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Abstract
Two projections P and Q on a Hilbert space H are called acute if ‖PQ‖ < 1. We
utilize the von Neumann alternating projection theorem to prove that if P and Q are
acute, then P ∧ Q = 0. Conversely, if P ∧ Q = 0 and PQ is a compact operator,
then P and Q are acute. An example is presented to show that the assumption of
compactness is necessary. Let M be a von Neumann algebra, Mpr be the lattice of
all projections in M, and P, Q ∈ Mpr. A pair (P, Q) is called modular in Mpr if
(R ∨ P) ∧ Q = (R ∧ Q) ∨ (P ∧ Q) for every R ∈ Mpr with R ≤ Q. We present
several characterizations of modular pairs of projections in a von Neumann algebra. In
particular, for a factorM of type I or III, we investigate certain modularity conditions.

Keywords Acute projections · Modular projections · Isoclinic projections

Mathematics Subject Classification 47A46 · 47A30 · 47B15 · 46L10

1 Introduction and preliminaries

Pairs of projections in a Hilbert space play a crucial role in the Quantum Hall Effect
[2] and are the subject of study for a wide group of mathematicians as seen in [3, 4,
6, 13, 16, 24], and the references therein.

The examination of pairs of projections is a key point in problems of non-
commutative integration theory as discussed in [7, 18, 20].Modular pairs of projections
may be utilized to determinewhen an isomorphism between projection lattices extends
to an algebra isomorphism, see [9]. Halmos [13] defined the minimal angle between
closed subspaces and showed that if two projections are acute, then their ranges are
not orthogonal but still do not contain identical nonzero vectors.
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The algebra generated by two projections is of independent interest because it
encapsulates the interplay between the ranges of the projections, with applications in
operator algebras and spectral theory; see the works of Spitkovsky [22, 23].

Throughout this paper, let B(H) be the ∗-algebra of all bounded linear operators on
a complex Hilbert spaceH, letK(H) be the ∗-ideal of all compact operators in B(H),
and let I be the identity operator on H. The cone of positive operators in B(H) is
denoted by B(H)+. We consider the Löwner order ≤ on self-adjoint operators stating
that A ≤ B whenever B − A ∈ B(H)+. If A ∈ B(H), then we denote the modulus
of A by |A| := (A∗A)1/2. The range and null space of an operator A are denoted by
ran(A) and ker(A), respectively.

Recall that the strong operator topology on B(H) is defined by the family of semi-
norms A �→ ‖Ax‖, x ∈ H. Let (sn(X))∞n=1 be the sequence of the singular numbers
of an operator X ∈ B(H). Then X ∈ K(H) if and only if sn(X) → 0 as n → ∞; see
[12, 21].

Let M be a von Neumann algebra of operators acting on a Hilbert space. Denote
Mpr as the lattice of all projections (P = P2 = P∗) in M. If P, Q ∈ Mpr, then
P⊥ = I − P ∈ Mpr and the operator P ∧ Q is defined as the projection onto
ran(P) ∩ ran(Q), while P ∨ Q = (P⊥ ∧ Q⊥)⊥ is the projection onto the closed
linear span of ran(P) ∪ ran(Q). For P, Q ∈ Mpr, we write P ∼ Q (theMurray–von
Neumann equivalence) if P = U∗U and Q = UU∗ for some U ∈ Mpr.

We frequently utilize fundamental properties of projections, which are summarized
in the following theorem:

Theorem 1.1 [19, Theorem 2.3.2] For P, Q ∈ B(H)pr, the following conditions are
equivalent: (i) P ≤ Q, (ii) PQ = P , (iii) QP = P , (iv) ran(P) ⊆ ran(Q), (v)
‖Px‖ ≤ ‖Qx‖ for all x ∈ H, (vi) Q − P ∈ B(H)pr.

Readers are referred to [15] and [19] for any undefined notation and terminology.
In this paper, we explore acute projections and their connections with the Dixmier

angle between their range spaces. We demonstrate that if PQ is a compact operator
and P ∧ Q = 0, then P and Q are acute (Theorem 2.3). It is crucial to note that the
compactness condition of PQ is essential (Example 2.6). For a factor M of type I
or III, we study certain modularity conditions (Theorem 3.2 and Proposition 3.3). We
investigate projections satisfying PQP = λP for some 0 < λ ≤ 1. In this context,
we examine some pairs of isoclinic projections (Theorem 4.8).

2 Acute projections

In the theory of projections acting on Hilbert spaces, two projections P and Q on
a Hilbert space are called acute if ‖PQ‖ < 1. This condition implies that their
corresponding closed subspaces are not too closely aligned, in particular, there are no
common eigenvector with eigenvalue 1. Consequently, if P and Q share a nontrivial
closed subspace, they cannot be acute (see part (i) of Theorem 2.3).

A simple geometric example in the real Hilbert space R
2 is given by two rank-1

projections P and Q onto lines separated by an angle θ > 0. In this case, ‖PQ‖ =
cos θ < 1.
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Recall that the cosine of theDixmier angle between subspaces of ran(P) and ran(Q)

of two projections P and Q is defined as follows:

c0(ran(P), ran(Q)) := sup{|〈x, y〉| : x ∈ ran(P), ‖x‖ ≤ 1, y ∈ ran(Q), ‖y‖ ≤ 1}.

It is a known fact that c0(ran(P), ran(Q)) = ‖PQ‖ as shown in [11, Lemma 10]. The
projections P − P ∧ Q and Q − P ∧ Q are of particular interest because their ranges
intersect trivially.

Proposition 2.1 Given projections P, Q ∈ B(H), the Dixmier angle of the subspaces
of ran(P) � ran(P ∧ Q) and ran(Q) � ran(P ∧ Q) is nonzero if and only if it holds
that ‖PQ − P ∧ Q‖ < 1.

Proof Set R := P ∧ Q and let P1 := P − R and Q1 := Q − R. The ranges of these
operators are ran(P)� ran(R) and ran(Q)� ran(R), respectively. The operator P1Q1
fulfills

‖P1Q1‖ = ‖(P − R)(Q − R)‖ = ‖PQ − PR − RQ + R‖ = ‖PQ − R‖ < 1,

since, by R ≤ P and R ≤ Q, we have PR = R and RQ = R. ��

To prove the next result, we require the celebrated von Neumann alternating pro-
jection theorem [25]. For the reader’s convenience, we provide an alternative proof of
Theorem 2.2; see [14, Problem 122] for another approach.

Theorem 2.2 (von Neumann theorem) If P, Q ∈ B(H)pr, then the sequence
{(PQP)n} is decreasing with respect to the Löwner order and

so- lim
n→∞(PQP)n = P ∧ Q. (2.1)

Proof Since 0 ≤ PQP ≤ I , we obtain

0 ≤ (PQP)n = (PQP)(n−1)/2(PQP)(PQP)(n−1)/2

≤ (PQP)(n−1)/2 I (PQP)(n−1)/2

= (PQP)n−1

for all positive integers n ≥ 2. It follows from [19, Theorem 4.1.1] that {(PQP)n}
converges to a self-adjoint operator R in the strong operator topology. Since
so-limm→∞(PQP)n+m = so-limm→∞(PQP)m , we get (PQP)n R = R for all n.
By taking limits as n → ∞, we get R2 = R, which ensures that R is a projection. We
shall show that R = P∧Q. To do this, we need to show that R(H) = ran(P)∩ran(Q):

(1) Let x ∈ ran(P) ∩ ran(Q). Then, x = Px = Qx . Therefore, x =
so-limn→∞(PQP)nx = Rx ∈ R(H).
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(2) Let x ∈ R(H). It follows from (PQP)n+1x = (PQP)(PQP)nx (n ≥ 1) that
x = PQPx ∈ ran(P), since Rx = x . Therefore, P(Qx) = x . Hence

〈Qx, Qx〉 = 〈Qx, x〉 = 〈Qx, Px〉 = 〈PQx, x〉 = 〈x, x〉.

Therefore,

〈Qx − x, Qx − x〉 = 〈Qx, Qx〉 − 2Re〈Qx, x〉 + 〈x, x〉 = 0.

Thus, x = Qx ∈ ran(Q).

��
Now, we present one of our main results.

Theorem 2.3 Let P, Q ∈ B(H)pr.

(i) If P and Q are acute, then P ∧ Q = 0.
(ii) If P ∧ Q = 0 and PQ ∈ K(H), then P and Q are acute.

Proof (i). Since ‖PQ‖ < 1, we have ‖PQP‖ < 1. Therefore, the sequence
{(PQP)n} converges to 0 in the norm topology, and hence, in the strong operator
topology. It follows from Theorem 2.2, that P ∧ Q = 0.

(ii). If P ∧ Q = 0, then by employing (2.1), we arrive at so-limn→∞(PQP)n =
P ∧ Q = 0.

Recall a “Basic lemma” of the theory of projection methods [8, pp. 18–19] (for a
more general case see [5, Theorem 2]): If Y is compact and Xn → Xstrongly, then
XnY → XYuniformly, that is, ‖XnY − XY‖ → 0 as n → ∞.

Next, we show that PQ ∈ K(H) if and only if PQP ∈ K(H): From PQP =
|QP|2 = |(PQ)∗|2, we infer that

sn(PQP) = sn(|(PQ)∗|)2 = sn((PQ)∗)2 = sn(PQ)2

for all n ∈ N.
Now, for Xn = (PQP)n−1 and Y = PQP we obtain

(PQP)n = (PQP)n−1(PQP) → (P ∧ Q)PQP = P ∧ Q = 0 uniformly as n → ∞.

Since PQP is self-adjoint, we conclude that

‖PQP‖2n = ‖(PQP)2
n‖ → 0 as n → ∞,

whence ‖PQ‖2 = ‖PQP‖ < 1. Thus, ‖PQ‖ < 1. ��
Corollary 2.4 (i) If ‖P⊥Q⊥‖ < 1, then P ∨ Q = I .
(ii) PQP + (P − Q)2 ≤ P ∨ Q for all P, Q ∈ B(H)pr.

Proof (i). If ‖P⊥Q⊥‖ < 1, then I = 0⊥ = (P⊥ ∧Q⊥)⊥ = P∨Q by the DeMorgan
law.
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(ii). For all P, Q ∈ B(H)pr, we have

0 ≤ P⊥Q⊥P⊥ − P⊥ ∧ Q⊥ = I − PQP + PQ + QP − P − Q − P⊥ ∧ Q⊥

= P ∨ Q − PQP − (P − Q)2

by Theorem 2.2 and the De Morgan law.
��

Corollary 2.5 Let P, Q ∈ M
pr
n . Then, ‖PQ‖ < 1 if and only if ran(P)∩ ran(Q) = ∅.

Example 2.6 The condition “PQ ∈ K(H)” is essential in item (ii) of Theorem 2.3.
Choose a countable orthonormal basis in H = �2 and consider a sequence (tn)∞n=1 ⊂
(0, 1) such that tn ↗ 1 as n → ∞; for example, we can put tn = 1 − 2−n for all
n ∈ N. Then

√
tn ↗ 1 as n → ∞. Define infinite-dimensional projections in B(H)pr

as

P = diag(1, 0, 1, 0, . . . , 1, 0, . . . , ), Q = R(t1) ⊕ R(t2) ⊕ . . . ⊕ R(tn) ⊕ . . . ,

where

R(t) =
(

t
√
t − t2√

t − t2 1 − t

)
∈ M

pr
2 for 0 ≤ t ≤ 1.

Then
P ∧ Q = 0, PQP = diag(t1, 0, t2, 0, . . . , tn, 0, . . . , ),

|QP| = √
PQP = diag(

√
t1, 0,

√
t2, 0, . . . ,

√
tn, 0, . . . , ) ≥ √

t1P = 1√
2
P

and QP /∈ K(H). Therefore, PQ = (QP)∗ /∈ K(H) and we have

‖PQ‖ = ‖QP‖ = ‖|QP|‖ = sup
n∈N

√
tn = 1.

3 Modular projections

This section opens with a definition and its equivalent forms.

Definition 3.1 A pair (P, Q) is called modular inMpr if (R ∨ P) ∧ Q = (R ∧ Q) ∨
(P ∧ Q) = R ∨ (P ∧ Q) for every R ∈ Mpr with R ≤ Q. For P, Q ∈ B(H)pr the
following statements are equivalent [17, Remark 5]:

(α) (P, Q) is modular in B(H)pr;
(β) ‖PQ − P ∧ Q‖ < 1;
(γ ) the linear space ran(P) + ran(Q) is closed.

The Friedrichs angle θ between closed subspaces ran(P) and ran(Q) is defined by

cos θ = sup
{
|〈x, y〉| : ‖x‖ = ‖y‖ = 1, x∈ran(P)�ran(P∧Q)

y∈ran(Q)�ran(P∧Q)

}
.
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It is known that cos θ = ‖PQ − P ∧ Q‖ [11, Lemma 10]. Thus, the pair (P, Q) is
modular if and only if θ > 0.

In Example 2.6, ‖PQ− P ∧ Q‖ = 1 indicating that the pair (P, Q) is not modular
in B(H)pr.

Let us now present another condition that is equivalent to the modularity of projec-
tions:

Since PQP − P ∧ Q ≥ 0 for all P, Q ∈ B(H)pr and

‖PQ − P ∧ Q‖ = ‖(PQ − P ∧ Q)∗‖ = ‖QP − P ∧ Q‖ = ‖|QP − P ∧ Q|‖
= ‖√(PQ − P ∧ Q)(QP − P ∧ Q)‖ = ‖√PQP − P ∧ Q‖
= √‖PQP − P ∧ Q‖,

we can say that

“A pair (P, Q) is modular i f and only i f ‖PQP − P ∧ Q‖ < 1”. (3.1)

Let M be a factor of type I or III on a Hilbert space H (of course, if M is of type
I, then M = B(H)). Then,

“a pair (P, Q) is modular in Mpr i f and only i f ‖PQP − P ∧ Q‖ < 1, ”
(3.2)

see Remark 5 and Corollary 4 in [17].
Let EX (B) be the spectral projection of a self-adjoint operator X ∈ B(H) relative

to a Borel subset B of R. Then P ∧ Q = EPQP ({1}) for all P, Q ∈ B(H)pr. To
prove this equality, let x ∈ H such that 〈PQPx, x〉 = 1. Then 〈QPx, Px〉 = 1. It
follows from the equality case in the Cauchy–Schwarz inequality that QPx = Px .
Hence, Px ∈ ran(Q) and 〈Px, Px〉 = 1. Therefore, 〈Px, x〉 = 1. Again, by the
Cauchy–Schwarz inequality, x = Px ∈ ran(P). Hence, x ∈ (P ∧ Q)(H). The
reverse statement evidently holds. Thus, we can assert that

“A pair (P, Q) is modular in Mpr i f and only i f

∥∥∥∥
∫

[0,1)
λdE PQP (λ)

∥∥∥∥ < 1, "

since

‖PQP − P ∧ Q‖ =
∥∥∥∥
∫

[0,1]
λdE PQP (λ) −

∫
{1}

λdE PQP (λ)

∥∥∥∥ =
∫

[0,1)
λdE PQP (λ).

Theorem 3.2 LetM be a factor of type I or III on aHilbert spaceH. For P, Q ∈ Mpr,
the following conditions are equivalent:

(i) the pair (P⊥, Q⊥) is modular inMpr;
(ii) there exists 0 ≤ α < 1 such that P ∨ Q ≤ (P − Q)2 + PQP + α I ;

123



On pairs of projections Page 7 of 13    47 

(iii) there exists 0 ≤ α < 1 such that P ∨ Q ≤ (P − Q)2 + PQP + αP⊥.

Proof (i)⇔(ii). By (3.2), which holds for a factor of type I or III, and the De Morgan
law we have a chain of equivalences as follows:

“the pair (P⊥, Q⊥) is modular in Mpr” ⇔ “‖P⊥Q⊥ − P⊥ ∧ Q⊥‖ < 1” ⇔
“‖P⊥Q⊥P⊥ − P⊥ ∧ Q⊥‖ < 1” ⇔ “there exists 0 ≤ α < 1 such that P⊥Q⊥P⊥ −
P⊥ ∧ Q⊥ ≤ α I” (∗) ⇔ “there exists 0 ≤ α < 1 such that I − 2P − Q + P +
PQ + QP − PQP − I + P ∨ Q ≤ α I” ⇔ “there exists 0 ≤ α < 1 such that
−(P − Q)2 − PQP + P ∨ Q ≤ α I” ⇔ “there exists 0 ≤ α < 1 such that P ∨ Q ≤
(P − Q)2 + PQP + α I”.

Recall that (P − Q)2 + PQP ≤ P ∨ Q for all P, Q ∈ B(H)pr, see Corollary 2.4.
(i)⇒(iii). We multiply both sides of the inequality P⊥Q⊥P⊥ − P⊥ ∧ Q⊥ ≤ α I ,

see (∗), by the projection P⊥ from the left and the right. This yields P⊥Q⊥P⊥−P⊥∧
Q⊥ ≤ αP⊥. By applying the De Morgan law, we can express this as “there exists
0 ≤ α < 1 such that I −2P −Q+ P + PQ+QP − PQP − I + P ∨Q ≤ αP⊥”⇔
“there exists 0 ≤ α < 1 such that −(P − Q)2 − PQP + P ∨ Q ≤ αP⊥” ⇔ “there
exists 0 ≤ α < 1 such that P ∨ Q ≤ (P − Q)2 + PQP + αP⊥”.

The implication (iii)⇒(ii) is obvious. ��
Similarly, it can be shown that the pair (P, Q) is modular in Mpr if and only if

there exists 0 ≤ α < 1 such that PQP − P ∧ Q ≤ αP .

Proposition 3.3 Let M be a factor of type I or III on a Hilbert space H. Let
P, Q, P1, Q1 ∈ Mpr be such that PQ = P1Q1. Then, the pair (P, Q) is modu-
lar inMpr if and only if the pair (P1, Q1) is modular inMpr.

Proof By von Neumann Theorem 2.2, we have

P1 ∧ Q1 = so- lim
n→∞(P1Q1)

n = so- lim
n→∞(PQ)n = P ∧ Q.

Therefore, P1Q1 − P1 ∧Q1 = PQ− P ∧Q and the assertion follows from Corollary
4 in [17] for a factor of type III and from Remark 5 in [17] for a factor of type I. ��
Corollary 3.4 Let M be as in Proposition 3.3, let P, Q ∈ Mpr, and let P1 := P ∨
Q − P , Q1 := Q − P ∧ Q. Then the following conditions are equivalent:

(i) the pair (P⊥, Q) is modular inMpr;
(ii) the pair (P1, Q1) is modular inMpr;
(iii) the pair (P1, Q) is modular inMpr.

Proof We have

P1Q1 = (P ∨ Q − P)(Q − P ∧ Q) = Q − PQ = P⊥Q

and
P1Q = (P ∨ Q − P)Q = Q − PQ = P⊥Q.

Now, the assertions are concluded from Proposition 3.3 by considering P⊥ instead of
P . ��
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Analogously, by employing Proposition 3.3, for P2 := P ∨ Q − P ∧ Q and
Q2 := P − P ∧ Q and noting that P2P = P − P ∧ Q = P2Q2, we have: “The pair
(P2, P) is modular inMprif and only if the pair (P2, Q2) is modular inMpr”.

We conclude this section with general observations about products of projections
of the form PQP , which will be employed in the discussions of the next section: In
general, products PQP ∈ PB(H)P play an important role in the study of projec-
tions on Hilbert spaces. For example ‖PQP‖ is equal to the square of the cosine of
the Dixmier angle between subspaces of ran(P) and ran(Q). In quantum mechanics
interpretation, the quantity PQP represents the probability of observing Q after a
measurement has confirmed P .

It is shown in [1] that an operator T ∈ B(H)+ belongs to the set D := {PQP :
P, Q ∈ B(H)pr} if and only if T ≤ I and dim ran(T − T 2) ≤ dim ker(T ). The
authors of [10] characterize the set DS = {(P, Q) : P, Q ∈ B(H)pr, S = PQP} and
find all pairs (P0, Q0) ∈ DS such that ‖P0 − Q0‖ = min{‖P − Q‖ : (P, Q) ∈ DS}.

It is easy to see that the projections of PB(H)P are exactly the operators PQP ,
where Q is a projection commuting with P . In fact, if R = PT P ∈ PB(H)P is a
projection, then Q := PRP = PR = RP is a projection commuting with P such
that R = PQP [11, Lemma 10].

If P and Q commute, then ran(P)+ran(Q) is closed. Therefore, (P, Q) is modular
as well as PQP = PQ is a projection. Thus, one may claim that (P, Q) is modular if
and only if PQP is a projection. However, this statement fails in general, as we show
below:

If PQP is a projection, it follows from (2.1) that P∧Q = so-lim(PQP)n = PQP .
Hence, ‖PQP − P ∧ Q‖ = 0 < 1 and from statement (3.1) we conclude that the pair
(P, Q) is modular. However, if the pair (P, Q) is modular, then PQP may not be a

projection. For example, let us consider the projections P =
[
1 0
0 0

]
and Q =

[
1
2

1
2

1
2

1
2

]

acting on H = C
2. Then, ran(P) + ran(Q) = H is closed and so (P, Q) is modular.

However, PQP = 1
2 P is not a projection.

4 Isoclinic projections

We begin this section with the following lemma that we need to prove the next result.

Lemma 4.1 Let A ∈ B(H) be an idempotent. Then, A is a projection if and only if
‖A‖ ≤ 1.

Proof (�⇒) is evident. We merely prove (⇐�):
First proof. To reach a contradiction, assume two unit vectors x ∈ ran(A) and

y ∈ ker(A) such that 〈x, y〉 �= 0. By replacing x with ix , if necessary, we can assume
that Re〈x, y〉 �= 0. Replacing x with −2x

Re〈x,y〉 , we can assume Re〈x, y〉 = −2 < −1
2 .

Note that the norm of x need not be equal to one in this proof.
Set z := x + y. We have Az = Ax = x , and

‖Az‖2 = ‖x‖2 > ‖x‖2 + ‖y‖2 + 2Re〈x, y〉 = ‖z‖2.
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This implies ‖A‖ > 1, contradicting ‖A‖ ≤ 1.
Hence, ran(A) ⊥ ker(A), meaning that A is a projection.
Second proof. If ‖A‖ ≤ 1, then

0 ≤ ‖Ax − A∗Ax‖2 = 〈Ax − A∗Ax, Ax − A∗Ax〉
= ‖Ax‖2 − 〈Ax, A∗Ax〉 − 〈A∗Ax, Ax〉 + ‖A∗Ax‖2
= ‖Ax‖2 − 〈A2x, Ax〉 − 〈Ax, A2x〉 + ‖A∗Ax‖2
= ‖Ax‖2 − ‖Ax‖2 − ‖Ax‖2 + ‖A∗Ax‖2
= ‖A∗Ax‖2 − ‖Ax‖2
≤ ‖A∗‖2‖Ax‖2 − ‖Ax‖2
≤ ‖Ax‖2 − ‖Ax‖2 = 0.

Thus A = A∗A is self-adjoint and so A is a projection. ��
Proposition 4.2 Let P, Q ∈ B(H)pr. Then, PQP = P (or QPQ = P) if and only if
P ≤ Q.

Proof (⇐�) It follows from Theorem 1.1.
(�⇒) First proof. If PQP = P , then (PQ)2 = PQP · Q = PQ and the operator

PQ is idempotent. Since ‖PQ‖ ≤ ‖P‖‖Q‖ ≤ 1 we conclude from Lemma 4.1 that
PQ ∈ B(H)pr. Hence, PQ = (PQ)∗ = QP . Therefore, P = PQP = PQ = QP
and P ≤ Q.

If QPQ = P we multiply both sides of this equality by Q from the left (resp.,
from the right), and obtain QPQ = PQ = QP = P and P ≤ Q.

Second proof. It follows from PQP = P that (PQP)n = P . From (2.1), we derive
that P ∧ Q = so-limn→∞(PQP)n = P . Therefore, P = P ∧ Q ≤ Q.

Third proof. Let’s use the decomposition H = ran(P) ⊕ ker(P). Then P and Q
can be represented as

P =
[
idran(P) 0

0 0

]
and Q =

[
A X
X∗ B

]
≥ 0.

Employing the assumption PQP = P and the matrix representations above, we
find A = idran(P). Since Q2 = Q, by examining the (1,1)-entries, we obtain A2 +
XX∗ = A. This equality along with A = idran(P) leads to XX∗ = 0. Hence X = 0.
Consequently,

P =
[
idran(P) 0

0 0

]
≤

[
idran(P) 0

0 B

]
= Q.

��
Recall that an operator U ∈ B(H) is called a partial isometry if U is isometric on

ker(U )⊥. This is equivalent to any one of the following conditions: (i)UU∗U = U , (ii)
U∗U ∈ B(H)pr, (iii) UU∗ ∈ B(H)pr. (iv) U∗ is a partial isometry; see [19, Theorem
2.3.3]. The next result can be stated as follows.

Theorem 4.3 Let P, Q ∈ B(H)pr and PQP = λP for some 0 < λ ≤ 1.

123
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(i) If 0 < λ < 1, then P ∧ Q = 0.
(ii) There exists R ∈ B(H)pr such that P ∼ R ≤ Q and RPR = λR.
(iii) If P ∼ Q with a partial isometry U, then λ−1/2U 2 is also a partial isometry.

Proof (i). It is supported by Theorem 2.2.
(ii). The operator V = λ−1/2QP is a partial isometry because of the equality V ∗V =

P . Therefore, V ∗ is also a partial isometry. Let us set R := VV ∗ ∈ B(H)pr.
Then, R ∼ P and

λ−1QPQ = R.

Multiplying both sides of this equality by Q from the left and from the right, we
obtain λ−1QPQ = R = QRQ and R ≤ Q according to Proposition 4.2.
Now, we prove that RPR = λR: We have λR = QPQ and

RPR = λ−2Q(PQP)QPQ = λ−2Q(λP)QPQ = λ−1Q(PQP)Q = QPQ.

(iii). Let us assume that P = U∗U and Q = UU∗, where U ∈ B(H) is a partial
isometry. We can rewrite the equality PQP = λP as

U∗UUU∗U∗U = λU∗U .

Multiply both sides of this equality byU from the left and byU∗ from the right,
apply the equalities

UU∗U = U , U∗UU∗ = U∗,

and obtain U 2U∗2U 2 = λU 2, which simplifies to λ−3/2U 2U∗2U 2 = λ−1/2U 2.
Hence, λ−1/2U 2 is a partial isometry.

��
Remark 4.4 The converse of Theorem 4.3(i) is not true in general. For example, let us
consider the following projections in B(C4):

P =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ and Q = 1

2

⎡
⎢⎢⎣
1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ .

Then, we have PQP = 1
2

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, and thus PQP �= λP for any λ. Moreover, a

straightforward verification shows that ran(P) ∩ ran(Q) = ∅, and hence P ∧ Q = 0.

Definition 4.5 Projections P, Q ∈ B(H)pr are called isoclinic if PQP = cos2 θ P

and QPQ = cos2 θ Q for some angle θ ∈ (0, π/2). Then, we write P
θ≈ Q.
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A consequence of Theorem 4.3 is as follows.

Corollary 4.6 If P, Q ∈ B(H)pr and PQP = λP for some 0 < λ < 1 and tr(Q) ≤
tr(P) < +∞, then QPQ = λQ, that is, P

θ≈ Q for the angle θ = arccos(
√

λ).

Proof In light of Theorem 4.3(ii), there exists R ∈ B(H)pr such that P ∼ R ≤ Q.
Hence, tr(P) = tr(R) ≤ tr(Q). It follows from the hypotheses that tr(Q) ≤ tr(P) <

+∞. Hence, tr(R − Q) = 0. Since the trace functional is faithful, R = Q. It follows
from Theorem 4.3(ii) that QPQ = λQ. ��

If P, Q ∈ B(H)pr with P
θ≈ Q for some angle θ ∈ (0, π/2), then the pair (P, Q)

is modular in B(H)pr. Proposition 4.6 ensures that P ∧ Q = 0 and

cos2 θ = ‖PQP‖ = ‖|QP|2‖ = ‖|QP|‖2 = ‖QP‖2 = ‖(QP)∗‖2 = ‖PQ‖2.

Therefore, ‖PQ − P ∧ Q‖ = ‖PQ‖ = cos θ ∈ (0, 1). In particular, the linear space
ran(P) + ran(Q) is closed.

The next result is derived from Theorem 4.3(i).

Corollary 4.7 [20, Chap. 2, Theorem 10.5] If P, Q ∈ B(H)pr such that P
θ≈ Q for

some angle θ ∈ (0, π/2), then P ∧ Q = 0.

Theorem 4.8 Let P, Q ∈ B(H)pr and P
θ≈ Q for some angle θ ∈ (0, π/2).

(i) If P1 := P ∨ Q − P and Q1 := Q − P ∧ Q, then P1
π/2−θ≈ Q1.

(ii) If P⊥ ∧ Q⊥ = 0, then P⊥ π/2−θ≈ Q and Q⊥ π/2−θ≈ P.

Proof We have P∧Q = 0 and P∨Q = sin−2 θ (P−Q)2, see [20, Chap. 2, Theorem
10.5(iii)]. Hence, P1 = sin−2 θ (P − Q)2 − P , Q1 = Q and

Q1P1Q1 = Q(sin−2 θ(P + Q − PQ − QP) − P)Q

= sin−2 θ(Q − QPQ) − QPQ = sin−2 θ(Q − cos2 θQ) − cos2 θQ

= Q − cos2 θQ = cos2(π/2 − θ)Q1,

P1Q1P1

= (sin−2 θ(P + Q − PQ − QP) − P) − P)Q(sin−2 θ(P + Q − PQ − QP) − P) − P)

= sin−4 θ(Q − 2QPQ + (QPQ)2) − sin−2 θ(QP + PQ − QPQP − PQPQ) + PQP

= sin−4 θ(Q − 2 cos2 θQ + cos4 θQ) − sin−2 θ(QP + PQ − cos2 θ(QP + PQ) + cos2 θ P

= sin−4 θ(1 − cos2 θ)2Q − sin−2 θQ sin2 θ(QP + PQ) + cos2 θ P

= Q − PQ − QP + cos2 θ P = (1 − sin2 θ)P + PQ − QP

= cos2(π/2 − θ)(sin−2 θ(P + Q − PQ − QP) − P) = cos2(π/2 − θ)P1.
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(ii). By [20, Chap. 2, Theorem 10.5(iii)] and the equality P ∨ Q − P = P⊥ −
P⊥ ∧ Q⊥, we have

P⊥QP⊥

= (I − P)Q(I − P) = Q − PQ − QP + PQP = Q + cos2 θ P − PQ − QP

= Q + P − PQ − QP − (1 − cos2 θ)P = (Q − P)2 − (1 − cos2 θ)P

= (1 − cos2 θ)(P ∨ Q − P) = (1 − cos2 θ)(P⊥ − P⊥ ∧ Q⊥)

= sin2 θ P⊥ = cos2(π/2 − θ)P⊥

and QP⊥Q = Q − QPQ = Q − cos2 θQ = sin2 θQ = cos2(π/2 − θ)Q. ��
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12. Gohberg, I.C., Kreĭn, M.G.: Introduction to the theory of linear nonselfadjoint operators, Translated
from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18. American
Mathematical Society, Providence, R.I., (1969)

13. Halmos, P.R.: Two subspaces. Trans. Amer. Math. Soc. 144, 381–389 (1969)
14. Halmos, P.R.: A Hilbert space problem book, Encyclopedia of Mathematics and its Applications, 17

Graduate Texts in Mathematics, vol. 19, 2nd edn. Springer-Verlag, New York-Berlin (1982)
15. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, Vol. II, Advanced

theory. Corrected reprint of the 1986 original. Graduate Studies in Mathematics, 16. American Math-
ematical Society, Providence, RI (1997)
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