмму Найквиста для модели 2 для различных значений параметра размерности времени.

Задача 4.11

Построить и проанализировать диаграмму Найквиста для модели 3 для различных значений параметра размерности времени.

Задача 4.12

Построить и проанализировать диаграмму Найквиста для модели 4 для различных значений параметров размерности времени.

5. ОБЩИЕ ВОПРОСЫ ПО ПРОВЕДЕНИЮ ГИДРОДИНАМИЧЕ-СКИХ ИССЛЕДОВАНИЙ

B 5.1

Какие виды нестационарных гидродинамических промысловых исследований Вы знаете?

B 5.2

Что такое метод фильтрационных волн давления (ФВД)? Перечислите его основные качественные характеристики.

B 5.3

Для исследования каких объектов используется метод гидропрослушивания с помощью ФВД?

B 5.4

Перечислите специфические особенности метода высокочастотных фильтрационных волн давления в промысловых исследованиях флюидонасыщенных пластов и скважин.

B 5.5

Перечислите основные требования к автоматизированным системам контроля, применяющимся в нестационарных гидродинамических исследованиях пластов и скважин методом ФВД.

B 5.6

Как можно организовать эксперимент по ФВД с использованием систем оптоволоконных датчиков?

6. ПРИМЕРЫ ЗАДАЧ ПО РАСПРОСТРАНЕНИЮ ИМПУЛЬСОВ Давления

6.1. Прямоугольный импульс задается на возмущающей скважине с дебитом $Q_0 = 1000 \text{ м}^3$ /сут и длительностью T = 10000 сек. Расстояние между скважинами 400 м. Найти приближенные значения гидропроводности и пьезопроводности в межскважинном интервале для модели 1, если на реагирующей скважине давление меняется следующим образом

t, c	dP, кПа
0	0
2.00E+03	2
1.00E+04	40
2.00E+04	82
3.00E+04	74
4.00E+04	54
5.00E+04	44
6.00E+04	38
7.00E+04	30
8.00E+04	26
9.00E+04	23
1.00E+05	20

6.2. Прямоугольный импульс задается на возмущающей скважине с дебитом $Q_0 = 1050 \text{ м}^3$ /сут и длительностью T = 9900 сек. Расстояние между скважинами 390 м. Найти приближенные значения гидропроводности и пьезопроводности в межскважинном интервале для модели 1, если на реагирующей скважине давление меняется следующим образом

t, c	dP, кПа
0	0
2.00E+03	2.4
1.00E+04	48
2.00E+04	98.4
3.00E+04	88.8
4.00E+04	64.8
5.00E+04	52.8
6.00E+04	45.6
7.00E+04	36
8.00E+04	31.2
9.00E+04	27.6
1.00E+05	24

6.3. Прямоугольный импульс задается на возмущающей скважине с дебитом $Q_0 = 1100 \text{ м}^3$ /сут и длительностью T = 9800 сек. Расстояние между скважинами 420 м. Найти приближенные значения гидропроводности и пьезопроводности в межскважинном интервале для модели 1, если на реагирующей скважине давление меняется следующим образом

t, c	dP, кПа
0	0
2.00E+03	2.8
1.00E+04	56
2.00E+04	114.8
3.00E+04	103.6
4.00E+04	75.6
5.00E+04	61.6
6.00E+04	53.2

7.00E+04	42
8.00E+04	36.4
9.00E+04	32.2
1.00E+05	28

6.4. Прямоугольный импульс задается на возмущающей скважине с дебитом $Q_0 = 900 \text{ м}^3$ /сут и длительностью T = 9700 сек. Расстояние между скважинами 380 м. Найти приближенные значения гидропроводности и пьезопроводности в межскважинном интервале для модели 1, если на реагирующей скважине давление меняется следующим образом

t, c	dP, кПа
0	0
2.00E+03	3.2
1.00E+04	64
2.00E+04	131.2
3.00E+04	118.4
4.00E+04	86.4
5.00E+04	70.4
6.00E+04	60.8
7.00E+04	48
8.00E+04	41.6
9.00E+04	36.8
1.00E+05	32

7. ФВД. САМОПРОСЛУШИВАНИЕ СКВАЖИН

7.1.Модель 1 (поровый коллектор)

			Delta (разность фаз	
	Q (амплитуда дебита 1-ой	Р (амплитуда давления 1-ой	между дебитом и дав-	
	гармоники на возмущаю-	гармоники на возмущаю-	лением для 1-ой гар-	Т (пери-
Вариант	щей скважине), м ³ /сутки	щей скважине), МПа	моники), рад	од), с
1	500	5.476031	0.114383	43200
2	500	5.219014	0.114301	43200
3	500	4.985326	0.114219	43200
4	500	4.771927	0.114138	43200
5	500	4.576279	0.114059	43200
6	500	4.396254	0.11398	43200
7	500	4.23005	0.113902	43200
8	500	4.076131	0.113825	43200
9	500	3.933181	0.113748	43200
10	500	3.800067	0.113673	43200

Определить гидропроводность трещинного пространства и комплексный параметр.

7.2.

Модель 2 (трещиновато-поровый коллектор)

Вариант	Q	P1	Delta1	T1	P1	Delta2	T2
						разность фаз	
	ампли-		разность фаз			между деби-	
	туда дебита 1-	амплитуда	между дебитом		амплитуда	том и давле-	
	ой гармоники	давления 1-ой	и давлением для		давления 1-ой	нием для 1-ой	
	на возмуща-	гармоники на	1-ой гармоники	первый	гармоники на	гармоники на	
	ющей сква-	возмущаю-	на первом вари-	вариант	возмущающей	втором вари-	второй
	жине,	щей сква-	анте периода,	периода,	скважине,	анте периода,	вариант
	м ³ /сутки	жине, МПа	рад	c	МПа	рад	периода, с
1	500	5.6703919	0.0515116	43200	5.813	0.069	86400
2	500	5.4041389	0.0514757	43200	5.54	0.069	86400
3	500	5.1620552	0.0514402	43200	5.292	0.069	86400
4	500	4.9409891	0.051405	43200	5.065	0.069	86400
5	500	4.7383139	0.0513703	43200	4.858	0.069	86400
6	500	4.5518234	0.0513359	43200	4.666	0.069	86400
7	500	4.3796506	0.0513019	43200	4.49	0.069	86400
8	500	4.0721238	0.051235	43200	4.174	0.069	86400

Определить гидропроводность трещинного пространства и комплексный параметр.

8. ФВД МЕЖСКВАЖИННОЕ. МОДЕЛЬ 1.

			амплитуда		разность фаз		
	амплитуда	амплитуда	давления 1-	разность фаз	между деби-		
	давления 1-ой	дебита 1-ой	ой гармони-	между деби-	том и давле-		
	гармоники на	гармоники на	ки на реаги-	том и давле-	нием на реа-		Расстояние
	возмущающей	возмущающей	рующей	нием на воз-	гирующей		между
	скважине,	скважине,	скважине,	мущающей	скважине,	Период,	скважинами,
Вариант	МПа	м ³ /сутки	МПа	скважине, рад	рад	c	М
1	40	100	1.5	0.12	2.4	86400	400
2	42	105	1.55	0.121	2.5	86400	450
3	44	110	1.6	0.122	2.6	86400	400
4	46	115	1.65	0.123	2.7	86400	425
5	48	120	1.7	0.124	2.8	86400	440

Определить гидропроводность прискважинной зоны, комплексный параметр, гидропроводность межскважинную, пьезопроводность и приведенный радиус.

9. ФВД С ЭЛЕМЕНТАМИ ГАРМОНИЧЕСКОГО АНАЛИЗА.

9.1. Заданы изменения во времени: постоянная + дебит 1-ой гармоники на возмущающей скважине - Q₁, постоянная + давление 1-ой гармоники на возмущающей скважине Pc₁, постоянная + давление 1-ой гармоники на реагирующей скважине Pr₁, расстояние между скважинами R=420 м. Волновой процесс считается установившимся.

По табличным данным определить период, амплитуды гармоник дебита и давлений, фазы, соответствующие разности фаз и определить гидропроводность прискважинной зоны, комплексный параметр, гидропроводность межскважинную, пьезопроводность и приведенный радиус.

t, c	Q _{1,} см ³ /с	Рс _{1,} МПа	Pr _{1,} МПа
0	1080	19.5	11.827
600	1123	19.7	11.823
1200	1166	19.9	11.819
1800	1209	20.2	11.816
2400	1252	20.4	11.812
3000	1294	20.6	11.81
3600	1335	20.8	11.807
4200	1376	21	11.805
4800	1416	21.2	11.803
5400	1455	21.4	11.802
6000	1494	21.7	11.801

t, c	Q ₁ , cm ³ /c	Рс _{1,} МПа	Pr _{1,} MПа
97800	1789	23.3	11.809
98400	1815	23.5	11.812
99000	1839	23.6	11.815
99600	1862	23.8	11.818
100200	1884	23.9	11.822
100800	1903	24.1	11.826
101400	1921	24.2	11.831
102000	1937	24.3	11.836
102600	1952	24.4	11.841
103200	1964	24.5	11.846
103800	1975	24.6	11.852

6600	1531	21.9	11.8
7200	1568	22.1	11.8
7800	1603	22.3	11.8
8400	1637	22.4	11.801
9000	1670	22.6	11.802
9600	1702	22.8	11.803
10200	1732	23	11.805
10800	1761	23.2	11.807
11400	1789	23.3	11.809
12000	1815	23.5	11.812
12600	1839	23.6	11.815
13200	1862	23.8	11.818
13800	1884	23.9	11.822
14400	1903	24.1	11.826
15000	1921	24.2	11.831
15600	1937	24.3	11.836
16200	1952	24.4	11.841
16800	1964	24.5	11.846
17400	1975	24.6	11.852

104400	1984	24.7	11.858
105000	1990	24.7	11.864
105600	1996	24.8	11.871
106200	1999	24.9	11.877
106800	2000	24.9	11.884
107400	1999	24.9	11.892
108000	1997	25	11.899
108600	1992	25	11.907
109200	1986	25	11.914
109800	1978	25	11.922
110400	1968	25	11.931
111000	1956	25	11.939
111600	1942	24.9	11.947
112200	1927	24.9	11.956
112800	1909	24.8	11.964
113400	1890	24.8	11.973
114000	1870	24.7	11.981
114600	1847	24.6	11.99
115200	1823	24.6	11.999

18000	1984	24.7	11.858
18600	1990	24.7	11.864
19200	1996	24.8	11.871
19800	1999	24.9	11.877
20400	2000	24.9	11.884
21000	1999	24.9	11.892
21600	1997	25	11.899
22200	1992	25	11.907
22800	1986	25	11.914
23400	1978	25	11.922
24000	1968	25	11.931
24600	1956	25	11.939
25200	1942	24.9	11.947
25800	1927	24.9	11.956
26400	1909	24.8	11.964
27000	1890	24.8	11.973
27600	1870	24.7	11.981
28200	1847	24.6	11.99
28800	1823	24.6	11.999

115800	1798	24.5	12.008
116400	1771	24.4	12.016
117000	1742	24.3	12.025
117600	1712	24.1	12.034
118200	1681	24	12.042
118800	1648	23.9	12.051
119400	1615	23.7	12.059
120000	1580	23.6	12.067
120600	1543	23.4	12.075
121200	1506	23.3	12.084
121800	1468	23.1	12.091
122400	1429	22.9	12.099
123000	1389	22.7	12.107
123600	1349	22.6	12.114
124200	1308	22.4	12.121
124800	1266	22.2	12.128
125400	1224	22	12.134
126000	1181	21.8	12.141
126600	1138	21.6	12.147

29400	1798	24.5	12.008
30000	1771	24.4	12.016
30600	1742	24.3	12.025
31200	1712	24.1	12.034
31800	1681	24	12.042
32400	1648	23.9	12.051
33000	1615	23.7	12.059
33600	1580	23.6	12.067
34200	1543	23.4	12.075
34800	1506	23.3	12.084
35400	1468	23.1	12.091
36000	1429	22.9	12.099
36600	1389	22.7	12.107
37200	1349	22.6	12.114
37800	1308	22.4	12.121
38400	1266	22.2	12.128
39000	1224	22	12.134
39600	1181	21.8	12.141
40200	1138	21.6	12.147

127200	1094	21.4	12.152
127800	1051	21.1	12.158
128400	1007	20.9	12.163
129000	964	20.7	12.168
129600	920	20.5	12.173
130200	877	20.3	12.177
130800	834	20.1	12.181
131400	791	19.8	12.184
132000	748	19.6	12.188
132600	706	19.4	12.19
133200	665	19.2	12.193
133800	624	19	12.195
134400	584	18.8	12.197
135000	545	18.6	12.198
135600	506	18.3	12.199
136200	469	18.1	12.2
136800	432	17.9	12.2
137400	397	17.7	12.2
138000	363	17.6	12.199

40800	1094	21.4	12.152
41400	1051	21.1	12.158
42000	1007	20.9	12.163
42600	964	20.7	12.168
43200	920	20.5	12.173
43800	877	20.3	12.177
44400	834	20.1	12.181
45000	791	19.8	12.184
45600	748	19.6	12.188
46200	706	19.4	12.19
46800	665	19.2	12.193
47400	624	19	12.195
48000	584	18.8	12.197
48600	545	18.6	12.198
49200	506	18.3	12.199
49800	469	18.1	12.2
50400	432	17.9	12.2
51000	397	17.7	12.2
51600	363	17.6	12.199

138600	330	17.4	12.198
139200	298	17.2	12.197
139800	268	17	12.195
140400	239	16.8	12.193
141000	211	16.7	12.191
141600	185	16.5	12.188
142200	161	16.4	12.185
142800	138	16.2	12.182
143400	116	16.1	12.178
144000	97	15.9	12.174
144600	79	15.8	12.169
145200	63	15.7	12.164
145800	48	15.6	12.159
146400	36	15.5	12.154
147000	25	15.4	12.148
147600	16	15.3	12.142
148200	10	15.3	12.136
148800	4	15.2	12.129
149400	1	15.1	12.123

52200	330	17.4	12.198
52800	298	17.2	12.197
53400	268	17	12.195
54000	239	16.8	12.193
54600	211	16.7	12.191
55200	185	16.5	12.188
55800	161	16.4	12.185
56400	138	16.2	12.182
57000	116	16.1	12.178
57600	97	15.9	12.174
58200	79	15.8	12.169
58800	63	15.7	12.164
59400	48	15.6	12.159
60000	36	15.5	12.154
60600	25	15.4	12.148
61200	16	15.3	12.142
61800	10	15.3	12.136
62400	4	15.2	12.129
63000	1	15.1	12.123

150000	0	15.1	12.116
150600	1	15.1	12.108
151200	3	15	12.101
151800	8	15	12.093
152400	14	15	12.086
153000	22	15	12.078
153600	32	15	12.069
154200	44	15	12.061
154800	58	15.1	12.053
155400	73	15.1	12.044
156000	91	15.2	12.036
156600	110	15.2	12.027
157200	130	15.3	12.019
157800	153	15.4	12.01
158400	177	15.4	12.001
159000	202	15.5	11.992
159600	229	15.6	11.984
160200	258	15.7	11.975
160800	288	15.9	11.966
63600	0	15.1	12.116
-------	-----	------	--------
64200	1	15.1	12.108
64800	3	15	12.101
65400	8	15	12.093
66000	14	15	12.086
66600	22	15	12.078
67200	32	15	12.069
67800	44	15	12.061
68400	58	15.1	12.053
69000	73	15.1	12.044
69600	91	15.2	12.036
70200	110	15.2	12.027
70800	130	15.3	12.019
71400	153	15.4	12.01
72000	177	15.4	12.001
72600	202	15.5	11.992
73200	229	15.6	11.984
73800	258	15.7	11.975
74400	288	15.9	11.966

161400	319	16	11.958
162000	352	16.1	11.949
162600	385	16.3	11.941
163200	420	16.4	11.933
163800	457	16.6	11.925
164400	494	16.7	11.916
165000	532	16.9	11.909
165600	571	17.1	11.901
166200	611	17.3	11.893
166800	651	17.4	11.886
167400	692	17.6	11.879
168000	734	17.8	11.872
168600	776	18	11.866
169200	819	18.2	11.859
169800	862	18.4	11.853
170400	906	18.6	11.848
171000	949	18.9	11.842
171600	993	19.1	11.837
172200	1036	19.3	11.832

75000	319	16	11.958
75600	352	16.1	11.949
76200	385	16.3	11.941
76800	420	16.4	11.933
77400	457	16.6	11.925
78000	494	16.7	11.916
78600	532	16.9	11.909
79200	571	17.1	11.901
79800	611	17.3	11.893
80400	651	17.4	11.886
81000	692	17.6	11.879
81600	734	17.8	11.872
82200	776	18	11.866
82800	819	18.2	11.859
83400	862	18.4	11.853
84000	906	18.6	11.848
84600	949	18.9	11.842
85200	993	19.1	11.837
85800	1036	19.3	11.832

172800	1080	19.5	11.827
173400	1123	19.7	11.823
174000	1166	19.9	11.819
174600	1209	20.2	11.816
175200	1252	20.4	11.812
175800	1294	20.6	11.81
176400	1335	20.8	11.807
177000	1376	21	11.805
177600	1416	21.2	11.803
178200	1455	21.4	11.802
178800	1494	21.7	11.801
179400	1531	21.9	11.8
180000	1568	22.1	11.8
180600	1603	22.3	11.8
181200	1637	22.4	11.801
181800	1670	22.6	11.802
182400	1702	22.8	11.803
183000	1732	23	11.805
183600	1761	23.2	11.807

86400	1080	19.5	11.827
87000	1123	19.7	11.823
87600	1166	19.9	11.819
88200	1209	20.2	11.816
88800	1252	20.4	11.812
89400	1294	20.6	11.81
90000	1335	20.8	11.807
90600	1376	21	11.805
91200	1416	21.2	11.803
91800	1455	21.4	11.802
92400	1494	21.7	11.801
93000	1531	21.9	11.8
93600	1568	22.1	11.8
94200	1603	22.3	11.8
94800	1637	22.4	11.801
95400	1670	22.6	11.802
96000	1702	22.8	11.803
96600	1732	23	11.805
97200	1761	23.2	11.807

184200	1789	23.3	11.809
184800	1815	23.5	11.812
185400	1839	23.6	11.815
186000	1862	23.8	11.818
186600	1884	23.9	11.822
187200	1903	24.1	11.826
187800	1921	24.2	11.831
188400	1937	24.3	11.836
189000	1952	24.4	11.841
189600	1964	24.5	11.846
190200	1975	24.6	11.852
190800	1984	24.7	11.858
191400	1990	24.7	11.864
192000	1996	24.8	11.871
192600	1999	24.9	11.877
193200	2000	24.9	11.884
193800	1999	24.9	11.892
194400	1997	25	11.899
195000	1992	25	11.907

9.2. Заданы изменения во времени: постоянная + дебит 1-ой гармоники на возмущающей скважине - Q1, постоянная + давление 1-ой гармоники на возмущающей скважине Pc1, постоянная + давление 1-ой гармоники на реагирующей скважине Pr₁, расстояние между скважинами R=580 м. Волновой процесс считается установившимся.

По табличным данным определить период, амплитуды гармоник дебита и давлений, фазы, соответствующие разности фаз и определить гидропроводность прискважинной зоны, комплексный параметр, гидропроводность межскважинную, пьезопроводность и приведенный радиус.

t, c	Q ₁ , cm ³ /c	Рс _{1,} МПа	Рг_{1,} МПа		t, c
0	1148	19.6	11.741		97800
600	1220	19.8	11.735		98400
1200	1291	19.9	11.729		99000
1800	1362	20.1	11.723		99600
2400	1431	20.3	11.719		100200
3000	1500	20.5	11.714		100800
3600	1569	20.6	11.711		101400
4200	1636	20.8	11.707		102000
4800	1701	21	11.705		102600

t, c		$\mathbf{O} = \alpha x^3 / \alpha$	Pc ₁	Pr _{1,}	
		Q ₁ , cm /c	, МПа	МПа	
	97800	2312	22.7	11.713	
	98400	2354	22.8	11.718	
	99000	2394	22.9	11.722	
	99600	2431	23	11.727	
	100200	2466	23.1	11.733	
	100800	2497	23.2	11.739	
	101400	2526	23.3	11.746	
	102000	2552	23.4	11.753	
	102600	2575	23.5	11.761	

5400	1766	21.2	11.703
6000	1829	21.3	11.701
6600	1890	21.5	11.7
7200	1950	21.6	11.7
7800	2008	21.8	11.7
8400	2064	22	11.701
9000	2118	22.1	11.702
9600	2170	22.3	11.704
10200	2220	22.4	11.707
10800	2267	22.5	11.71
11400	2312	22.7	11.713
12000	2354	22.8	11.718
12600	2394	22.9	11.722
13200	2431	23	11.727
13800	2466	23.1	11.733
14400	2497	23.2	11.739
15000	2526	23.3	11.746
15600	2552	23.4	11.753
16200	2575	23.5	11.761

103200	2595	23.6	11.769
103800	2612	23.7	11.778
104400	2626	23.7	11.787
105000	2636	23.8	11.796
105600	2644	23.9	11.806
106200	2649	23.9	11.816
106800	2650	23.9	11.827
107400	2648	24	11.837
108000	2643	24	11.849
108600	2635	24	11.86
109200	2624	24	11.872
109800	2610	24	11.884
110400	2593	24	11.896
111000	2572	24	11.908
111600	2549	23.9	11.921
112200	2523	23.9	11.933
112800	2493	23.9	11.946
113400	2461	23.8	11.959
114000	2427	23.8	11.972

	16800	2595	23.6	11.769		114600	2389	23.7	11.985
	17400	2612	23.7	11.778		115200	2349	23.6	11.998
	18000	2626	23.7	11.787		115800	2306	23.6	12.011
	18600	2636	23.8	11.796		116400	2261	23.5	12.024
	19200	2644	23.9	11.806		117000	2213	23.4	12.037
	19800	2649	23.9	11.816		117600	2164	23.3	12.05
	20400	2650	23.9	11.827		118200	2111	23.2	12.063
	21000	2648	24	11.837		118800	2057	23.1	12.076
	21600	2643	24	11.849		119400	2001	23	12.089
	22200	2635	24	11.86		120000	1943	22.9	12.101
	22800	2624	24	11.872		120600	1883	22.7	12.113
	23400	2610	24	11.884		121200	1821	22.6	12.125
	24000	2593	24	11.896		121800	1758	22.5	12.137
	24600	2572	24	11.908		122400	1693	22.3	12.149
	25200	2549	23.9	11.921		123000	1627	22.2	12.16
	25800	2523	23.9	11.933		123600	1560	22	12.171
	26400	2493	23.9	11.946		124200	1492	21.9	12.181
	27000	2461	23.8	11.959		124800	1423	21.7	12.192
	27600	2427	23.8	11.972		125400	1353	21.6	12.201
L					. L				

	28200	2389	23.7	11.985	126000	1282	21.4	12.211
	28800	2349	23.6	11.998	126600	1211	21.3	12.22
	29400	2306	23.6	12.011	127200	1139	21.1	12.229
	30000	2261	23.5	12.024	127800	1067	20.9	12.237
	30600	2213	23.4	12.037	128400	995	20.7	12.245
	31200	2164	23.3	12.05	129000	924	20.6	12.252
	31800	2111	23.2	12.063	129600	852	20.4	12.259
	32400	2057	23.1	12.076	130200	780	20.2	12.265
	33000	2001	23	12.089	130800	709	20.1	12.271
	33600	1943	22.9	12.101	131400	638	19.9	12.277
	34200	1883	22.7	12.113	132000	569	19.7	12.281
	34800	1821	22.6	12.125	132600	500	19.5	12.286
	35400	1758	22.5	12.137	133200	431	19.4	12.289
	36000	1693	22.3	12.149	133800	364	19.2	12.293
	36600	1627	22.2	12.16	134400	299	19	12.295
	37200	1560	22	12.171	135000	234	18.8	12.297
	37800	1492	21.9	12.181	135600	171	18.7	12.299
Ī	38400	1423	21.7	12.192	136200	110	18.5	12.3
	39000	1353	21.6	12.201	136800	50	18.4	12.3

	39600	1282	21.4	12.211		137400	-8	18.2
	40200	1211	21.3	12.22	1 -	138000	-64	18
	40800	1139	21.1	12.229		138600	-118	17.9
	41400	1067	20.9	12.237	1 -	139200	-170	17.7
	42000	995	20.7	12.245	1 -	139800	-220	17.6
	42600	924	20.6	12.252		140400	-267	17.5
	43200	852	20.4	12.259		141000	-312	17.3
	43800	780	20.2	12.265		141600	-354	17.2
	44400	709	20.1	12.271		142200	-394	17.1
_	45000	638	19.9	12.277		142800	-431	17
	45600	569	19.7	12.281		143400	-466	16.9
	46200	500	19.5	12.286		144000	-497	16.8
	46800	431	19.4	12.289		144600	-526	16.7
	47400	364	19.2	12.293		145200	-552	16.6
	48000	299	19	12.295		145800	-575	16.5
	48600	234	18.8	12.297	1 -	146400	-595	16.4
	49200	171	18.7	12.299	1 -	147000	-612	16.3
-	49800	110	18.5	12.3	1 -	147600	-626	16.3
	50400	50	18.4	12.3	1 -	148200	-636	16.2
L					J L			

12.3

12.299

12.298

12.296

12.293

12.29

12.287

12.282

12.278

12.273

12.267

12.261

12.254

12.247

12.239

12.231

12.222

12.213

12.204

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	51000	-8	18.2	12.3	
52200 -118 17.9 12.298 52800 -170 17.7 12.296 53400 -220 17.6 12.293 54000 -267 17.5 12.29 54600 -312 17.3 12.287 55200 -354 17.2 12.282 55800 -394 17.1 12.273 56400 -431 17 12.273 57000 -466 16.9 12.267 57600 -497 16.8 12.261 58200 -526 16.7 12.254 58400 -552 16.6 12.247 59400 -575 16.5 12.231 60000 -595 16.4 12.231 60600 -612 16.3 12.213 61800 -636 16.2 12.204	51600	-64	18	12.299	
52800 -170 17.7 12.296 53400 -220 17.6 12.293 54000 -267 17.5 12.29 54600 -312 17.3 12.287 55200 -354 17.2 12.282 55800 -394 17.1 12.278 56400 -431 17 12.273 57000 -466 16.9 12.267 57600 -497 16.8 12.261 58200 -526 16.7 12.254 58800 -552 16.6 12.247 59400 -575 16.5 12.239 60000 -595 16.4 12.231 60600 -612 16.3 12.213 61800 -636 16.2 12.204	52200	-118	17.9	12.298	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	52800	-170	17.7	12.296	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	53400	-220	17.6	12.293	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	54000	-267	17.5	12.29	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	54600	-312	17.3	12.287	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55200	-354	17.2	12.282	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	55800	-394	17.1	12.278	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	56400	-431	17	12.273	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	57000	-466	16.9	12.267	
58200 -526 16.7 12.254 58800 -552 16.6 12.247 59400 -575 16.5 12.239 60000 -595 16.4 12.231 60600 -612 16.3 12.222 61200 -626 16.3 12.213 61800 -636 16.2 12.204	57600	-497	16.8	12.261	
58800 -552 16.6 12.247 59400 -575 16.5 12.239 60000 -595 16.4 12.231 60600 -612 16.3 12.222 61200 -626 16.3 12.213 61800 -636 16.2 12.204	58200	-526	16.7	12.254	
59400 -575 16.5 12.239 60000 -595 16.4 12.231 60600 -612 16.3 12.222 61200 -626 16.3 12.213 61800 -636 16.2 12.204	58800	-552	16.6	12.247	
60000 -595 16.4 12.231 60600 -612 16.3 12.222 61200 -626 16.3 12.213 61800 -636 16.2 12.204	59400	-575	16.5	12.239	
60600-61216.312.22261200-62616.312.21361800-63616.212.204	60000	-595	16.4	12.231	
61200 -626 16.3 12.213 61800 -636 16.2 12.204	60600	-612	16.3	12.222	
61800 -636 16.2 12.204	61200	-626	16.3	12.213	
	61800	-636	16.2	12.204	

148800	-644	16.1	12.194
149400	-649	16.1	12.184
150000	-650	16.1	12.173
150600	-648	16	12.163
151200	-643	16	12.151
151800	-635	16	12.14
152400	-624	16	12.128
153000	-610	16	12.116
153600	-593	16	12.104
154200	-572	16	12.092
154800	-549	16.1	12.079
155400	-523	16.1	12.067
156000	-493	16.1	12.054
156600	-461	16.2	12.041
157200	-427	16.2	12.028
157800	-389	16.3	12.015
158400	-349	16.4	12.002
159000	-306	16.4	11.989
159600	-261	16.5	11.976

62400	-644	16.1	12.194		160200	-213
63000	-649	16.1	12.184		160800	-164
63600	-650	16.1	12.173		161400	-111
64200	-648	16	12.163		162000	-57
64800	-643	16	12.151		162600	-1
65400	-635	16	12.14		163200	57
66000	-624	16	12.128		163800	117
66600	-610	16	12.116		164400	179
67200	-593	16	12.104		165000	242
67800	-572	16	12.092		165600	307
68400	-549	16.1	12.079		166200	373
69000	-523	16.1	12.067		166800	440
69600	-493	16.1	12.054		167400	508
70200	-461	16.2	12.041		168000	577
70800	-427	16.2	12.028	1 [168600	647
71400	-389	16.3	12.015	1 [169200	718
72000	-349	16.4	12.002		169800	789
72600	-306	16.4	11.989		170400	861
73200	-261	16.5	11.976		171000	933

11.963

11.95

11.937

11.924

11.911

11.899

11.887

11.875

11.863

11.851

11.84

11.829

11.819

11.808

11.799

11.789

11.78

11.771

11.763

16.6

16.7

16.8

16.9

17

17.1

17.3

17.4

17.5

17.7

17.8

18

18.1

18.3

18.4

18.6

18.7

18.9

19.1

	73800	-213	16.6	11.963		171600	1005	19.3	11.755
-	74400	-164	16.7	11.95		172200	1076	19.4	11.748
Ī	75000	-111	16.8	11.937		172800	1148	19.6	11.741
Ī	75600	-57	16.9	11.924		173400	1220	19.8	11.735
Ī	76200	-1	17	11.911		174000	1291	19.9	11.729
	76800	57	17.1	11.899		174600	1362	20.1	11.723
Ī	77400	117	17.3	11.887		175200	1431	20.3	11.719
Ī	78000	179	17.4	11.875		175800	1500	20.5	11.714
Ī	78600	242	17.5	11.863		176400	1569	20.6	11.711
	79200	307	17.7	11.851	-	177000	1636	20.8	11.707
	79800	373	17.8	11.84	-	177600	1701	21	11.705
	80400	440	18	11.829	-	178200	1766	21.2	11.703
	81000	508	18.1	11.819	-	178800	1829	21.3	11.701
	81600	577	18.3	11.808		179400	1890	21.5	11.7
ſ	82200	647	18.4	11.799		180000	1950	21.6	11.7
	82800	718	18.6	11.789	-	180600	2008	21.8	11.7
	83400	789	18.7	11.78	-	181200	2064	22	11.701
	84000	861	18.9	11.771		181800	2118	22.1	11.702
	84600	933	19.1	11.763		182400	2170	22.3	11.704

85200	1005	19.3	11.755
85800	1076	19.4	11.748
86400	1148	19.6	11.741
87000	1220	19.8	11.735
87600	1291	19.9	11.729
88200	1362	20.1	11.723
88800	1431	20.3	11.719
89400	1500	20.5	11.714
90000	1569	20.6	11.711
90600	1636	20.8	11.707
91200	1701	21	11.705
91800	1766	21.2	11.703
92400	1829	21.3	11.701
93000	1890	21.5	11.7
93600	1950	21.6	11.7
94200	2008	21.8	11.7
94800	2064	22	11.701
95400	2118	22.1	11.702
96000	2170	22.3	11.704
, l			

183000	2220	22.4	11.707
183600	2267	22.5	11.71
184200	2312	22.7	11.713
184800	2354	22.8	11.718
185400	2394	22.9	11.722
186000	2431	23	11.727
186600	2466	23.1	11.733
187200	2497	23.2	11.739
187800	2526	23.3	11.746
188400	2552	23.4	11.753
189000	2575	23.5	11.761
189600	2595	23.6	11.769
190200	2612	23.7	11.778
190800	2626	23.7	11.787
191400	2636	23.8	11.796
192000	2644	23.9	11.806
192600	2649	23.9	11.816
193200	2650	23.9	11.827
193800	2648	24	11.837

96600	2220	22.4	11.707	194400	2643	24	11.849
97200	2267	22.5	11.71	195000	2635	24	11.86