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Abstract

Two projections P and Q on a Hilbert space H are called acute if [P Q| < 1. We
utilize the von Neumann alternating projection theorem to prove that if P and Q are
acute, then P A Q = 0. Conversely, if P A Q@ = 0 and P Q is a compact operator,
then P and Q are acute. An example is presented to show that the assumption of
compactness is necessary. Let M be a von Neumann algebra, MP" be the lattice of
all projections in M, and P, Q € MP'. A pair (P, Q) is called modular in MP" if
(RVPYANQ =(RAQ)V (P AQ)forevery R € MP" with R < Q. We present
several characterizations of modular pairs of projections in a von Neumann algebra. In
particular, for a factor M of type I or III, we investigate certain modularity conditions.
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1 Introduction and preliminaries

Pairs of projections in a Hilbert space play a crucial role in the Quantum Hall Effect
[2] and are the subject of study for a wide group of mathematicians as seen in [3, 4,
6, 13, 16, 24], and the references therein.

The examination of pairs of projections is a key point in problems of non-
commutative integration theory as discussed in [7, 18, 20]. Modular pairs of projections
may be utilized to determine when an isomorphism between projection lattices extends
to an algebra isomorphism, see [9]. Halmos [13] defined the minimal angle between
closed subspaces and showed that if two projections are acute, then their ranges are
not orthogonal but still do not contain identical nonzero vectors.
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The algebra generated by two projections is of independent interest because it
encapsulates the interplay between the ranges of the projections, with applications in
operator algebras and spectral theory; see the works of Spitkovsky [22, 23].

Throughout this paper, let B(H) be the *-algebra of all bounded linear operators on
a complex Hilbert space H, let JC(H) be the x-ideal of all compact operators in B(H),
and let / be the identity operator on H. The cone of positive operators in B(H) is
denoted by B(H)™. We consider the Léwner order < on self-adjoint operators stating
that A < B whenever B — A € B(H)T. If A € B(H), then we denote the modulus
of A by |A| := (A*A)!/2. The range and null space of an operator A are denoted by
ran(A) and ker(A), respectively.

Recall that the strong operator topology on 5(H) is defined by the family of semi-
norms A — [|Ax|, x € H. Let (s,(X));2; be the sequence of the singular numbers
of an operator X € B(H). Then X € KC(H) if and only if s,(X) — 0 as n — o0; see
[12, 21].

Let M be a von Neumann algebra of operators acting on a Hilbert space. Denote
MP" as the lattice of all projections (P = P2 = P*)in M. If P, Q € MP", then
PL = 1 — P € MP and the operator P A Q is defined as the projection onto
ran(P) Nran(Q), while P v Q = (P+ A Q1)' is the projection onto the closed
linear span of ran(P) Uran(Q). For P, Q € MP", we write P ~ Q (the Murray—von
Neumann equivalence) if P = U*U and Q = UU™ for some U € MP".

We frequently utilize fundamental properties of projections, which are summarized
in the following theorem:

Theorem 1.1 [19, Theorem 2.3.2] For P, Q € B(H)P", the following conditions are
equivalent: (i) P < Q, (ii)) PQ = P, (iii) QP = P, (iv) ran(P) C ran(Q), (v)
|Px|| < | Qx| forall x € H, (vi) Q — P € B(H)".

Readers are referred to [15] and [19] for any undefined notation and terminology.

In this paper, we explore acute projections and their connections with the Dixmier
angle between their range spaces. We demonstrate that if P Q is a compact operator
and P A Q = 0, then P and Q are acute (Theorem 2.3). It is crucial to note that the
compactness condition of P Q is essential (Example 2.6). For a factor M of type |
or III, we study certain modularity conditions (Theorem 3.2 and Proposition 3.3). We
investigate projections satisfying PQP = AP for some 0 < A < 1. In this context,
we examine some pairs of isoclinic projections (Theorem 4.8).

2 Acute projections

In the theory of projections acting on Hilbert spaces, two projections P and Q on
a Hilbert space are called acute if ||P Q| < 1. This condition implies that their
corresponding closed subspaces are not too closely aligned, in particular, there are no
common eigenvector with eigenvalue 1. Consequently, if P and Q share a nontrivial
closed subspace, they cannot be acute (see part (i) of Theorem 2.3).

A simple geometric example in the real Hilbert space R is given by two rank-1
projections P and Q onto lines separated by an angle 6 > 0. In this case, ||P Q| =
cosf < 1.
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Recall that the cosine of the Dixmier angle between subspaces of ran(P) and ran(Q)
of two projections P and Q is defined as follows:

co(ran(P), ran(Q)) := sup{|{x, y)| : x € ran(P), [lx|| < 1, y € ran(Q), [ly|l = 1}.

It is a known fact that co(ran(P), ran(Q)) = || P Q|| as shown in [11, Lemma 10]. The
projections P — P A Q and Q — P A Q are of particular interest because their ranges
intersect trivially.

Proposition 2.1 Given projections P, Q € B(H), the Dixmier angle of the subspaces
of ran(P) © ran(P N Q) and ran(Q) © ran(P A Q) is nonzero if and only if it holds
that |PQ — P A Q| < 1.

Proof Set R := P A Q andlet P{ := P — R and Q1 := Q — R. The ranges of these
operators are ran(P) ©ran(R) and ran(Q) ©ran(R), respectively. The operator P} Q1
fulfills

POl =II(P=R)NQ—-R)I=[PQ—-PR—-RQ+R|=|PQ—R| <1,

since,by R < P and R < Q,wehave PR = Rand RQ = R. O

To prove the next result, we require the celebrated von Neumann alternating pro-
jection theorem [25]. For the reader’s convenience, we provide an alternative proof of
Theorem 2.2; see [14, Problem 122] for another approach.

Theorem 2.2 (von Neumann theorem) If P, Q € B(H)"", then the sequence
{(PQP)"} is decreasing with respect to the Lowner order and

so- lim (PQP)" =P A Q. 2.1)
n—0oo
Proof Since 0 < PQP < I, we obtain

0<(PQP)" = (PQP)" V2(PQP)(PQP)" V2
< (PQP)" V21 (Po Py
=(Pop)"!

for all positive integers n > 2. It follows from [19, Theorem 4.1.1] that {(P Q P)"}
converges to a self-adjoint operator R in the strong operator topology. Since
$0-1im;; 5 0o (P Q P)"™ = so-lim,; 00 (P Q P)™, we get (PQP)"R = R for all n.
By taking limits as n — 0o, we get R> = R, which ensures that R is a projection. We
shall show that R = P A Q. To do this, we need to show that R(H) = ran(P)Nran(Q):

(1) Let x € ran(P) N ran(Q). Then, x = Px = Qx. Therefore, x =
s0-lim;, 0o (PQP)"'x = Rx € R(H).

@ Springer



47 Page4of13 A. M. Bikchentaev, M. S. Moslehian

(2) Let x € R(H). It follows from (PQP)"*'x = (PQP)(PQP)"'x (n > 1) that
x = PQPx e€ran(P), since Rx = x. Therefore, P(Qx) = x. Hence

(Qx, Ox) = (Qx,x) = (Qx, Px) = (PQx, x) = (x, x).

Therefore,
(Ox —x, Ox —x) = (Qx, Qx) —2Re(Qx, x) + (x,x) = 0.

Thus, x = Qx € ran(Q).

Now, we present one of our main results.

Theorem 2.3 Let P, Q € B(H)"".

(1) If P and Q are acute, then P A Q = 0.
@) If PAQ =0and PQ € K(H), then P and Q are acute.

Proof (i). Since |PQJ| < 1, we have ||PQP]| < 1. Therefore, the sequence
{(PQP)"} converges to 0 in the norm topology, and hence, in the strong operator
topology. It follows from Theorem 2.2, that P A Q = 0.

(ii). If P A Q = 0, then by employing (2.1), we arrive at so-lim,_ (P QP)" =

PAQ=0.

Recall a “Basic lemma” of the theory of projection methods [8, pp. 18—19] (for a
more general case see [5, Theorem 2]): If Y is compact and X, — Xstrongly, then
X, Y — XYuniformly, that is, | X,Y — XY| = Oasn — oc.

Next, we show that PQ € K(H) if and only if POP € K(H): From PQP =
|QP|> = |(PQ)*|?, we infer that

su(POP) = 5,(I(PO)*)? = s,(PQ)*)* = 5,(PQ)?

forall n € N.
Now, for X,, = (PQP)" ! and Y = P QP we obtain

(PQP)" = (PQP)""{(PQP) = (P A Q)PQP =P A Q =0 uniformly as n — oo.
Since P Q P is self-adjoint, we conclude that
IPQPI* = I(PQP)* || — 0 as n — oo,

whence ||PQ||2 =||PQP]| < 1.Thus, |[PO]| < 1. O

Corollary 2.4 (i) If |[PLQL| < 1,then PV Q =I.
(i) POP+ (P —Q)><Pv Qforall P, Q € B(H)".

Proof (i). If|PLQ"L| < 1,thenI = 0+ = (PL A Q1)+ = PV Q by the De Morgan
law.
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(ii). Forall P, Q € B(H)P", we have

0< P QP —P*AQt=1—-POP+PQO+QP—-—P—Q— P AQt
=PVQ-PQP—(P-Q)

by Theorem 2.2 and the De Morgan law.
O

Corollary 2.5 Let P, Q € M. Then, || P Q|| < 1if and only if ran(P) Nran(Q) = &.

Example 2.6 The condition “PQ € K(H)” is essential in item (ii) of Theorem 2.3.
Choose a countable orthonormal basis in H = ¢, and consider a sequence (tn),‘ﬁ 1 C
(0,1) such thatt, / 1 as n — oo; for example, we can put ¢, = 1 — 27" for all
n € N. Then /7, /' 1 as n — oo. Define infinite-dimensional projections in B(H)P*
as

P =diag(1,0,1,0,...,1,0,...,), O=RWeoR®@.. e R"g...,

where
/ 2
RO=( ! F ) e M for 0<7<1.
(m A

Then

PAQ=0, PQP =diag(t,0,6,0,...,%.,0,...,),

1
|QP|:\/PQP:dIag(«/E709 \/tvoy"'v vtnyom-w)ZN/HP:ﬁP

and QP ¢ IKC(H). Therefore, PQ = (QP)* ¢ K(H) and we have

IPQI = 1QPIl = IIQPIIl = sup /1, = 1.

neN

3 Modular projections

This section opens with a definition and its equivalent forms.

Definition 3.1 A pair (P, Q) is called modular in MP"if (RV P)AQ = (RAQ)V
(PAQ)=RV (P AQ)forevery R € MP" with R < Q. For P, Q € B(H)" the
following statements are equivalent [17, Remark 5]:

(o) (P, Q) is modular in B(H)P";

B) IPOQ—-PAQI <1
(y) the linear space ran(P) + ran(Q) is closed.

The Friedrichs angle 6 between closed subspaces ran(P) and ran(Q) is defined by

P P
cos6 = sup {I(x, )| < Il = Iyl = 1, JEmpemnigl.
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It is known that cos6 = ||PQ — P A Q|| [11, Lemma 10]. Thus, the pair (P, Q) is
modular if and only if 6 > 0.

In Example 2.6, || P Q — P A Q|| = 1 indicating that the pair (P, Q) is not modular
in B(H)P".

Let us now present another condition that is equivalent to the modularity of projec-
tions:

Since PQP — P A Q > 0forall P, Q € B(H)?" and

IPO—PAQI=I(PQ—PAQI=IQP—PAQI=IIQP—PAQ
= IV(PO—PAQYQP-PAQ)=IVPOP—-PAQ|
=JIPOP - P A Ql,

we can say that
“A pair (P, Q) is modular if and only if |PQP — P A Q| < 1”. 3.1

Let M be a factor of type I or III on a Hilbert space H (of course, if M is of type
I, then M = B(H)). Then,

“a pair (P, Q) is modular in MP if and only if |PQP — P AQ| <1,”
(3.2)

see Remark 5 and Corollary 4 in [17].

Let EX(B) be the spectral projection of a self-adjoint operator X € B(H) relative
to a Borel subset B of R. Then P A Q = EP2P({1}) for all P, Q € B(H)". To
prove this equality, let x € H such that (PQPx,x) = 1. Then (QPx, Px) = 1. It
follows from the equality case in the Cauchy—Schwarz inequality that Q Px = Px.
Hence, Px € ran(Q) and (Px, Px) = 1. Therefore, (Px,x) = 1. Again, by the
Cauchy-Schwarz inequality, x = Px € ran(P). Hence, x € (P A Q)(H). The
reverse statement evidently holds. Thus, we can assert that

<1,"

“A pair (P, Q) is modular in MP if and only if ”f AdEPCP ()
[0,1)
since

IPOP—PAQ| = H/ kdEPQP(A)—/
[0,1] 1

AdEPQP(/\)H :/ AMEFCP ().
{1 [

0,1)

Theorem 3.2 Let M be afactor of type I or 11l on a Hilbert space H. For P, Q € MP’,
the following conditions are equivalent:

() the pair (P+, Q1) is modular in MP";
(ii) there exists 0 < o < 1 such that P v Q < (P — Q)2 + PQOP +al;
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(iii) there exists 0 < a < 1 suchthat P~V Q < (P — Q)> 4+ PQP + aP+.

Proof (i)<(ii). By (3.2), which holds for a factor of type I or III, and the De Morgan
law we have a chain of equivalences as follows:

“the pair (P+, Q1) is modular in MP™ & “|P-Qt — PL A QL < 1I” &
“|PLotpPL — PL A QL <17 & “there exists 0 < & < 1 such that PLQLtPL —
P A QL < al” (%) © “there exists 0 < o < 1 suchthat I —2P — Q + P +
PO+ QP — PQP — I+ PV Q < al” & “there exists 0 < o < 1 such that
—(P — Q)2 —POP+PVvQO<al” & “thereexists 0 <a < lsuchthat PV Q <
(P— Q)+ PQOP +al”.

Recall that (P — Q)+ PQP < P v Qforall P, Q € B(H), see Corollary 2.4.

(1)=>(iii). We multiply both sides of the inequality P-Q+ P+ — PL A Q1 < I,
see (%), by the projection P from the left and the right. This yields P+ Q+ P+ — P A
Q0+ < aPt. By applying the De Morgan law, we can express this as “there exists
0O<a <lsuchthat/ —2P—Q+P+PQ+QP—-PQP—-I+PVvQ <aP &
“there exists 0 < o < 1 such that —(P — Q)2 — PQP + P v Q < aP1” & “there
exists 0 <« < lsuchthat Pv Q < (P — Q)>+ PQP +aP*".

The implication (iii)=>(ii) is obvious. m|

Similarly, it can be shown that the pair (P, Q) is modular in MP" if and only if
there exists 0 < o < 1 suchthat PQP — P A Q < «aP.

Proposition 3.3 Let M be a factor of type I or Il on a Hilbert space H. Let
P, Q, P, Q1 € MP" be such that PQ = P Q\. Then, the pair (P, Q) is modu-
lar in MP" if and only if the pair (Py, Q1) is modular in MP".

Proof By von Neumann Theorem 2.2, we have
P A Q1 =so-1lim (P1Q1)" =so-lim (PO)" =P A Q.
n—oo n—oo
Therefore, P1Q1— P1 A Q1 = PQ — P A Q and the assertion follows from Corollary
4 in [17] for a factor of type III and from Remark 5 in [17] for a factor of type I. O

Corollary 3.4 Let M be as in Proposition 3.3, let P, Q € MP", and let P; := P Vv
Q — P, Q1 := 0 — P A Q. Then the following conditions are equivalent:

(i) the pair (P*, Q) is modular in MP";
(ii) the pair (P;, Q1) is modular in MP";
(iii) the pair (Py, Q) is modular in MP",

Proof We have

PIQi=(PVQ—-P)Q—-PAQ)=Q—-PQ=PQ

and
PQ=(PVQ—-P)Q=0Q-PQ=PQ.

Now, the assertions are concluded from Proposition 3.3 by considering P instead of
P. O
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Analogously, by employing Proposition 3.3, for P, := PV Q — P A Q and
Q> := P — P A Q and noting that P,P = P — P A Q = P> (Q», we have: “The pair
(P2, P) is modular in MPif and only if the pair (P2, Q2) is modular in MP™.

We conclude this section with general observations about products of projections
of the form P Q P, which will be employed in the discussions of the next section: In
general, products PQP € PB(H)P play an important role in the study of projec-
tions on Hilbert spaces. For example || P Q P|| is equal to the square of the cosine of
the Dixmier angle between subspaces of ran(P) and ran(Q). In quantum mechanics
interpretation, the quantity P Q P represents the probability of observing Q after a
measurement has confirmed P.

It is shown in [1] that an operator T € B(H)™ belongs to the set D := {PQP :
P,Q € B(H)*} if and only if T < I and dimran(T — T?) < dimker(T). The
authors of [10] characterize the set Dg = {(P, Q) : P, Q € B(H)?*, S = PQP} and
find all pairs (Py, Qo) € Ds such that || Pg — Qo = min{||P — Q|| : (P, Q) € Ds}.

It is easy to see that the projections of PB(H)P are exactly the operators PQ P,
where Q is a projection commuting with P. In fact, if R = PTP € PB(H)P is a
projection, then Q := PRP = PR = RP is a projection commuting with P such
that R = PQP [11, Lemma 10].

If P and Q commute, then ran(P)+ran(Q) is closed. Therefore, (P, Q) is modular
aswell as PQ P = P Q is a projection. Thus, one may claim that (P, Q) is modular if
and only if P QP is a projection. However, this statement fails in general, as we show
below:

If P Q P isaprojection, it follows from (2.1) that PAQ = so-lim(PQP)" = PQP.
Hence, |POP — P A Q] = 0 < 1 and from statement (3.1) we conclude that the pair
(P, Q) is modular. However, if the pair (P, Q) is modular, then P Q P may not be a

1
projection. For example, let us consider the projections P = |:(1) 8i| and Q = |:% :|

2
actingon H = C2. Then, ran(P) + ran(Q) = H is closed and so (P, Q) is modular.
However, POP = 1P isnota projection.

DO — D —

4 Isoclinic projections

We begin this section with the following lemma that we need to prove the next result.

Lemma4.1 Let A € B(H) be an idempotent. Then, A is a projection if and only if
IAll = L.

Proof (—) is evident. We merely prove (<—):

First proof. To reach a contradiction, assume two unit vectors x € ran(A) and
y € ker(A) such that (x, y) # 0. By replacing x with ix, if necessary, we can assume
that Re(x, y) # 0. Replacing x with Rei 3y » We can assume Re(x,y) = -2 < %1
Note that the norm of x need not be equal to one in this proof.

Setz :=x + y. We have Az = Ax = x, and

IAZIIZ = [Ix1? > llxI2 + [IylI* + 2Re(x, y) = l|z]|*.
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This implies ||A|| > 1, contradicting ||A|| < 1.
Hence, ran(A) L ker(A), meaning that A is a projection.
Second proof. If ||A] < 1, then

0 < ||Ax — A*Ax|? = (Ax — A*Ax, Ax — A*Ax)
= [|Ax|* — (Ax, A*Ax) — (A*Ax, Ax) + | A*Ax|?
= ||Ax|> — (A%x, Ax) — (Ax, A%x) + | A*Ax|)?
= [|Ax|* — |Ax]I* — [ Ax|* + | A* Ax||?
= [|A*Ax|? — || Ax|?
< |A*?|| Ax|*> — |Ax]?
< |Ax|* = | Ax||* = 0.

Thus A = A*A is self-adjoint and so A is a projection. O

Proposition 4.2 Let P, Q € B(H)?". Then, PQP = P (or QP Q = P) if and only if
P < 0.

Proof (<) It follows from Theorem 1.1.

(=) First proof. f PQP = P, then (PQ)?> = PQP - Q = P Q and the operator
P Q is idempotent. Since ||P Q| < || P|||| @l < 1 we conclude from Lemma 4.1 that
PQ € B(H)P. Hence, PQ = (PQ)* = QP. Therefore, P= PQP = PQ = QP
and P < Q.

If QPQ = P we multiply both sides of this equality by Q from the left (resp.,
from the right), and obtain QPQ = PQ = QP = Pand P < Q.

Second proof. It follows from PQ P = P that (PQP)" = P.From (2.1), we derive
that P A Q = so-lim;,_,oo(PQP)" = P. Therefore, P =P A Q < Q.

Third proof. Let’s use the decomposition H = ran(P) @ ker(P). Then P and Q
can be represented as

| idrancp) O AKX
P_[ 0 0 and Q = X* B > 0.

Employing the assumption PQP = P and the matrix representations above, we
find A = idpan(p). Since Q2 = (, by examining the (1,1)-entries, we obtain A% +
XX* = A. This equality along with A = idn(p) leads to X X* = 0. Hence X = 0.

Consequently,
_ idran(P)O idran(P) 0 _
F —[ o o/<| o B|T¢

O

Recall that an operator U € B(H) is called a partial isometry if U is isometric on
ker(U)=. This is equivalent to any one of the following conditions: (i) UU*U = U, (ii)
U*U € B(H)P, (iii)) UU* € B(H)P'. (iv) U* is a partial isometry; see [19, Theorem
2.3.3]. The next result can be stated as follows.

Theorem 4.3 Let P, Q € B(H)”" and PQP = AP for some () < A < 1.
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1) If0O<A <1, then PAQ =0.
(ii) There exists R € B(H)P" such that P ~ R < Q and RPR = AR.
(iii) If P ~ Q with a partial isometry U, then .~Y2U? is also a partial isometry.

Proof (i). It is supported by Theorem 2.2.

(ii). The operator V = A~!/2Q P is a partial isometry because of the equality V*V =
P. Therefore, V* is also a partial isometry. Let us set R := VV* € B(H).
Then, R ~ P and

A 'QPO =R.

Multiplying both sides of this equality by Q from the left and from the right, we

obtain A"'QPQ = R = QRQ and R < Q according to Proposition 4.2.
Now, we prove that RPR = AR: We have AR = QP Q and

RPR=1"2Q(POP)QPQ =1"2Q(P)QPQ =1"'Q(POP)Q = QPQ.

(iii). Let us assume that P = U*U and Q = UU*, where U € B(H) is a partial
isometry. We can rewrite the equality PQP = AP as

U*uuu*u*U = AU*U.

Multiply both sides of this equality by U from the left and by U* from the right,
apply the equalities

vuu*u =U, U*UU*=U",
and obtain U2U*2U? = AUZ2, which simplifies to ATI2UURy? = A2y,
Hence, A~'/2U? is a partial isometry.

O

Remark 4.4 The converse of Theorem 4.3(i) is not true in general. For example, let us
consider the following projections in B(C*):

1000 1010

0100 110000

P=10000| ™ 2=511010

0000 0000
1000
110000

Then, we have PQP=§ 0000 , and thus PQP # AP for any A. Moreover, a

0000

straightforward verification shows that ran(P) Nran(Q) = &, and hence P A Q = 0.

Definition 4.5 Projections P, Q € B(H)P" are called isoclinic if PQP = cos>6 P
0
and QP Q = cos? 6 Q for some angle 6 € (0, /2). Then, we write P &~ Q.
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A consequence of Theorem 4.3 is as follows.

Corollary 4.6 If P, Q € B(H)? and PQP = AP forsome 0 < A < 1 and tr(Q) <
0
tr(P) < +o0, then QP Q = A(Q, thatis, P ~ Q for the angle # = arccos(+/A).

Proof In light of Theorem 4.3(ii), there exists R € B(H)P" such that P ~ R < Q.
Hence, tr(P) = tr(R) < tr(Q). It follows from the hypotheses that tr(Q) < tr(P) <
+00. Hence, tr(R — Q) = 0. Since the trace functional is faithful, R = Q. It follows
from Theorem 4.3(ii) that QP Q = A Q. m]

0
If P, Q € B(H)P" with P ~ Q for some angle 6 € (0, 7/2), then the pair (P, Q)
is modular in B(H)P". Proposition 4.6 ensures that P A Q = 0 and

cos’0 = |[PQOPI = [IQPI*I = IIQPII* = I1QPI* = I(QP)*|I* = | PQI*.

Therefore, | PO — P A Q|| = [|PQ|| = cos6 € (0, 1). In particular, the linear space
ran(P) + ran(Q) is closed.
The next result is derived from Theorem 4.3(i).

6
Corollary 4.7 [20, Chap. 2, Theorem 10.5] If P, Q € B(H)P" such that P ~ Q for
some angle 6 € (0, w/2),then P A Q = 0.

%
Theorem 4.8 Let P, Q € B(H)"" and P =~ Q for some angle 6 € (0, w/2).

2—0
@) IFPLi= PV O—Pand Oy = O —PAQ then P, %' 0.
2—6 2—6
ii A =0, then ﬂ/% Q and QO+ ﬂ/% P.
(i) If P~ A Q' =0, then P+

Proof Wehave PAQ = 0and PV Q =sin~26 (P — Q)?, see [20, Chap. 2, Theorem
10.5(ii)]. Hence, P, = sin 20 (P — 0)> — P, Q1 = Q and

Q1P1Q) = Q(sin?0(P+Q — PQ — QP) — P)Q
=sin"26(Q — QPQ) — QPQ =sin 2 6(Q — cos’0Q) — cos26Q
= Q —cos’0Q = cos’ (/2 — 0) 01,

PO P

= (sin"20(P+Q—PQ—QP)— P)— P)Q(sin 26(P+Q— PQ — QP)— P)— P)
=sin"*0(Q —20PQ + (QPQ)*) —sin 20(QP + PQ — QPQP — PQPQ)+ PQP
=sin"*0(Q —2cos*0Q + cos* 6Q) —sin 20(QP + PQ — cos’0(QP + PQ) + cos’> O P
=sin"*0(1 — cos?6)2Q —sin 20 Qsin*0(QP + PQ) + cos> O P

=Q—PQ— QP +cos’0P = (1 —sin’)P+ PQ — QP

=cos’ (/2 — O)(sin 2 0(P+ Q — PQ — QP) — P) = cos’(/2 — O) P).
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(i1). By [20, Chap. 2, Theorem 10.5(iii)] and the equality P vV Q — P = Pt —
PL A O, we have

ptopt
=U—-P)QU—-P)=Q—PQ—QP+PQP=Q+cos’0P—PQ — QP
=Q+P—PQ—0P—(1—-cos’0)P =(Q — P)> — (1 —cos’0)P

=1 —=cos’0)(PV Q—P)=(1—cos’0)(P-— P+ A Q)

=sin?oPt = cosz(rr/Z — 0)PL

and QP00 =0 — QPQ = Q —cos?0Q =sin0Q = cos’(n/2 — 0) Q. o
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