Казанский государственный университет Факультет вычислительной математики и кибернетики

В.М. Конюхов

УЧЕБНО-МЕТОДИЧЕСКИЙ КОМПЛЕКС

по дисциплине

ЧИСЛЕННЫЕ МЕТОДЫ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

СОДЕРЖАНИЕ

ТЕМА 1. ЧИСЛЕННОЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ	5
1.1. Общие этапы построения математической модели и ее численной реализации	5
1.2. Основные уравнения МСС в интегральной и дифференциальной формах	6
1.3. Конкретизация модели СС. Уравнения состояния. Граничные условия	8
1.4. Классификация физических процессов. Примеры замкнутых моделей	9
ТЕМА 2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ РАЗНОСТНЫХ СХЕМ 1	0
2.1. Равномерные и неравномерные сетки. Сеточные функции и нормы	10
2.2. Аппроксимация дифференциальных и интегральных операторов 1	11
2.3. Погрешность аппроксимации в точке (локальная аппроксимация)	12
2.4. Построение разностных аппроксимаций линейных дифференциальных уравнений параболического типа	12
2.5. Явные и неявные РС 1	13
2.6. Невязка РС. Построение РС повышенной точности 1	14
2.7. Разностные схемы с весами	15
2.8. Погрешность аппроксимации на сетке	15
2.9. Сходимость и устойчивость РС 1	16
2.10. Методы аппроксимации краевых и начальных условий 1	18
2.11. Формулы разностного дифференцирования	19
2.12. Формулы перехода от одного веса к другому 1	19
ТЕМА 3. КОНСЕРВАТИВНЫЕ И НЕКОНСЕРВАТИВНЫЕ РС 2	20
3.1. Неизотермические задачи с подвижными границами в газовой динамике 2 3.1.1. Постановка неизотермической задачи в Эйлеровых координатах 2 3.1.2. Постановка неизотермической задачи в Лагранжевых координатах 2	20 20 21
3.2. Построение разностных схем. Шахматные сетки	22
3.3. Анализ построенных схем. Примеры нарушения консервативности РС 2	23
3.4. Интегральные методы построения консервативных разностных схем 2 3.4.1. Интегро-интерполяционный метод 2 3.4.2. Особенности аппроксимации коэффициента теплопроводности в схеме для неизотермическо 2	24 24 эй

3.4.3. Метод сумматорных тождеств	27
3.5. Принципы построения полностью консервативных разностных схем	29
3.5.1. Анализ законов сохранения энергии	30
3.5.2. Анализ уравнения неразрывности	30
3.6. Методы решения разностных схем для изотермических задач газовой динамики	31
3.6.1. Алгоритм явного решения неявной схемы $(lpha$ = σ = $0)$	31
3.6.2. Метод простой итерации при решении неявной схемы $(lpha = \sigma = 1)$	32
3.6.3. Метод прогонки	32
3.6.4. Метод Ньютона линеаризации нелинейных систем алгебраических уравнений	33
3.6.5. Решение динамических уравнений методом Ньютона	34
3.6.6. Метод разделения процессов ("динамические" и "тепловые" уравнения). Внутренний и	
внешний итерационный процессы	35

ТЕМА 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ИНТЕГРО - ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 38

ТЕМА 5. ЭКОНОМИЧНЫЕ РАЗНОСТНЫЕ СХЕМЫ РЕШЕНИЯ НЕСТАЦИОНАРНЫХ МНОГОМЕРНЫХ УРАВНЕНИЙ ПАРАБОЛИЧЕСКОГО ТИПА

41

5.1. Продольно-поперечная схема (метод переменных направлений) 42 5.2. Локально-одномерная схема 44 5.3. Стационарные многомерные уравнения эллиптического типа. Счет на установление 47 ТЕМА 6. ВАРИАЦИОННЫЕ МЕТОДЫ 49 49 6.1. Слабая формулировка задачи. Задача минимизации функционала 6.2. Метод Бубнова-Галеркина. Метод Ритца 50 6.3. Метод конечных элементов (МКЭ) 51 6.3.1. Примеры конечных элементов. Линейные преобразования элементов произвольной формы в базисные 51 6.3.2. Примеры построения базисных функций 52 6.3.3. Вычисление "вектора сил" на базисном элементе 53 6.3.4. Вычисление матрицы жесткости на базисном элементе 54 6.3.5. Построение расширенных векторов и глобальных матрицы жесткости и вектора сил 55 ТЕМА 7. ДВУМЕРНАЯ ПЛОСКОПАРАЛЛЕЛЬНАЯ ФИЛЬТРАЦИЯ В РАЗРЕЗЕ СЛОИСТО-НЕОДНОРОДНОГО ПЛАСТА 57 7.1. Разностная схема 58

7.1. I ASHOCI HAN CACMA	50
7.2. Итерационный метод расчета давления	59
7.2.1. Построение системы уравнений с пятидиагональной матрицей	59
7.2.2. Метод пятидиагональной прогонки	61
7.2.3. Уточнение итераций по давлению	62
ТЕМА 8. УРАВНЕНИЕ ПЕРЕНОСА	63
8.1. Формулировка задач переноса	63

8.1. Разностные схемы	64
ЛИТЕРАТУРА	67
ЛАБОРАТОРНЫЕ ЗАДАНИЯ	68
1. Численные методы решения обыкновенных дифференциальных уравнений (ОДУ)	68
Варианты заданий	69
2. Решение уравнений параболического типа (УПТ)	70
Варианты заданий	71
3. Решение уравнения переноса (УП)	72
Варианты заданий	74

Тема 1. ЧИСЛЕННОЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ

1.1. Общие этапы построения математической модели и ее численной реализации

Модель среды. Будем рассматривать процессы в т.н. сплошных средах (СС), т.е. средах, заполняющих пространство непрерывным образом. Критерий применимости такой модели среды

 $l/L \ll 1$,

где *l* и *L* – соответственно длина свободного пробега частицы среды и характерный размер задачи.

В СС взаимодействие частиц сказывается усредненно, так что для описания процессов в СС можно ввести некоторые **средние характеристики**, не рассматривая поведение отдельных частиц, такие как, например,

T – температура (мера кинетической энергии частиц), ρ – плотность и т.д.

<u>I. Математическое моделирование</u>. Реальные физические процессы в СС взаимосвязаны и их описание достаточно сложно. Одним из методов анализа явлений в СС является **математическое моделирование**, когда вместо реального процесса рассматривается некоторый упрощенный, идеализированный процесс – **модель явления**. При этом часть связей, имеющих место между различными его характеристиками и внешними параметрами, <u>намеренно игнорируется (</u>например, изучение температурного процесса без учета деформируемости СС, влияния электромагнитных волн и т.д.).

Математическая модель процесса – это уравнения, связывающие его известные и искомые параметры. В МСС основные уравнения выражают общие законы сохранения массы, импульса и энергии. Эти уравнения универсальны и могут быть использованы для описания различных физических и технологических процессов.

Моделирование – это упрощение исследуемого процесса, которое сводится к конкретизации и анализу общих уравнений СС, и их замыкание.

Замкнутая математическая модель – это система уравнений, связывающих различные параметры процесса, дополненная граничными и начальными условиями.

Граничные условия – модель взаимодействия внешних (по отношению к исследуемой области) процессов и процессов внутри области.

Начальные условия – модель начального состояния исследуемого процесса.

П. Численное моделирование. Математические модели реального физического процесса, даже упрощенные, могут оказаться весьма сложными для применения аналитических методов. В этом случае для отыскания решения задач используются **численные методы.** В них непрерывная среда заменяется дискретной, а исходные уравнения – системой алгебраических соотношений (например, **разностной схемой**). Для ее решения необходимы свои методы, которые ориентированы на применение вычислительной техники (например, ПЭВМ). Эти методы весьма разнообразны (прямые, итерационные). Возникает и проблема выбора наиболее рационального метода решения, экономичного по времени счета и объему памяти ЭВМ, и обеспечивающего сходимость и устойчивость.

В дальнейшем выполняется разработка алгоритмической модели для ее реализации на ЭВМ, составление программы, отладка и тестирование, получение численного решения, проверка достоверности – апробация численной модели на экспериментах и (или) известных аналитических решениях, и, наконец, анализ результатов расчетов и их использование для прогноза или оптимизации процессов.

Вместе этапы I и II называют численным математическим моделированием.

1.2. Основные уравнения МСС в интегральной и дифференциальной формах

1.1) Закон сохранения массы СС в интегральной форме. Пусть V - некоторый объем CC, заполненные сплошной средой, $\mathbf{r} = (x_1, x_2, x_3)$ – радиус-вектор элемента объема dV относительно начала O декартовой системы координат (x_1, x_2, x_3) . Частицы CC движутся со скоростью $\mathbf{v}(\mathbf{r}, t)$, входят и выходят из объема V через его граничную поверхность Σ . Баланс массы CC в объеме V за время $\Delta t = t - t'$ выражается интегральным соотношением

$$\int_{V} \{ \rho(\mathbf{r}, t') - \rho(\mathbf{r}, t) \} dV = - \int_{t}^{t} \int_{\Sigma} \rho(\mathbf{v} \cdot \mathbf{n}) d\Sigma dt , \qquad (1.1)$$

где $\rho(\mathbf{r},t)$ – плотность СС, **n** – внешняя нормаль к поверхности Σ , правая часть (1.1) характеризует количество СС, покинувшей СС через границу Σ за промежуток времени Δt . Уравнения состояния. Разделение явления по физическим процессам. Примеры описание динамических и тепловых процессов (уравнение теплопереноса, гидродинамические уравнения).

1.2) Закон сохранения массы СС в дифференциальной форме. С помощью формулы Остроградского-Гаусса преобразуем интеграл по поверхности Σ в интеграл по объему V и применим теорему о среднем к интегралу по времени

$$\int_{V} \left\{ \rho(\mathbf{r}, t') - \rho(\mathbf{r}, t) \right\} dV + \Delta t \int_{V} \operatorname{div}(\rho \mathbf{v}) \Big|_{\overline{t}} dV = 0$$

где $\overline{t} \in [t, t']$. Поделим полученное соотношение на Δt . При $\Delta t \to 0$ будем иметь

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \mathbf{v}) = 0 \tag{1.2}$$

- уравнение неразрывности СС.

2.1) Закон сохранения количества движения СС в интегральной форме. Пусть на сплошную среду действуют внешняя сила с объемной плотностью $\mathbf{F}(\mathbf{r},t)$, например, сила тяжести. Изменение количества движения СС в объеме V за время $\Delta t = t - t'$ происходит за счет действия силы $\mathbf{F}(\mathbf{r},t)$, потери (приобретения) импульса вследствие прихода (ухода) СС через границу Σ , а также вследствие взаимодействия среды внутри объема V со средой вне V. Это взаимодействие носит поверхностный характер. Соответствующая сила **P** может быть разложена на две составляющие, направленные вдоль нормального и касательного единичных векторов **n** и **t** в точке поверхности Σ : $\mathbf{P} = \mathbf{P}_n + \mathbf{P}_{\tau}$. Составляющая \mathbf{P}_{τ} обусловлена наличием вязких сил, возникающих из-за относительного движения слоев среды, соприкасающихся по поверхности Σ , а $\mathbf{P}_n = p\mathbf{n}$, где p – давление. В пренебрежении составляющей \mathbf{P}_{τ} изменение количества движение (импульса) СС в объеме V за промежуток времени $\Delta t = t - t'$ выражается интегральным соотношением

$$\int_{V} \{\rho \mathbf{v}(\mathbf{r},t') - \rho \mathbf{v}(\mathbf{r},t)\} dV = -\int_{t}^{t'} \int_{\Sigma} \rho \mathbf{v}(\mathbf{v} \cdot \mathbf{n}) d\Sigma dt - \int_{t}^{t'} \int_{\Sigma} p \mathbf{n} \, d\Sigma dt + \int_{t}^{t'} \int_{V} \mathbf{F}(\mathbf{r},t) \, dV dt \,.$$
(1.3)

В отличие от уравнения (1.1) соотношение (1.3) является векторным, т.е. включает в себя три скалярных уравнения в проекциях на координатные оси x_1, x_2, x_3 .

2.2) Закон сохранения количества движения СС в дифференциальной форме. Разложим вектор \mathbf{v} на составляющие по направлениям осей x_1, x_2, x_3 : $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$ и возьмем проекции уравнения (1.3) на эти оси. В каждом из трех уравнений преобразуем поверх-

ностные интегралы в объемные, применим теорему о среднем к интегралу по времени, поделим полученные соотношения на Δt и, устремив Δt к нулю, получим:

$$\frac{\partial(\rho \upsilon_i)}{\partial t} + \operatorname{div}(\rho \upsilon_i \upsilon) = -\frac{\partial p}{\partial x_i} + F_i, \quad i = 1, 2, 3.$$

С учетом уравнения неразрывности (1.2) преобразуем левые части этих соотношений

$$\rho \frac{\partial \upsilon_i}{\partial t} + \upsilon_i \frac{\partial \rho}{\partial t} + \upsilon_i \operatorname{div}(\rho \upsilon) + \rho(\upsilon \nabla)\upsilon_i = \rho \left\{ \frac{\partial \upsilon_i}{\partial t} + (\upsilon \nabla)\upsilon_i \right\},$$

где $\nabla = \operatorname{grad} = (\partial/\partial x_1, \partial/\partial x_2, \partial/\partial x_3)$. Тогда скалярная дифференциальная форма закона сохранения количества движения

$$\rho \left[\frac{\partial v_i}{\partial t} + (v\nabla) v_i \right] = -\frac{\partial p}{\partial x_i} + F_i, \quad i = 1, 2, 3$$
(1.4)

может быть представлена также в векторном виде:

$$\rho \left[\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \nabla) \mathbf{v} \right] = -\nabla p + \mathbf{F}.$$
(1.4₂)

3.1) Закон сохранения полной энергии СС в интегральной форме. Пусть $e = \rho(\varepsilon + \upsilon^2/2)$, где ε и $\upsilon^2/2$ – объемная плотность соответственно внутренней и кинетической энергии СС, а полная энергия $E = \int_{V} edV$. В дальнейшем ограничимся случаем, ко-

гда внутренняя энергия ε обусловлена только тепловыми процессами в СС. Интегральный баланс полной энергии за промежуток времени $\Delta t = t - t'$ может быть представлен в виде:

$$\int_{V} \{e(\mathbf{r},t') - e(\mathbf{r},t)\} dV = -\int_{t}^{t'} \int_{\Sigma} e(\mathbf{v}\cdot\mathbf{n}) d\Sigma dt - \int_{t}^{t'} \int_{\Sigma} p(\mathbf{v}\cdot\mathbf{n}) d\Sigma dt + \int_{t}^{t'} \int_{V} (\mathbf{F}\cdot\mathbf{v}) dV dt + \int_{t}^{t'} \int_{V} Q(\mathbf{r},t) dV dt - \int_{t}^{t'} \int_{\Sigma} (\mathbf{W}\cdot\mathbf{n}) d\Sigma dt .$$
(1.5)

Слагаемые правой части описывают изменение полной энергии за счет следующих факторов:

- потери (приобретения) энергии вследствие прихода (ухода) СС через границу Σ,
- работы поверхностных сил (давления *p*),
- работы объемной силы $\mathbf{F}(\mathbf{r},t)$,
- объемных источников тепла плотностью $Q(\mathbf{r},t)$, распределенных по объему V,
- притока (ухода) тепловой энергии через поверхность Σ за счет процесса теплопроводности: W вектор плотности теплового потока.

3.2) Закон сохранения полной энергии СС в дифференциальной форме:

$$\frac{\partial e}{\partial t} + \operatorname{div}(e\mathbf{v}) = -\operatorname{div}(p\mathbf{v}) + (\mathbf{F} \cdot \mathbf{v}) + Q - \operatorname{div}\mathbf{W}.$$
(1.6₁)

С учетом уравнения неразрывности преобразуем левую часть этих соотношения (1.6):

$$\rho \frac{\partial}{\partial t} \left(\varepsilon + \frac{\upsilon^2}{2} \right) + \left(\varepsilon + \frac{\upsilon^2}{2} \right) \frac{\partial \rho}{\partial t} + \left(\varepsilon + \frac{\upsilon^2}{2} \right) \operatorname{div} \left(\rho \upsilon \right) + \rho \left(\upsilon \nabla \right) \left(\varepsilon + \frac{\upsilon^2}{2} \right) = \rho \left\{ \frac{\partial}{\partial t} \left(\varepsilon + \frac{\upsilon^2}{2} \right) + \left(\upsilon \nabla \right) \left(\varepsilon + \frac{\upsilon^2}{2} \right) \right\}$$

Тогда вторая дифференциальная форма закона сохранения полной энергии

$$\rho\left\{\frac{\partial}{\partial t}\left(\varepsilon + \frac{\upsilon^2}{2}\right) + \left(\upsilon\nabla\right)\left(\varepsilon + \frac{\upsilon^2}{2}\right)\right\} = -\operatorname{div}\left(p\upsilon\right) + \left(\mathbf{F}\cdot\upsilon\right) + Q - \operatorname{div}\mathbf{W}.$$
(1.6₂)

Вычитая из уравнения (1.6₂) уравнение (1.4₂), скалярно умноженное на скорость υ , получим закон сохранения внутренней энергии:

$$\rho \left\{ \frac{\partial \varepsilon}{\partial t} + (\mathbf{v}\nabla)\varepsilon \right\} = -p \operatorname{div}\mathbf{v} + Q - \operatorname{div}\mathbf{W}.$$
(1.7)

1.3. Конкретизация модели СС. Уравнения состояния. Граничные условия

Вектор W плотности теплового потока может быть задан по закону Фурье:

$$\mathbf{W} = -K\nabla T \,, \tag{1.8}$$

где $K = K(\rho, T)$ – коэффициент теплопроводности CC, T - температура.

Для замыкания уравнений СС вводятся уравнения состояния вида

$$\rho = \rho(p,T), \quad \varepsilon = \varepsilon(p,T).$$
(1.9)

Примеры. $\rho = \frac{\rho_{am}}{p_{am}}p$ – идеальный газ, $\rho = \frac{p}{RT}$ – реальный газ, $\rho = const$ - несжима-

емая СС, $\rho = \rho_* \left[1 - \alpha_p \left(T - T_* \right) + \alpha_T \left(p - p_* \right) \right]$ - сжимаемая жидкость. Здесь ρ_{am} – плотность газа при атмосферном давлении p_{am} , R – универсальная газовая постоянная, ρ_* – плотность жидкости при некоторых характерных значениях температуры T_* и давления p_* , α_p и α_T – коэффициенты теплового расширения и объемной упругости.

Внутренняя энергия СС (газа, жидкости, твердого тела) часто определяется уравнением состояния

$$\varepsilon = C_V T \tag{1.10}$$

Здесь C_v – коэффициент теплоемкости среды.

После подстановки (1.8) в (1.7) система из семи уравнений (1.2), (1.4₁), (1.6₂) или (1.7), (1.9) позволяет найти семь искомых функций ρ , p, υ_1 , υ_2 , υ_3 , ε , T. Система является полной. Для ее замыкания должны быть заданы граничные и начальные условия.

> Граничные условия І-го рода (условия Дирихле), например: $T|_{\Sigma} = T_{\Gamma}$, $p|_{\Sigma} = p_{\Gamma}$, где T_{Γ} и p_{Γ} - заданные на границе Σ функции.

▶ Граничные условия II-го рода, например:

 $-K \frac{\partial T}{\partial n}\Big|_{\Sigma} = q$, где q - заданный на границе Σ тепловой поток (функция $T\Big|_{\Sigma}$ не известна).

В частном случае, если q=0, условие $\frac{\partial T}{\partial n}\Big|_{\Sigma} = 0$ называется условием Неймана.

> Граничные условия III-го рода, например: - $K \frac{\partial T}{\partial n} = \alpha (T|_{\Sigma} - T_{\Gamma}).$ Граничные условия могут быть нелинейными, например, когда q = q(T). Так, при излучении на границе поток тепла по закону Стефана-Больцмана пропорционален 4-ой степени температуры:

$$K \frac{\partial T}{\partial n}\Big|_{\Sigma} = \sigma \Big(T^4\Big|_{\Sigma} - T_{\Gamma}^4\Big).$$

Условия сопряжения решения на границах разрыва среды (их иногда называют граничными условиями IV-го рода), например, когда в задачах теплопроводности $K|_{\Sigma+0} \neq K|_{\Sigma-0}$:

$$K \frac{\partial T}{\partial n}\Big|_{\Sigma + 0} = K \frac{\partial T}{\partial n}\Big|_{\Sigma - 0}, \quad T\Big|_{\Sigma + 0} = T\Big|_{\Sigma - 0}.$$

Более сложные условия ставятся на таких границах в задачах с фазовыми переходами (плавление, кристаллизация и т.д.). В этом случае превращение вещества из одной фазы в другую требует некоторого количества тепла L – скрытой теплоты фазового перехода, а сама граница может быть подвижной. Например, условие Стефана

$$K \frac{\partial T}{\partial n}\Big|_{\Sigma + 0} - K \frac{\partial T}{\partial n}\Big|_{\Sigma - 0} = \rho \upsilon L, \quad T\Big|_{\Sigma} = T_{\Phi},$$

где T_{Φ} – известная температура фазового перехода, $\upsilon = \partial \Sigma / \partial t$ – скорость движения границы. Положение подвижной границы должно быть найдено с использованием этих условий.

Начальные условия в нестационарных задачах моделируют исходное состояние СС в некоторый начальный момент времени $t = t_0$, например,

$$T(x, y, z, t_0) = T_0(x, y, z), \quad p(x, y, z, t_0) = p_0(x, y, z), \quad v_i(x, y, z, t_0) = 0, \quad i = 1, 2, 3$$

1.4. Классификация физических процессов. Примеры замкнутых моделей

1. *Нестационарные процессы* – изменение во времени некоторой характеристики процесса является определяющим и ее производная по переменной *t* не равна 0.

2. Стационарные (установившиеся) процессы имеют место, когда некоторые характеристики процесса не зависят от времени. Например, если $\partial \varepsilon / \partial t = 0$ в уравнении сохранения внутренней энергии (1.2), среда неподвижна ($\upsilon_i = 0$), источник Q = Q(x, y, z), коэффициент теплопроводности K = K(x, y, z) то оно примет вид: $-\operatorname{div}(K \operatorname{grad})T = Q$ – уравнение стационарной теплопроводности, в которое не входит переменная t.

3. Квазис*тационарные процессы* имеют место, когда можно пренебречь изменением во времени некоторой характеристики, например, $\partial \rho / \partial t = 0$ в уравнении неразрывности (1.2), но другие характеристики остаются зависящими от времени. В частности, для несжимаемой среды оно примет вид: divv = 0, но v = v(x, y, z, t). В это уравнение время t входит как параметр.

Разделение явления по физическим процессам. Примеры описания динамических и тепловых процессов (уравнение теплопереноса, гидродинамические уравнения).

Тема 2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ РАЗНОСТНЫХ СХЕМ

Пусть имеется некоторая краевая задача в области D:

$$Au = f$$
, $\mathbf{r} \in D$, $Ru|_{\Sigma} = \mu(\mathbf{r}, t)$ (2.1)

При решении задач сеточными методами выполняются следующие этапы.

1. Проводится дискретизация области *D* непрерывного определения функции *u* : эта область покрывается сеткой ω_h – конечным множеством узлов. Например, если в одномерном случае $D = \{ x \in [0, a] \}$, то $\omega_h = \{ x_i, i = \overline{0, N} \}$.

2. Исходные дифференциальные уравнения и граничные условия (2.1) заменяются (аппроксимируются) системой алгебраических уравнений

$$A_h y = \varphi_h, \quad \mathbf{r} \in D, \quad R_h y|_{\Sigma_h} = v_h, \tag{2.2}$$

в которой неизвестными являются значения вектора сеточной функции $\mathbf{y} = (y_0, y_1, ..., y_N)$ в узлах сетки ω_h .

3. Решается система алгебраических уравнений, и находятся значения $(y_0, y_1, ..., y_N)$.

4. На основе значений $(y_0, y_1, ..., y_N)$ осуществляется восполнение функции *и* в области *D* (например, линейное восполнение, когда узловые значения y_i соединяются отрезками прямых, или сплайновое, при котором выполняется интерполяция между соседними узлами с помощью кубических сплайнов).

2.1. Равномерные и неравномерные сетки. Сеточные функции и нормы

Разностная сетка ω_h , представляющая собой конечное множество узлов, есть область определения функций дискретного изменения аргументов. В одномерных задачах часто используются *равномерные сетки* с постоянным шагом $h_x = x_{i+1} - x_i = const$, равным расстоянию между соседними узлами сетки. Разностная сетка ω_h есть конечное множество узлов $\omega_h = \left\{ x_i = ih_x, h_x = a/N, i = \overline{0, N} \right\}$. *Неравномерные сетки* целесообразно использовать при наличии априорной информации об особенностях поведения решения в особых точках, в окрестности которых для повышения точности расчетов следует сгущать узлы сетки, а в областях гладкости решения – разредить узлы. В этом случае шаг сетки не является постоянным $h_{i+1} \neq h_i$: $\omega_h = \left\{ x_{i+1} = x_i + h_i, \sum_{i=0}^{N-1} h_i = a, i = \overline{0, N-1} \right\}$.

Аналогично вводится сетка по временной переменной, например, равномерная:

$$\omega_{\tau} = \left\{ t_{j} = jh_{\tau}, h_{\tau} = T/N_{\tau}, j = 0, 1, 2, \dots \right\},$$

у которой каждое фиксированное значение t_j называется временным слоем. При этом будем говорить о *предыдущем (нижнем)* и *следующем (верхнем)* слоях соответственно при $t = t_j$ и $t = t_{j+1}$.

Наряду с рассмотренными выше сетками с «целыми» узлами вводятся «дробные» или «полуцелые» узлы, например, $x_{i+0.5} = x_i + 0.5h_x$, $t_{j+0.5} = t_j + 0.5h_\tau$. Множество полуцелых узлов также можно использовать в качестве области определения сеточных функций.

Для одномерной нестационарной задачи теплопроводности пространственновременная сетка представляет собой произведение сеток ω_h и ω_τ :

$$\omega_{\tau h} = \omega_h \times \omega_\tau = \left\{ \left(x_i, t_j \right), i = \overline{0, N}, j = 0, 1, 2 \dots \right\}.$$

Разностные уравнения строятся для нахождения приближенного решения – сеточной функции *y*, определенной в узлах сетки и близкой к решению *u* исходной задачи. Значения сеточных функций в целых и дробных узлах будем обозначать

$$y(x_{i},t_{j}) = y_{i}^{j} = y, \quad y(x_{i},t_{j+1}) = y_{i}^{j+1} = \hat{y}, \quad y(x_{i\pm 1},t_{j}) = y_{i\pm 1}^{j} = y(\pm 1),$$

$$y(x_{i+0.5},t_{j+0.5}) = y_{i\pm 1/2}^{j+1/2} = \overline{y}_{i}^{j} = \overline{y}, \quad y(x_{i+0.5},t_{j+1.5}) = y_{i\pm 1/2}^{j+3/2} = \overline{y}_{i}^{j+1} = \hat{y}.$$

Сеточная функция y - функция дискретного аргумента, функция <math>u - функция не-прерывного аргумента. Они принадлежат различным функциональным пространствам. Поэтому для сравнения близости этих функций рассматривают u_h – конечный набор значений функции u в узлах сетки. Близость функций часто оценивается с помощью некоторой сеточной нормы $\|y - u_h\|_{(\cdot)}$ в разностных аналогах H_C и H_L пространства C непрерывных функций и пространства L_2 :

1/2

$$\left\|y^{j}-u_{h}^{j}\right\|_{H_{C}}=\max_{0\leq i\leq N}\left|y_{i}^{j}-u_{h,i}^{j}\right| \quad \mathbf{M} \quad \left\|y_{i}^{j}-u_{h}^{j}\right\|_{H_{L}}=\left(\sum_{i=1}^{N-1}h\left(y_{i}^{j}-u_{h,i}^{j}\right)^{2}\right)^{1/2}.$$

Если $\|y - u_h\|_{(\cdot)} \to 0$ при $h \to 0$, то решение у стремится к u.

2.2. Аппроксимация дифференциальных и интегральных операторов

При построении разностных аналогов первой производной $\partial u/\partial x$ по пространственной переменной *x* вместо используемого в классическом анализе отношения бесконечно малых

$$\frac{\partial u}{\partial x} = \lim_{\Delta x \to 0} \frac{u(x + \Delta x) - u(x)}{\Delta x}$$

вводится отношение конечных разностей. Для аппроксимации производной $\partial u/\partial x$ в узле сетки x_i можно использовать:

правостороннюю разностную производную (разность вперед)

$$u_{x,i} = \frac{u_{i+1} - u_i}{h_x} = \frac{u(+1) - u}{h_x},$$
(2.2.1)

левостороннюю разностную производную (разность назад)

$$u_{\bar{x},i} = \frac{u_i - u_{i-1}}{h_x} = \frac{u - u(-1)}{h_x}, \qquad (2.2.2)$$

двустороннюю разностную производную (центральная разность)

$$u_{x,i}^{o} = \frac{u_{i+1} - u_{i-1}}{h_{x}} = \frac{u(+1) - u(-1)}{h_{x}} = \frac{1}{2} \left(u_{x,i} + u_{\bar{x},i} \right).$$
(2.2.3)

Аналогично определяется разностная производная по времени в узле t_i

$$u_t^{j} = \frac{u^{j+1} - u^{j}}{h_r} = \frac{\hat{u} - u}{h_r} \,. \tag{2.2.4}$$

Для аппроксимации второй производной $\partial^2 u / \partial x^2$ в узле сетки x_i используется вторая разностная производная

$$u_{\bar{x}x,i} = \left(u_{\bar{x}}\right)_{x,i} = \frac{1}{h_x} \left[\frac{u_{i+1} - u_i}{h_x} - \frac{u_i - u_{i-1}}{h_x}\right] = \frac{u_{i+1} - 2u_i + u_{i-1}}{h_x^2} = \frac{u(+1) - 2u + u(-1)}{h_x^2}.$$
(2.2.5)

Интегральные операторы аппроксимируются с использованием квадратурных формул, например формулы трапеций:

$$\int_{0}^{a} u(x) dx = \sum_{i=0}^{N-1} \int_{x_{i}}^{x_{i+1}} u(x) dx = \sum_{i=0}^{N-1} \frac{1}{2} (y_{i} + y_{i+1}) h = \sum_{i=0}^{N} y_{i} \hbar_{i} ,$$
(2.2.6)
rge $\hbar_{i} = \begin{cases} 0.5h, & i = 0\\ h, & i = \overline{1, N-1} \\ 0.5h, & i = N \end{cases}$

2.3. Погрешность аппроксимации в точке (локальная аппроксимация)

Погрешность (ошибка) аппроксимации возникает при замене задачи (2.1) на задачу (2.2). От ее величины $[A_h y - (Au)_h]$ зависит точность приближенного решения *y*. Обозначим $\psi_i = A_h y - (Au)_h$. Для оценки погрешности аппроксимации в произвольном узле сетки рассмотрим разность $\psi_i = A_h u_h - (Au)_h$ - погрешность аппроксимации.

Определение. Разностный оператор A_h аппроксимирует в точке x_i дифференциальный оператор A с порядком аппроксимации n > 0, если $\psi_i = A_h u_h - (Au)_h = O(h^n)$.

Пусть, например, $A = \partial / \partial x$. Тогда для разности вперед с использованием разложения в ряд Тейлора функции u_{i+1} получим:

$$\psi_i^{(+)} = u_{x,i} - \left(\frac{\partial u}{\partial x}\right)_i = \frac{u_{i+1} - u_i}{h_x} - \left(\frac{\partial u}{\partial x}\right)_i = \frac{1}{h_x} \left[u_i + h_x \left(\frac{\partial u}{\partial x}\right)_i + \frac{h_x^2}{2} \left(\frac{\partial^2 u}{\partial x^2}\right)_i + O\left(h_x^3\right) - u_i\right] - \left(\frac{\partial u}{\partial x}\right)_i = O\left(h_x\right).$$

Аналогично для разности назад

$$\psi_i^{(-)} = u_{\bar{x},i} - \left(\frac{\partial u}{\partial x}\right)_i = \frac{u_i - u_{i-1}}{h_x} - \left(\frac{\partial u}{\partial x}\right)_i = \frac{1}{h_x} \left[u_i - u_i + h_x \left(\frac{\partial u}{\partial x}\right)_i - \frac{h_x^2}{2} \left(\frac{\partial^2 u}{\partial x^2}\right)_i + O\left(h_x^3\right) \right] - \left(\frac{\partial u}{\partial x}\right)_i = O\left(h_x\right),$$

а для центральной разности

$$\psi_i^{(o)} = u_{o_{x,i}} - \left(\frac{\partial u}{\partial x}\right)_i = \frac{u_{i+1} - u_{i-1}}{h_x} - \left(\frac{\partial u}{\partial x}\right)_i = O\left(h_x^2\right)$$

Для второй разностной производной справедлива оценка:

$$\psi_i = u_{\overline{xx},i} - \left(\frac{\partial^2 u}{\partial x^2}\right)_i = \frac{u_{i+1} - 2u_i + u_{i-1}}{h_x^2} - \left(\frac{\partial^2 u}{\partial x^2}\right)_i = \frac{h_x^2}{12} \left(\frac{\partial^4 u}{\partial x^4}\right)_i + O\left(h_x^4\right) = O\left(h_x^2\right).$$

2.4. Построение разностных аппроксимаций линейных дифференциальных уравнений параболического типа

Рассмотрим одномерную линейную (K = const) задачу теплопроводности на отрезке $D = \{x \in [0, a]\}$:

$$\frac{\partial U}{\partial t} = K \frac{\partial^2 U}{\partial x^2} + f(x,t), \qquad 0 < x < a, \qquad 0 < t < T, \qquad (2.4.1)$$

с граничными условиями І-го рода

$$U(0,t) = \mu_1(t), \quad U(a,t) = \mu_2(t)$$
 (2.4.2)

и начальным условием

$$U(x,0) = \mu_0(x).$$
 (2.4.3)

Здесь f(x,t) – правая часть уравнения, $\mu_1(t)$, $\mu_2(t)$, $\mu_0(x)$ – заданные функции. Введем равномерную сетку $\omega_{h\tau} = \{(x_i, t_j), i = \overline{0, N_x}; j = \overline{0, N_t}; h_x = a/N_x; h_{\tau} = T/N_t\}$, где $x_i = ih_x$, $t_j = jh_{\tau}$ и h_x , h_{τ} – узлы и шаги сетки по переменным x и t. Аппроксимируем

$$\frac{\partial U}{\partial t}\Big|_{i}^{j} \sim u_{t,i}^{j} = \frac{u_{i}^{j+1} - u_{i}^{j}}{h_{\tau}}, \quad K \frac{\partial^{2} U}{\partial x^{2}}\Big|_{i}^{j+1} \sim K u_{\bar{x}x,i}^{j+1} = K \frac{u_{i+1}^{j+1} - 2u_{i}^{j+1} + u_{i-1}^{j+1}}{h_{x}^{2}}, \quad f\Big|_{i}^{j+1} \sim \varphi_{i}^{j+1}.$$

Тогда уравнение (2.5.1) заменится разностным уравнением

$$u_{t,i}^{j} = K u_{\bar{x}x,i}^{j+1} + \varphi_{i}^{j+1}, \quad i = \overline{1, N_{x} - 1}, \quad j = \overline{0, 1, 2}...,$$
 (2.4.4)

а граничные и начальные условия дадут недостающие алгебраические уравнения

$$u_0^{j+1} = \mu_1^{j+1}, \quad u_{N_x}^{j+1} = \mu_2^{j+1}, \quad i = \overline{0, N_x}, \quad j = \overline{0, 1, 2}...,$$
 (2.4.5)

$$u_i^0 = \mu_{0,i}, \qquad i = 0, N_x.$$
 (2.4.6)

Наряду с РС (2.5.4) – (2.5.6) для задачи (2.5.1) – (2.5.3) можно построить схему

$$u_{t,i}^{j} = K u_{\bar{x}x,i}^{j} + \phi_{i}^{j}, \quad i = 1, N_{x} - 1, \qquad j = \overline{0, 1, 2...},$$
(2.4.7)

$$u_0^{j+1} = \mu_1^{j+1}, \quad u_{N_x}^{j+1} = \mu_2^{j+1}, \quad j = \overline{0, 1, 2}...,$$
 (2.4.8)

$$u_i^0 = \mu_{0,i}, \qquad i = \overline{0, N_x}.$$
 (2.4.9)

Определение. Конфигурация узлов в разностных уравнениях называется шаблоном.

Схемы (2.4.4) и (2.4.7) имеют четырехточечные шаблоны $(u_i^j, u_{i-1}^{j+1}, u_i^{j+1}, u_{i+1}^{j+1})$ и $(u_i^{j+1}, u_i^j, u_i^j, u_{i+1}^j)$. Обе являются *двухслойными*, т.к. содержат значения сеточной функции на двух временных слоях: $t_i t_{i+1}$.

2.5. Явные и неявные РС

В нестационарных задачах время входит в разностные уравнения в качестве переменной. К таким уравнениям применяется алгоритм послойных вычислений. Схемы (2.4.4) и (2.4.7) принципиально различны. В первой из них в каждое уравнения внутри области входят три значения искомой функции: u_{i-1}^{j+1} , u_i^{j+1} , u_{i+1}^{j+1} на следующем временном слое, а во второй – только одно значение u_i^{j+1} .

Определение. Схемы, в которых решение на следующем слое выражается через сеточные функции на нижнем слое, называются *явными*. Если же схема содержит несколько значений сеточной функции на верхнем слое, то она называется *неявной*.

1. Алгоритм вычислений по явной схеме (2.4.7). Из начального условия при j = 0 находим $u_i^0 = \mu_{0,i}^-$, $i = \overline{0, N_x}^-$. Из уравнений (2.4.8) и (2.4.7) найдем $u_0^1 = \mu_1^1$, $u_{N_x}^1 = \mu_2^1$, $u_i^1 = u_i^0 + Kh_r / h_x^2 (u_{i+1}^0 - 2_i^0 + u_{i-1}^0) + f_i^0$, $i = \overline{1, N_x - 1}$. В результате имеем весь набор искомых значений u_0^1 , $u_1^1, \dots, u_{N_x}^1$ на 1-ом временном слое. По этим значениям находится решение u_0^2 , $u_1^2, \dots, u_{N_x}^2$ на 2-ом временном слое и т.д.

1. Алгоритм вычислений по неявной схеме (2.4.4). Система алгебраических уравнений с трехдиагональной матрицей, которую необходимо решать на каждом (j+1)-ом слое, в данном случае будет иметь вид:

$$\begin{bmatrix} 1 & 0 & 0 & \dots & \dots & 0 \\ -1 & 2 + h_x^2 / (Kh_\tau) & -1 & \dots & 0 \\ 0 & -1 & 2 + h_x^2 / (Kh_\tau) & -1 & 0 \\ 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & -1 & 2 + h_x^2 / (Kh_\tau) & -1 \\ 0 & \dots & \dots & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_0^{j+1} \\ u_1^{j+1} \\ u_2^{j+1} \\ u_3^{j+1} \\ \dots \\ u_{N_x}^{j+1} \end{bmatrix} = \begin{bmatrix} \mu_1^{j+1} \\ h_x^2 / (Kh_\tau) \cdot (u_1^j + \varphi_1^{j+1}) \\ h_x^2 / (Kh_\tau) \cdot (u_2^j + \varphi_2^{j+1}) \\ h_x^2 / (Kh_\tau) \cdot (u_3^j + \varphi_3^{j+1}) \\ \dots \\ \mu_2^{j+1} \end{bmatrix}$$

2.6. Невязка РС. Построение РС повышенной точности

Пусть Au - f = 0 – исходная непрерывная задача, $A_h y - \varphi_h = 0$ – соответствующая ей разностная схема. Если подставить в нее непрерывное решение u, то в общем случае $A_h u - \varphi_h \neq 0$. Величина

$$\psi = \varphi_h - A_h u \equiv Au - f - (A_h u - \varphi_h) = (Au - A_h u) - (f - \varphi_h)$$

$$(2.6.1)$$

называется *невязкой PC*. Например, для рассмотренной выше задачи $Au \equiv \left(\frac{\partial}{\partial t} - K \frac{\partial^2}{\partial x^2}\right)$

$$\psi = (Au - A_h u) - (f - \varphi_h) = \left(\frac{\partial U}{\partial t_i}^j - K \frac{\partial^2 U}{\partial x_i^2}^j - u_t^j + K u_{\overline{xx},i}^{j+1}\right) - (f - \varphi_h) = O(h_\tau + h_x^2).$$

Аналогично для схемы (2.4.7)

$$\psi = (Au - A_h u) - (f - \varphi_h) = \left(\frac{\partial U^j}{\partial t_i} - K \frac{\partial^2 U^j}{\partial x_i^2} - u_t^j + K u_{\bar{x}x,i}^j\right) - (f - \varphi_h) = O(h_\tau + h_x^2).$$

Для повышения точности PC можно попытаться повысит порядок невязки. Пусть для простоты $f \equiv 0$. Разложим функции $u_{i\pm 1}^{j}$ и u_{i}^{j+1} в PC (2.4.7) до членов порядка $O(h_{x}^{4})$ и $O(h_{t}^{2})$ соответственно:

$$u_{i\pm1}^{j} = u_{i} \pm h_{x} \left(\frac{\partial u}{\partial x}\right)_{i}^{j} + \frac{h_{x}^{2}}{2} \left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{i}^{j} \pm \frac{h_{x}^{3}}{6} \left(\frac{\partial^{3} u}{\partial x^{3}}\right)_{i}^{j} + \frac{h_{x}^{4}}{24} \left(\frac{\partial^{4} u}{\partial x^{4}}\right)_{i}^{j} \pm \frac{h_{x}^{5}}{120} \left(\frac{\partial^{5} u}{\partial x^{5}}\right)_{i}^{j} + O\left(h_{x}^{6}\right),$$
$$u_{i}^{j+1} = u_{i}^{j} + h_{\tau} \left(\frac{\partial u}{\partial t}\right)_{i}^{j} + \frac{h_{\tau}^{2}}{2} \left(\frac{\partial^{2} u}{\partial t^{2}}\right)_{i}^{j} + O\left(h_{x}^{3}\right).$$

Если непрерывная функция и достаточно гладкая, то из уравнения (2.4.1) следует:

$$\frac{\partial^2 U}{\partial t^2} = \frac{\partial}{\partial t} \left(K \frac{\partial^2 U}{\partial x^2} \right) = K \frac{\partial^2}{\partial x^2} \left(\frac{\partial U}{\partial t} \right) = K^2 \frac{\partial^4 U}{\partial x^4}.$$
(2.6.2)
Tak kak $\psi_i^{\ j} = \left(-\frac{h_\tau}{2} \left(\frac{\partial^2 u}{\partial t^2} \right)_i^j + \frac{K h_x^2}{12} \left(\frac{\partial^4 u}{\partial x^4} \right)_i^j \right) + O\left(h_\tau^2 + h_x^4\right).$ OTCHDA C УЧЕТОМ (2.6.2)

$$\psi_i^j = \left(\frac{\partial^4 u}{\partial x^4}\right)_i^j \left(-\frac{K^2 h_\tau}{2} + \frac{K h_x^2}{12}\right) + O\left(h_\tau^2 + h_x^4\right)$$
(2.6.3)

Если главный член невязки (второй сомножитель в (2.6.3)) будет равен 0, то $\psi_i^j = O(h_\tau^2 + h_x^4)$. Отсюда

$$h_{\tau} = \frac{h_x^2}{6K}.$$
 (2.6.4)

На такой специальной сетке, у которой шаг h_r (2.6.4) зависит от шага h_x , точность явной PC (2.4.7) увеличивается на порядок по времени и на два порядка по переменной x.

2.7. Разностные схемы с весами

Для рассматриваемой задачи теплопроводности в качестве PC можно взять линейную комбинацию схем (2.4.4) и (2.4.7):

$$\sigma u_{t,i}^{j} + (1 - \sigma) u_{t,i}^{j} = \sigma K u_{\bar{x}x,i}^{j+1} + \sigma \varphi_{i}^{j+1} + (1 - \sigma) K u_{\bar{x}x,i}^{j} + (1 - \sigma) \varphi_{i}^{j}.$$
(2.7.1)

Введем обозначение $y^{(\sigma)} = \sigma \hat{y} + (1 - \sigma) y$, где $0 \le \sigma \le 1$ – весовой параметр. Тогда соотношение (2.7.1) примет вид:

$$u_{t,i}^{j} = K u_{\bar{x}x,i}^{(\sigma)} + \varphi_{i}^{(\sigma)}$$
(2.7.2)

Очевидно, при $\sigma = 0$ и $\sigma = 1$ из (2.7.2) получаются соответственно схемы (2.4.4) и (2.4.7), а при $\sigma = 0.5$ – схема Кранка-Никольсона с шеститочечным шаблоном (u_{i-1}^{j} , u_{i}^{j} , u_{i+1}^{j} , u_{i-1}^{j+1} , u_{i}^{j+1} , u_{i+1}^{j+1}). Ее невязка $\psi = O(h_{\tau}^{2} + h_{x}^{2})$.

Введенное понятие схем с весами позволяет говорить о *семействе разностных схем*, аппроксимирующих исходную непрерывную задачу.

2.8. Погрешность аппроксимации на сетке

При анализе PC важную роль играет не только оценка локальной аппроксимации, но и *порядка аппроксимации на всей сетке*. Пусть исходные дифференциальные уравнения и граничные условия (2.1)

$$Au = f$$
, $\mathbf{r} \in D$, $Ru|_{\Sigma} = \mu(\mathbf{r}, t)$ (2.8.1)

аппроксимируются схемой

$$A_h y = \varphi_h, \quad \mathbf{r}_h \in D_h, \quad R_h y|_{\Sigma_h} = v_h.$$
(2.8.2)

Близость решений РС (2.8.2) и задачи (2.8.1) оценим по величине невязки

 $\psi_h = (Au - f) - (A_h u - \varphi_h), \quad \mathbf{r} \in \omega_h - \text{во внутренних узлах,}$

$$\xi_h = (Ru - \mu) - (R_h u - \nu_h), \quad \mathbf{r} \in \gamma_h - \mathbf{B}$$
 граничных узлах.

Определение. РС (2.8.2) аппроксимирует непрерывную задачу (2.8.1), если $\|\psi_h\|_{(H,\cdot)} \to 0, \|\xi_h\|_{(H,\cdot)} \to 0, h \to 0$ в некоторой сеточной норме $H_{(\cdot)}$. Аппроксимация имеет порядок m, если $\|\psi_h\|_{(H,\cdot)} = O(h^m), \|\xi_h\|_{(H,\cdot)} = O(h^m).$

Замечание. В случае функции многих переменных порядок аппроксимации может быть различным по разным переменным, например, в схеме (2.7.2) $\|\psi_h\|_{(H,)} = O(h_x^2 + h_\tau^{\alpha})$, где $\alpha = 1$ при $\sigma \neq 0.5$ и $\alpha = 2$ при $\sigma = 0.5$.

2.9. Сходимость и устойчивость РС

Основной целью каждого приближенного метода является получение решения исходной непрерывной задачи с заданной точностью ε за конечное число действий. Можно ли этого достичь в зависимости от выбора $h = h(\varepsilon)$? Ответ на этот вопрос дает исследование таких важнейших свойств PC, как устойчивость и сходимость.

Введем понятие погрешности решения схемы: $z_h = y - u_h$. Подставим $z_h - u_h = y$ в (2.8.2):

$$A_h z_h = \zeta_h, \quad R_h z_h = \eta_h,$$
 (2.9.1)
где $\zeta_h = \varphi_h - A_h u_h$ и $\eta_h = \mu_h - R_h u_h$ – погрешности аппроксимации уравнения и граничных
условий соответственно.

Определение 1. Сходимость РС. Решение задачи (2.8.2) сходится к решению задачи (2.8.1) (т.е. схема обладает сходимостью), если $||z_h||_{(\cdot)} \to 0$ при $h \to 0$. РС сходится со скоростью $O(|h^p|)$ (или имеет порядок точности p), если имеет место $||z_h||_{(\cdot)} \le M \cdot h^p$, M = const > 0, p > 0.

Замечание. В случае функции многих переменных порядки точности могут быть различным по разным переменным, например, в схеме (2.7.2).

Пусть в общем случае нестационарной задачи

$$u'_t = Au + f$$
, $\mathbf{r} \in D$, $Ru|_{\Sigma} = \mu(\mathbf{r}, t)$, $u(0, \mathbf{r}) = u_0(\mathbf{r})$ (2.9.2)

аппроксимируются схемой

$$y_t = A_h y + \varphi_h, \quad \mathbf{r}_h \in D_h, \quad R_h y|_{\Sigma_h} = v_h, \qquad y^0 = v_0.$$
 (2.9.3)

Определение 2. Устойчивость РС. Если дискретное решение непрерывно зависит от входных данных (φ_h , μ_h , υ_0), причем эта зависимость равномерна относительно величин шагов сетки, то схема устойчива по входным данным. Это требование можно записать в виде

$$\|\tilde{y}_{h} - y_{h}\|_{(N_{1})} \le M_{1} \|\tilde{\nu}_{0} - \nu_{0}\|_{(\cdot)} + M_{2} \max_{0 \le t' \le t} \|\tilde{\varphi}_{h}(t) - \varphi_{h}(t)\|_{(N_{2})} + M_{3} \max_{0 \le t' \le t} |\tilde{\nu}_{h}(t) - \nu_{h}(t)|$$
(2.9.4)

где $t = t_j$, N_1 и N_2 – некоторые сеточные нормы, $M_1 > 0$, $M_2 > 0$, $M_3 > 0$, \tilde{y}_h и y_h – решения задачи (2.9.3) при возмущенных ($\tilde{\varphi}_h$, $\tilde{\mu}_h$, $\tilde{\upsilon}_0$) и невозмущенных (φ_h , μ_h , υ_0) входных данных. *РС устойчива по начальным данным, правой части и граничным условиям*.

Теорема о сходимости. Если РС аппроксимирует дифференциальную задачу с порядком m, а погрешность решения схемы z_h пепрерывно и равномерно по h зависит от невязок ψ_h и v_h (схема устойчива), то схема сходится, причем порядок ее точности совпадает с порядком аппроксимации: p = m.

Замечание. Погрешность аппроксимации схемы может быть оценена с использованием разложения в ряд Тейлора. Устойчивость же теоретически не всегда может быть доказана и часто это свойство PC проверяется посредством вычислительных экспериментов. Исследование аппроксимации и устойчивости позволяют обосновать сходимость PC.

Определение 3. Корректность непрерывной задачи. Задача является корректно поставленной, если при любых входных данных из некоторого класса существует ее единственное решение, непрерывно зависящее от входных данных.

Определение 4. Корректность **РС.** Схема корректна, если при всех входных данных из некоторого допустимого семейства существует ее единственное решение и схема устойчива.

Пример. Пусть ax - b = 0 – линейное уравнение, корень которого нужно найти приближенным методом. Построим соответствующий итерационный процесс. Перепишем это уравнение в виде $ax - b \pm x = x + (a-1)x - b = 0$ или x = Ax + b, где A = -(a-1). Запишем итерационную схему, позволяющую найти корень уравнения с заданной точностью ε :

$$x = Ax + b. (2.9.5)$$

Пусть *a* =-9, *b* =-9, *A* = 10. Очевидно, *x* = 1 – решение исходного уравнения. Если начальное приближение для итерационной схемы $\overset{0}{x}$ =1, то расчет по (2.9.5) выполняется при ε =10⁻⁶ следующим образом:

$$m=0:$$
 $\stackrel{0}{x=1}, \Rightarrow \stackrel{1}{x=1}, \left| \stackrel{1}{x-x} \right| < \varepsilon, \Rightarrow$ корень найден.

Если начальное приближение x = 1.1 задано с погрешностью 10%, то при расчете по (2.9.5) будем иметь:

$$m = 0:$$
 $\stackrel{0}{x} = 1.1, \implies \stackrel{1}{x} = 11-9 = 2, \quad \begin{vmatrix} 1 & 0 \\ x - x \end{vmatrix} > \varepsilon, \implies$ продолжаем итерации;

$$m=1: x=2, \Rightarrow x=20-9 =11, |x-x| > \varepsilon, \Rightarrow$$
 продолжаем итерации;

m = 2: $\stackrel{2}{x} = 11, \Rightarrow \stackrel{3}{x} = 110-9=101,$ $\begin{vmatrix} 3 & 2 \\ x - x \end{vmatrix} > \varepsilon, \Rightarrow$ продолжаем итерации.

Видно, что в данном случае ошибка, обусловленная погрешностью исходных данных, накапливается в процессе счета. *Схема неустойчива*. Аналогичный процесс может возникать при машинном счете вследствие представления чисел в памяти ЭВМ с определенной точность7. Возникновение такой ситуации называется вычислительной неустойчивость7.

Пусть теперь a = 0.9, b = 0.9, A = 0.1, $\varepsilon = 10^{-3}$. x = 1 – решение исходного уравнения. При том же начальном приближении $\stackrel{0}{x} = 1.1$ при расчетах по (2.9.5) будем иметь:

$$m = 0:$$
 $\stackrel{0}{x} = 1.100, \implies \stackrel{1}{x} = 0.11000 + 0.9 = 1.0100, |\stackrel{1}{x} - \stackrel{0}{x}| > \varepsilon, \implies$ продолжаем итерации;
 $m = 1:$ $\stackrel{1}{x} = 1.010, \implies \stackrel{2}{x} = 0.10010 + 0.9 = 1.0010, |\stackrel{2}{x} - \stackrel{1}{x}| > \varepsilon, \implies$ продолжаем итерации;
 $m = 2:$ $\stackrel{2}{x} = 1.001, \implies \stackrel{3}{x} = 0.10001 + 0.9 = 1.0001, |\stackrel{3}{x} - \stackrel{2}{x}| < \varepsilon, \implies$ итерации закличены.

Видно, что во втором случае ошибка в процессе счета убывает, т.е. *схема устойчива*. Дополнительно, рассмотренные примеры демонстрируют тот факт, что сходимость схемы зависит от свойств ее оператора.

2.10. Методы аппроксимации краевых и начальных условий

Определение. Узлы, в которых PC допускает запись на шаблоне, называются *регулярными*. В противном случае узлы относятся к *нерегулярным*.

В РС (2.7.2), (2.4.5) нерегулярными узлами являются точки x_0 и x_{N_x} , которой уравнения схемы получаются из аппроксимации граничных условий І-го рода и имеют нестандартный вид:

$$y_0^{j+1} = \mu_1^{j+1}, \quad y_{N_x}^{j+1} = \mu_2^{j+1}.$$

Эти разностные краевые условия <u>являются точными</u>, т.к. в узлах x_0 и $x_{N_x} \xi_h = 0$. Таким образом, порядок аппроксимации схемы (2.7.2), (2.4.5) определяется аппроксимацией уравнений (2.7.2).

Рассмотрим теперь граничные условия II-го рода. Пусть, например, в линейной задаче теплопроводности (2.4.1) f = 0, а при x = 0 задан тепловой поток

$$-K\frac{\partial U}{\partial x}(0,t) = \mu_1(t).$$
(2.10.1)

Заменяя производную U'_x в точке x_0 разностью вперед, для схемы $\sigma = 1$ будем иметь:

$$-rac{K}{h_{x}}\left(u_{1}^{j+1}-u_{0}^{j+1}
ight)=\mu_{1}^{j+1}$$
или $R_{h}u=\mu_{1}$

где оператор R_h определен на двухточечном шаблоне. Оценим погрешность PC $z_h = u - U_h$:

$$\hat{z}_{hx,0} = \hat{\eta}_{1h}$$
, где $\hat{\eta}_{1h} = \hat{\mu}_1 + K\hat{u}_{x,0}$.

Преобразуем $\hat{u}_{x,0}$ с помощью разложения в ряд Тейлора: $\hat{u}_{x,0} = U'_x|_0^{j+1} + h_x/2 \cdot U''_{xx}|_0^{j+1} + O(h_x^2)$. Так как $(KU'_x + \mu_1)_i^{j+1} = 0$, $\hat{\eta}_{1h} = O(h_x)$. Погрешность аппроксимации схемы (2.7.2), (2.4.5) на сетке равна $O(h_x)$ за счет более низкой ее точности в нерегулярном узле x_0 . Для согласования точности уравнений схемы в регулярных и нерегулярных узлах должны использоваться некоторые специальные приемы.

1. Использование разложения в ряд Тейлора. Рассмотрим

$$\hat{U}_{1} = \hat{U}_{0} + h_{x}U_{x}'|_{0}^{j+1} + h_{x}^{2}/2 \cdot U_{x}''|_{0}^{j+1} + O(h_{x}^{3}).$$

С учетом уравнения теплопроводности $1/K \cdot U'_t = U''_{xx}$ и граничного условия (2.10.1) перепишем его в виде:

$$\hat{U}_{1} = \hat{U}_{0} - \hat{\mu}_{1} \cdot h_{x} / K + h_{x}^{2} / (2K) \cdot 1 / K \cdot U_{t}' \Big|_{0}^{j+1} + O(h_{x}^{3}).$$

Отсюда, переходя к сеточной функции \hat{u}_i , получим с точностью $O(h_x^2)$

$$-\frac{K}{h_{x}}\left(u_{1}^{j+1}-u_{0}^{j+1}\right)=\mu_{1}^{j+1}-\frac{h_{x}}{2K}\frac{\left(u_{0}^{j+1}-u_{0}^{j+1}\right)}{h_{r}} \quad \text{или} \quad -Ku_{x,0}^{j+1}=\mu_{1}^{j+1}-\frac{h_{x}}{2K}u_{t,0}^{j}.$$
(2.10.2)

По построению разностное уравнение (2.10.20) в нерегулярном узле x_0 имеет тот же порядок аппроксимации $O(h_x^2)$, что и схема (2.7.2) в регулярных узлах x_i , $i = \overline{1, N_x - 1}$.

2. *Метод фиктивных точек*. В этом методе вводится фиктивная точка $x_{-1} = -h$. Предположим, что разностное уравнение (2.7.2) справедливо и при i = 0, т е. в нерегулярном узле x_0 уравнение теплопроводности аппроксимируется соотношением

$$\frac{u_0^{j+1} - u_0^{j+1}}{h_\tau} = \frac{K}{h_x^2} \left(u_1^{j+1} - 2u_0^{j+1} + u_{-1}^{j+1} \right).$$
(2.10.3)

Для аппроксимации граничного условия II-го рода (2.10.1) воспользуемся центральной разностью, имеющей порядок точности $O(h_x^2)$ относительно узла x_0 :

$$-\frac{K}{2h_x}\left(u_1^{j+1}-u_{-1}^{j+1}\right) = \mu_1^{j+1}.$$
(2.10.4)

Выражая u_{-1}^{j+1} из уравнения (2.10.3) и исключая его из (2.10.4) получим соотношение

$$-\frac{K}{h_x}\left(u_1^{j+1}-u_0^{j+1}\right) = \mu_1^{j+1} - \frac{h_x}{2K} \frac{\left(u_0^{j+1}-u_0^{j+1}\right)}{h_\tau},$$
(2.10.5)

в точности совпадающее с (2.10.2).

2.11. Формулы разностного дифференцирования

Рассмотрим сначала правостороннюю разностную производную от произведения сеточных функций *uv*. По ее определению

$$(uv)_{x,i} = \frac{u_{i+1}v_{i+1} - u_iv_i}{h_x} = \frac{u(+1)v(+1) - uv}{h_x}$$

Очевидно,

$$(uv)_{x} = \frac{u(+1)v(+1) - uv \pm u(+1)v}{h_{x}} = u(+1)\frac{v(+1) - v}{h_{x}} + v\frac{u(+1) - u}{h_{x}}$$

Отсюда

$$(uv)_{x} = u(+1)v_{x} + vu_{x}.$$
(2.11.1)

Аналогично для левосторонней разностной производной от произведения сеточных функций *uv* справедлива формула

$$(uv)_{\bar{x}} = u(-1)v_{\bar{x}} + vu_{\bar{x}}.$$
(2.11.2)

Для производной по времени будем иметь

$$(uv)_{t} = \hat{u}v_{t} + vu_{t}.$$
(2.11.3)

2.12. Формулы перехода от одного веса к другому

Эти формулы позволяют перейти в PC от одного веса α к другому β . По определению

$$y^{(\alpha)} = \alpha \hat{y} + (1 - \alpha) y, \quad y^{(\beta)} = \beta \hat{y} + (1 - \beta) y.$$

$$y^{(\alpha)} = y^{(\alpha)} \pm y^{(\beta)} = y^{(\beta)} + \hat{y} (\alpha - \beta) - (\alpha - \beta) y.$$

Отсюда

$$y^{(\alpha)} = y^{(\beta)} + h_t (\alpha - \beta) y_t.$$
(2.12.1)

Если $\alpha = 1$, $\beta = 0$, то формула (2.8.1) является дискретным аналогом разложения функции в ряд Тейлора до членов первого порядка малости: $y^{j+1} = y^j + h_\tau y_t^j$.

Тема 3. КОНСЕРВАТИВНЫЕ И НЕКОНСЕРВАТИВНЫЕ РС

3.1. Неизотермические задачи с подвижными границами в газовой динамике

Рассмотрим одномерную нестационарную задачу движения газа в области с неподвижной левой и неизвестной подвижной правой границей $x_{\Gamma}(t)$. Газ движется в область, в которой p = 0 при $x > x_{\Gamma}(t)$. Для простоты положим $Q \equiv 0$, $\mathbf{F} \equiv 0$, $\upsilon \equiv \upsilon_x$. Вязкость газа мала, так что можно пренебречь касательными напряжениями в законе сохранения количества движения и диссипацией энергии в уравнении сохранения энергии. Одномерность течения означает, что

1) плоскость $x = x_{\Gamma}(t)$ при движении остается ортогональной оси Ox;

- 2) траектории движения частиц газа прямые, параллельные оси Ох;
- 3) любая плоскость x = A при движении остается ортогональной оси Ox;

3.1.1. Постановка неизотермической задачи в Эйлеровых координатах

В неподвижной Эйлеровой системе координат математическая модель СС в области $D(t) = \{0 < x < x_{\Gamma}(t), t > 0\}$ примет вид:

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho \upsilon) = 0, \qquad (3.1.1)$$

$$\rho \frac{\partial \upsilon}{\partial t} + \upsilon \frac{\partial \upsilon}{\partial x} = -\frac{\partial p}{\partial x},$$
(3.1.2)

$$\rho \left\{ \frac{\partial E}{\partial t} + \upsilon \frac{\partial E}{\partial x} \right\} = -\frac{\partial}{\partial x} \left(p \upsilon \right) - \frac{\partial W}{\partial x}, \quad E = \varepsilon + \frac{\upsilon^2}{2},$$
(3.1.3₁)

или
$$\rho \left\{ \frac{\partial \varepsilon}{\partial t} + \upsilon \frac{\partial \varepsilon}{\partial x} \right\} = -p \frac{\partial \upsilon}{\partial x} - \frac{\partial W}{\partial x} = \frac{p}{\rho} \left\{ \frac{\partial \rho}{\partial t} + \upsilon \frac{\partial \rho}{\partial x} \right\} - \frac{\partial W}{\partial x},$$
 (3.1.3₂)

уравнения состояния: $p = \Psi(\rho, T)$, $\varepsilon = \Upsilon(\rho, T)$.

Граничные условия и начальные условия, замыкающие систему ДУ:

$$v(0,t) = 0, \quad p(x_{\Gamma}(t),t) = 0,$$
 (3.1.4)

$$\begin{cases} T(0,t) = \theta_1(t) & \{-W(0,t) = \theta_1(t) \\ T(x_n(t),t) = \theta_n(t), \\ W(x_n(t),t) = \theta_n(t), \\ W(x_n(t),t)$$

$$\upsilon(x,0) = 0, \quad p(x,0) = p_0(x), \quad T(x,0) = T_0(x), \quad x_{\Gamma}(0) = x_{\Gamma 0}.$$
(3.1.6)

Для температуры *T* может быть задана любая комбинация условий (3.1.5) I, II или III-го рода. Краевое условие $p(x,0) = p_0$ служит условием, из которого определяется неизвестная подвижная граница $x_{\Gamma}(t)$. Заметим, что при t = 0 уравнение состояния $p_0(x) = \Psi(\rho(0,x), T_0(x))$ позволяет найти начальное распределение плотности $\rho(0,x) = \rho_0(x)$.

3.1.2. Постановка неизотермической задачи в Лагранжевых координатах

Рассмотрим физический подход, который сводит задачу (3.1.1) – (3.1.6) к задаче с неподвижной границей и естественным образом приводит к понятию подвижной системе Лагранжевых координат. Заметим, что объем параллелепипеда, заключенного между сечениями единичной площади x = 0 и $x = x_{\Gamma}(t)$ при движении газа будет изменяться. Однако масса M газа внутри него остается постоянной, т.е. M(t) = M(0) или dM/dt = 0. Аналогично масса газа m_A слева от произвольного сечения $x = x_A(0)$, в котором находится некоторая частица газа в момент t = 0, при перемещении этой частицы при t > 0 будет оставаться неизменной, несмотря на изменение положения плоскости $x = x_A(t)$:

$$m_{A} = 1 \times 1 \cdot \int_{0}^{x_{A}(t)} \rho(\varsigma, t) d\varsigma = 1 \times 1 \cdot \int_{0}^{x_{A}(0)} \rho_{0}(\varsigma) d\varsigma.$$

В общем случае соотношение

$$s = \int_{0}^{x} \rho(\varsigma, t) d\varsigma \tag{3.1.7}$$

устанавливает взаимно однозначное соответствие между точками интервала $0 \le x \le x_{\Gamma}(t)$ и значениями *s* из интервала [0, M]. Величину *s* можно трактовать как переменную Лагранжа (фиксированное значение *s* соответствует вполне определенной подвижной частице). Таким образом, вместо координат (x,t) можно выбрать новые переменные (s,t_n) . Положим, что $t_n = t$, т.е. время в обеих системах течет одинаково. Переформулируем уравнения (3.1.1) – (3.1.6) в новых переменных. Выразим

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial s}\frac{\partial s}{\partial t} + \frac{\partial}{\partial t_{\pi}}\frac{\partial t_{\pi}}{\partial t} = \frac{\partial}{\partial s}\frac{\partial s}{\partial t} + \frac{\partial}{\partial t_{\pi}}, \qquad \frac{\partial}{\partial x} = \frac{\partial}{\partial s}\frac{\partial s}{\partial x} + \frac{\partial}{\partial t_{\pi}}\frac{\partial t_{\pi}}{\partial x} = \frac{\partial}{\partial s}\frac{\partial s}{\partial x}$$

Из соотношения (3.1.7) с учетом (3.1.1) и граничного условия v(0,t) = 0 следует, что

$$\frac{\partial s}{\partial x} = \rho(x,t), \qquad \frac{\partial s}{\partial t} = \int_{0}^{x} \frac{\partial \rho(\zeta,t)}{\partial t} d\zeta = -\int_{0}^{x} \frac{\partial(\rho \upsilon)}{\partial t} (\zeta,t) d\zeta = -\rho(x,t) \cdot \upsilon(x,t). \tag{3.1.8}$$

Следовательно,
$$\frac{\partial}{\partial t} = \frac{\partial}{\partial t_{\pi}} - \rho \upsilon \frac{\partial}{\partial s}, \quad \frac{\partial}{\partial x} = \rho \frac{\partial}{\partial s}.$$
 (3.1.9)

Очевидно,
$$\frac{\partial}{\partial t_n} = \frac{\partial}{\partial t} + \rho \upsilon \frac{\partial}{\partial s} = \frac{\partial}{\partial t} + \upsilon \frac{\partial}{\partial x} = \frac{d}{dt}$$
, (3.1.10)

т.е. производная $\partial/\partial t_n$ совпадает с определением субстанциональной производной d/dt. Теперь с учетом (3.1.10) перепишем задачу (3.1.1) – (3.1.6):

$$\frac{d}{dt}\left(\frac{1}{\rho}\right) = \frac{\partial \upsilon}{\partial s},\tag{3.1.11}$$

$$\frac{d\upsilon}{dt} = -\frac{\partial p}{\partial s},\tag{3.1.12}$$

$$\frac{dE}{dt} = -\frac{\partial}{\partial s} \left(p\upsilon - W \right), \quad E = \varepsilon + \frac{\upsilon^2}{2}, \quad (3.1.13_1)$$

или
$$\frac{d\varepsilon}{dt} + p \frac{d}{dt} \left(\frac{1}{\rho}\right) = -\frac{\partial W}{\partial s}, \qquad W = -\rho K \frac{\partial T}{\partial s}$$
 (3.1.13₂)

уравнения состояния: $p = \Psi(\rho, T)$, $\varepsilon = \Upsilon(\rho, T)$.

Граничные условия и начальные условия, замыкающие систему ДУ:

$$\nu(0,t) = 0, \quad p(M,t) = 0, \quad (3.1.14)$$

$$\int -\rho K \frac{\partial T}{\partial t}(0,t) = \theta_1(t) \quad \left[-\rho K \frac{\partial T}{\partial t}(0,t) - \theta_1(t)\right]$$

$$\begin{bmatrix} T(0,t) = \theta_1(t) \\ T(M,t) = \theta_2(t) \end{bmatrix}, \quad \begin{bmatrix} T(0,t) = \theta_2(t) \\ \rho K \frac{\partial T}{\partial s}(M,t) = \theta_2(t) \end{bmatrix}, \quad \begin{bmatrix} T(0,t) - \theta_2(t) \\ \rho K \frac{\partial T}{\partial s}(M,t) = \alpha \left(T(0,t) - \theta_2(t) \right) \end{bmatrix}, \quad (3.1.15)$$

$$v(s,0) = 0, \quad p(s,0) = \tilde{p}_0(s), \quad T(s,0) = T_0(s), \quad 0 \le s \le M.$$
 (3.1.16)

Задача (3.1.11) – (3.1.16) – задача с неподвижной границей. Однако для отыскания границы $x_{\Gamma}(t)$ теперь необходимо дополнительное уравнение – уравнение траекторий движения частиц:

$$\frac{dx(s,t)}{dt} = v(s,t), \qquad x(s,0) = x_0(s).$$
(3.1.17)

Замечание. Рассмотрим дифференциальные уравнения неразрывности и траекторий

$$\frac{d}{dt}\left(\frac{1}{\rho}\right) = \frac{\partial \upsilon}{\partial s}, \quad \frac{dx}{dt} = \upsilon.$$

Очевидно, $\frac{\partial}{\partial s}\left(\frac{dx}{dt}\right) = \frac{\partial \upsilon}{\partial s}$ или $\frac{d}{dt}\left(\frac{\partial x}{\partial s}\right) = \frac{\partial \upsilon}{\partial s}$. Тогда $\frac{d}{dt}\left(\frac{1}{\rho}\right) = \frac{d}{dt}\left(\frac{\partial x}{\partial s}\right)$. Проинтегрируем это
соотношение по переменным t и s: $1 \times 1 \cdot \int_{0}^{M} ds / \rho = 1 \times 1 \cdot x (M, t) - \underline{3akoh \, usmeherum \, obsema}$,

занимаемого газом в параллелепипеде с единичным сечением при изменении эйлеровой координаты подвижной границы. Вместо уравнения неразрывности можно использовать эквивалентное ему уравнение – <u>закон изменения объема</u> в дифференциальной форме:

$$\frac{\partial x}{\partial s} = 1/\rho \,. \tag{3.1.18}$$

3.2. Построение разностных схем. Шахматные сетки

Т.к. в уравнения (3.1.13₁), (3.1.13₂) входит вторая производная по переменной *s* от температуры, то она аппроксимируется с порядком $O(h_s^2)$. В уравнения (3.1.11) – (3.1.13) входят также первые производные по *s*, которые на обычной сетке будут иметь порядок $O(h_s)$, так что в целом схема будем иметь порядок $O(h_s)$. Для повышения точности используются *шахматные сетки*. Рассмотрим такую равномерную сетку

$$\omega_{h} = \left\{ \left(s_{i}, t_{j} \right), \left(s_{i+1/2}, t_{j+1/2} \right) : s_{i+1} = s_{i} + ih, s_{i+1/2} = s_{i} + ih/2; \ t_{j+1} = t_{j} + h_{\tau}, t_{j+1/2} = t_{j} + h_{\tau}/2 \right\}, \quad (3.2.1)$$

$$i = \overline{0, N-1} \ s_{0} = 0, \ s_{N} = h \cdot N = M, \quad j = 0, 1, 2 \dots$$

и построим одну из возможных разностных схем для задачи (3.1.11) – (3.1.18), относя к дробным и целым узлам сетки группы функций p(s,t), $\rho(s,t)$, $\varepsilon(s,t)$, T(s,t) и W(s,t), $\upsilon(s,t)$, x(s,t):

$$\frac{x_i^{j+1} - x_i^j}{h_r} = \upsilon_i^{j+1}, \qquad (3.2.3)$$

$$\frac{x_{i+1}^{j+1} - x_i^{j+1}}{h} = \frac{1}{\rho_{i+1/2}^{j+3/2}}, \qquad (3.2.5_1)$$

или
$$\frac{1}{h_{\tau}} \left[\frac{1}{\rho_{i+1/2}^{j+3/2}} - \frac{1}{\rho_{i+1/2}^{j+1/2}} \right] = \frac{\nu_{i+1}^{j+1} - \nu_{i}^{j+1}}{h}, \qquad (1/\bar{\rho})_{t,i} = \hat{\nu}_{s,i}, \qquad (3.2.5_2)$$

$$\frac{\varepsilon_{i+1/2}^{j+3/2} - \varepsilon_{i+1/2}^{j+1/2}}{h_{\tau}} = -p_{i+1/2}^{j+3/2} \cdot \frac{\upsilon_{i+1}^{j+1} - \upsilon_{i}^{j+1}}{h} - \frac{W_{i+1}^{j} - W_{i}^{j}}{h} , \qquad \overline{\varepsilon}_{i,i} = -\hat{\overline{p}}_{i} \,\hat{\upsilon}_{s,i} - W_{s,i} , \qquad (3.2.6)$$

$$p_{i+1/2}^{j+3/2} = R \cdot \rho_{i+1/2}^{j+3/2} \cdot T_{i+1/2}^{j+3/2}, \qquad \qquad \hat{\overline{p}}_i = R \hat{\overline{\rho}}_i \hat{\overline{T}}_i, \qquad (3.2.7)$$

$$\varepsilon_{i+1/2}^{j+3/2} = C_V \cdot T_{i+1/2}^{j+3/2}, \qquad \qquad \hat{\overline{\varepsilon}}_i = C_V \hat{\overline{T}}_i. \qquad (3.2.8)$$

Порядок аппроксимации уравнений схемы (3.2.2) – (3.2.8) равен $O(h_{\tau} + h^2)$, при этом уравнения (3.2.2) – (3.2.4) оцениваются относительно точки (s_i, t_j) , а остальные – относительно точки $(s_{i+1/2}, t_{j+1/2})$.

3.3. Анализ построенных схем. Примеры нарушения консервативности РС

Проверим, выполняется эквивалентность дискретных аналогов различных форм законов сохранения энергии. По аналогии с дифференциальным случаем, получим сначала из закона сохранения количества движения закон изменение кинетической энергии. Для этого в разностном случае умножим уравнение (3.2.2) на $v_i^{(0.5)}$. Опуская индексы, будем иметь:

$$\upsilon^{(0.5)} \cdot \upsilon_t = \frac{\hat{\upsilon} + \upsilon}{2} \cdot \frac{\hat{\upsilon} - \upsilon}{h_\tau} = \left(\frac{\upsilon^2}{2}\right)_t = -\upsilon^{(0.5)} \cdot \overline{p}_{\overline{s}} \,. \tag{3.3.1}$$

Сложим уравнения (3.3.1) и (3.2.6):

$$\left(\overline{\varepsilon} + \upsilon^2/2\right)_t = -\left(\upsilon^{(0.5)} \cdot \overline{p}_{\overline{s}} + \hat{\overline{p}}\hat{\upsilon}_s\right) - W_s \tag{3.3.2}$$

По формуле (2.12.1) перехода от одного веса к другому преобразуем сначала выражение в скобках:

$$\upsilon^{(0.5)} \cdot \overline{p}_{\overline{s}} + (\overline{p} + h_{\tau} \overline{p}_{t}) (\upsilon^{(0.5)} + 0.5 h_{\tau} \upsilon_{t})_{s} = \upsilon^{(0.5)} \overline{p}_{\overline{s}} + \overline{p} \upsilon^{(0.5)}_{s} + \delta_{\varepsilon}, \qquad (3.3.3)$$

где
$$\delta_{\varepsilon} = h_{\tau} \left(0.5 h_{\tau} \overline{p} \upsilon_{ts} + \overline{p}_{t} \hat{\upsilon}_{s} \right).$$
 (3.3.4)

Применяя к (3.3.3) формулу разностного дифференцирования (2.11.1), получим:

$$\upsilon^{(0.5)}\overline{p}_{\bar{s}} + \overline{p}\upsilon^{(0.5)}_{s} + \delta_{\varepsilon} = \upsilon^{(0.5)}\frac{p - p(-1)}{h} + \overline{p}\upsilon^{(0.5)}_{s} + \delta_{\varepsilon} = \left[\overline{p}(-1)\upsilon^{(0.5)}\right]_{s} + \delta_{\varepsilon}$$
(3.3.5)

где $\overline{p}(-1) = p_{i-1/2}$, $\overline{p} = p_{i+1/2}$. Таким образом, с учетом (3.3.4), (3.3.5) запишем окончательно разностную форму закона сохранения полной энергии (ЗСПЭ):

$$\left(\overline{\varepsilon} + \upsilon^2/2\right)_t = -\left[\overline{p}\left(-1\right)\upsilon^{(0.5)}\right]_s - W_s - \delta_{\varepsilon}.$$
(3.3.6)

Это уравнение является дискретным аналогом дифференциального уравнения (3.1.13₁) на интервале h за время h_r .

Очевидно, что на сетке ЗСПЭ (3.3.5) нарушен из-за наличия дополнительного источника энергии δ_{ε} , который имеет чисто разностное происхождение. Мощность источника δ_{ε} (3.3.4) на гладких решениях имеет порядок $O(h_{\tau})$, т.е. его влияние на приближенное решение падает при уменьшении шага h_{τ} . Однако величина δ_{ε} практически не зависит от h, следовательно, она не может быть уменьшена при дроблении сетки по переменной s.

Для получения интегральной формы ЗСПЭ просуммируем (3.3.6) по всем пространственным и временным шагам:

$$\sum_{i=1}^{N-1} \sum_{j=0}^{J} \left(\overline{\varepsilon} + \nu^2 / 2\right)_{t,i}^j + \left[\overline{p} \left(-1\right) \nu^{(0.5)}\right]_{s,i}^j + W_{s,i}^j = -\sum_{i=1}^{N-1} \sum_{j=0}^{J} \delta_{\varepsilon,i}^j .$$
(3.3.7)

Видно, что появление δ_{ε} нарушает дискретный аналог интегральной формулировки ЗСПЭ

Определение. Схема, в которой выполняются все разностные формулировки дифференциальных законов сохранения, называется консервативной.

Рассмотренная выше схема из-за появления в ней дисбалансного члена δ_{ε} не является консервативной.

Замечание. Консервативность схемы – важное требование для ее сходимости.

3.4. Интегральные методы построения консервативных разностных схем

3.4.1. Интегро-интерполяционный метод

В этом методе PC строятся на основе интегральных соотношений, выражающих законы сохранения на элементарной ячейке сетки. Вводится интерполяция искомого решения и коэффициентов уравнений, и вычисляются интегралы по ячейкам. При этом от выбора интерполяции зависит вид PC, следовательно, ИИМ позволяет строить разнообразные семейства PC.

$$\oint_{C} \upsilon ds - p dt = 0, \qquad (3.4.1.2)$$

$$\oint_{C} \left(\frac{\upsilon^2}{2 + \varepsilon} \right) ds - \left(p\upsilon + W \right) dt = 0.$$
(3.4.1.3)

Остановимся более подробно на уравнении (3.4.1.3). Распишем интеграл по контуру C_i

$$\int_{s_{i}}^{s_{i+1}} (\upsilon^{2}/2 + \varepsilon)(t_{j}, s) ds - \int_{t_{j}}^{t_{j+1}} (p\upsilon + W)(t, s_{i}) dt - \int_{s_{i}}^{s_{i+1}} (\upsilon^{2}/2 + \varepsilon)(t_{j+1}, s) ds + \int_{t_{j}}^{t_{j+1}} (p\upsilon + W)(t, s_{i+1}) dt = 0.$$

Воспользовавшись теоремой о среднем и формулой трапеций вычислим интегралы, входящие в это балансовое соотношение:

$$\int_{s_{i}}^{s_{i+1}} \varepsilon(t_{j},s) ds \approx \varepsilon_{i+1/2}^{j+1/2} \cdot h, \qquad 1/2 \int_{s_{i}}^{s_{i+1}} \upsilon^{2}(t_{j},s) ds \approx 1/4 \Big[(\upsilon_{i+1}^{j})^{2} + (\upsilon_{i}^{j})^{2} \Big] \cdot h,$$

$$\int_{t_{j}}^{t_{j+1}} (p\upsilon + W)(t,s_{i}) dt \approx 1/2 \Big(p_{i+1/2}^{j+3/2} + p_{i-1/2}^{j+3/2} \Big) \cdot \upsilon_{i}^{j+1} \cdot h_{\tau} + W_{i}^{j+1} \cdot h_{\tau}.$$

Тогда в итоге

$$\left(\varepsilon_{i+1/2}^{j+3/2} - \varepsilon_{i+1/2}^{j+1/2}\right) / h_{\tau} + 1/4 \left[\left(\upsilon_{i+1}^{j+1}\right)^2 + \left(\upsilon_{i}^{j+1}\right)^2 - \left(\upsilon_{i+1}^{j}\right)^2 - \left(\upsilon_{i}^{j}\right)^2 \right] / h_{\tau} =$$

$$= -1/(2h) \left[\left(p_{i+3/2}^{j+3/2} + p_{i+1/2}^{j+3/2}\right) \upsilon_{i+1}^{j+1} - \left(p_{i+1/2}^{j+3/2} + p_{i+1/2}^{j+3/2}\right) \upsilon_{i}^{j+1} \right] - \left(W_{i+1}^{j+1} - W_{i}^{j+1}\right) / h,$$

$$(3.4.1.4)$$

или
$$\left(\overline{\varepsilon} + 1/4 \left[\upsilon^2 \left(+1 \right) \right] + \upsilon^2 \right)_t = -\left(\hat{\overline{p}}_* \hat{\upsilon} \right)_s - \hat{W}_s,$$
 (3.4.1.5)

где
$$p_* = 1/2 [p+p(-1)].$$

Изменяя характер интерполяции по отрезкам контура C_i , можно получить другие разностные уравнения для ЗСПЭ. Для уравнений (3.4.1.1), (3.4.1.2) можно построить, в частности, разностные уравнения, совпадающие с (3.2.2), (3.2.5₂).

Заметим, что в такой PC выполняется ЗСПЭ. Проверим, справедливо ли это для ЗСВЭ. Вычтем из (3.4.1.5) полусумму уравнений (3.3.1), записанных для узлов *i* и (i+1).

$$\overline{\varepsilon}_{t} = -\left(\hat{\overline{p}}_{*}\hat{\upsilon}\right)_{s} + \frac{1}{2}\left(\upsilon^{(0.5)} \cdot \overline{p}_{\overline{s}} + \upsilon^{(0.5)}\left(+1\right) \cdot \overline{p}_{\overline{s}}\left(+1\right)\right) - \hat{W}_{s}.$$
(3.4.1.6)

Преобразуем первое слагаемое этого соотношения с помощью формулы перехода от одного веса к другому:

$$-\left(\hat{\bar{p}}_{*}\hat{\upsilon}\right)_{s} = -\left[\left(\bar{p}_{*} + h_{\tau}\left(\bar{p}_{*}\right)_{t}\right)\left(\upsilon^{(0.5)} + 0.5h_{\tau}\upsilon_{t}\right)\right]_{s} = -\left(\bar{p}_{*}\upsilon^{(0.5)}\right)_{s} - \delta_{E},$$
(3.4.1.7)

$$\delta_E = h_\tau \left[\left(\overline{p}_* \right)_t \hat{\upsilon} + 0.5 \overline{p}_* \upsilon_t \right]_s.$$
(3.4.1.8)

Тогда с учетом (3.4.1.7), (3.4.1.8) из соотношения (3.4.1.6) получим:

$$\begin{split} \overline{\varepsilon}_{t} &= -\left(\overline{p}_{*}\upsilon^{(0.5)}\right)_{s} + 1/2\left(\upsilon^{(0.5)}\cdot\overline{p}_{\overline{s}} + \upsilon^{(0.5)}\left(+1\right)\cdot\overline{p}_{\overline{s}}\left(+1\right)\right) - \hat{W}_{s} - \delta_{E} = \\ &= 1/2\left(\upsilon^{(0.5)}\cdot\overline{p}_{\overline{s}} + \upsilon^{(0.5)}\left(+1\right)\cdot\overline{p}_{\overline{s}}\left(+1\right)\right) - 1/2\left(\overline{p}\upsilon^{(0.5)}\right)_{s} - 1/2\left(\overline{p}\left(-1\right)\upsilon^{(0.5)}\right)_{s} - \hat{W}_{s} - \delta_{E} = \\ &= 1/2\left(\upsilon^{(0.5)}\cdot\overline{p}_{\overline{s}} + \upsilon^{(0.5)}\left(+1\right)\cdot\overline{p}_{s}\right) - 1/2\upsilon^{(0.5)}\left(+1\right)\overline{p}_{s} - 1/2\upsilon^{(0.5)}_{s}\overline{p} - 1/2\upsilon^{(0.5)}_{s}$$

Очевидно, что на сетке консервативность ЗСВЭ (3.4.1.9) нарушена из-за появления дисбалансного разностного источника энергии δ_E . Мощность δ_E (3.4.1.8) имеет порядок $O(h_\tau)$, но не зависит от шага h. Наличие источника может при расчетах существенно исказить температуру T, а также другие искомые функции, если процесс является существенно неизотермическим.

Таким образом, в некоторых случаях *ИИМ может приводить к неконсервативным схемам*. Неконсервативность возникает из-за несогласованности при выборе временных слоев при аппроксимации искомых функций и коэффициентов уравнений.

3.4.2. Особенности аппроксимации коэффициента теплопроводности в схеме для неизотермической задачи газовой динамики

По принципу разделения процессов при изучении многопроцессного явления рассмотрим тепловую группу уравнений (3.1.3₂) и (3.1.13₂) полагая функции механического процесса известными:

$$\frac{d\varepsilon}{dt} = f - \frac{\partial W}{\partial s}, \qquad f = -p \frac{\partial \upsilon}{\partial s}, \qquad (3.4.1)$$

$$W = -\Lambda(\rho, T) \frac{\partial T}{\partial s}, \quad \Lambda(\rho, T) = \rho K(T).$$
(3.4.2)

Здесь источник энергии *f* обусловлен сжимаемостью газа. Запишем интегральную формулировку для ЗСВЭ:

$$\oint_{C_i} \varepsilon ds - W dt = \iint_{\Box_i} f ds dt .$$
(3.4.3)

Для построения разностных уравнений воспользуемся ИИМ, преобразовав (3.4.3) к виду:

$$\int_{s_{i}}^{s_{i+1}} \varepsilon(t_{j}, s) ds - \int_{t_{j}}^{t_{j+1}} W(t, s_{i}) dt - \int_{s_{i}}^{s_{i+1}} \varepsilon(t_{j+1}, s) ds + \int_{t_{j}}^{t_{j+1}} W(t, s_{i+1}) dt = \int_{s_{i}}^{s_{i+1}} \int_{t_{j}}^{t_{j+1}} f(t, s) dt ds .$$
(3.4.4)

Вычислим интегралы соотношения (3.4.4) по отрезку $[s_i, s_{i+1}]$:

$$\int_{s_i}^{s_{i+1}} \varepsilon(t_j, s) ds - \int_{s_i}^{s_{i+1}} \varepsilon(t_{j+1}, s) ds = -\left(\hat{\overline{\varepsilon}}_i - \overline{\varepsilon}_i^j\right) h.$$
(3.4.5)

При вычислении интегралов в (3.4.4) по времени $[t_j, t_{j+1}]$ по теореме о среднем возьмем значение подынтегральной функции с весом σ в некоторой точке $\tilde{t} \in [t_j, t_{j+1}]$:

$$-\int_{t_{j}}^{t_{j+1}} W(t,s_{i}) dt + \int_{t_{j}}^{t_{j+1}} W(t,s_{i+1}) dt = \left(W_{i+1}^{(\sigma)} - W_{i}^{(\sigma)}\right) h_{\tau}, \qquad \int_{s_{i}}^{s_{i+1}} \int_{t_{j}}^{t_{j+1}} f dt ds \approx \overline{f}_{i}^{(\gamma)} h h_{\tau}, \qquad (3.4.6)$$

где $W_i^{(\sigma)} = \sigma W_i^{j+1} + (1 - \sigma) W_i^j$. Тогда с учетом (3.4.5), (3.4.6) получим

$$\left(\hat{\overline{\varepsilon}}_{i}-\overline{\varepsilon}_{i}^{j}\right)/h_{\tau}=-\left(W_{i+1}^{(\sigma)}-W_{i}^{(\sigma)}\right)/h+f_{i}^{(\gamma)} \quad \text{или} \quad \overline{\varepsilon}_{t,i}=-W_{s,i}^{(\sigma)}+\overline{f}_{i}^{(\gamma)}.$$
(3.4.7)

Построим теперь разностное уравнение для теплового потока, обращая основное внимание аппроксимации по переменной *s*. Запишем сначала (3.4.2) в виде:

$$\frac{\partial T}{\partial s} = -\frac{W}{\Lambda(\rho, T)}.$$
(3.4.8)

Проинтегрируем (3.4.8) по отрезку $[s_{i-1/2}, s_{i+1/2}]$:

$$\begin{split} & S_{i+1/2}^{s_{i+1/2}} \frac{\partial T}{\partial s} ds = -\int_{s_{i-1/2}}^{s_{i+1/2}} \frac{W}{\Lambda(\rho, T)} ds , \quad \frac{T_{i+1/2} - T_{i-1/2}}{h} \approx -W_i \cdot \frac{1}{h} \int_{s_{i-1/2}}^{s_{i+1/2}} \frac{ds}{\Lambda(\rho, T)}_i , \text{ откуда} \\ & W_i = -a_i \overline{T}_{\overline{s},i} , \quad a_i = \left[\frac{1}{h} \int_{s_{i-1/2}}^{s_{i+1/2}} \frac{ds}{\Lambda(s, t)} \right]^{-1}. \end{split}$$
(3.4.9)

В зависимости от способа вычисления интеграла (3.4.9) коэффициент теплопроводности *a_i* допускает различные формы аппроксимации, например:

1)
$$a_i = \Lambda_{i-1/2}$$
, 2) $a_i = \Lambda_{i+1/2}$, 3) $a_i = 0.5(\Lambda_{i-1/2} + \Lambda_{i+1/2})$, (3.4.10)

$$4) \ a_{i} = \left[\frac{1}{h}\left(\int_{s_{i-1/2}}^{s_{i}} \frac{ds}{\Lambda(s,t)} + \int_{s_{i}}^{s_{i+1/2}} \frac{ds}{\Lambda(s,t)}\right)\right]^{-1} = \left[\frac{1}{h}\frac{h}{2}\left(\frac{1}{\Lambda_{i-1/2}} + \frac{1}{\Lambda_{i+1/2}}\right)\right]^{-1} = \frac{1}{2}\frac{\Lambda_{i-1/2}\Lambda_{i+1/2}}{\Lambda_{i-1/2} + \Lambda_{i+1/2}}.$$

Аппроксимации типа 1) и 2) в ряде случаев могут полностью исказить решение задачи.

Пусть, например, при решении задачи о нагреве холодного тела используется аппроксимация 2), $f \equiv 0$, а зависимость Λ от температуры такова, что $\Lambda|_{T=0} = 0$. Если в ходе вычислений возникает ситуация, когда $T_{i-1/2} \neq 0$, а $T_{i+1/2} = 0$, то $a_i = 0$. Следовательно, по формуле (3.4.9) $W_i = 0$: возникает условие искусственной теплоизоляции в узле $s = s_{i+1/2}$ и тепло перестает распространяться в область, расположенную справа от этого узла. Приближенное решение теряет физический смысл. Аналогичная ситуация может иметь место в задаче об охлаждении тела, если используется зависимость 1). Поэтому предпочтение отдается формулам типа 3) или 4).

Итак, окончательно для нелинейной задачи теплопроводности будем иметь консервативную разностную схему

$$\overline{\varepsilon}_{t,i} = -W_{s,i}^{(\sigma)} + \overline{f}_i^{(\gamma)}, \qquad W_i^{(\sigma)} = -a_i^{(\sigma)} \overline{T}_{\overline{s},i}^{(\sigma)}, \quad \text{или} \quad C_V \overline{T}_{t,i} = -\left(a^{(\sigma)} \overline{T}_{\overline{s}}^{(\sigma)}\right)_{s,i} + \overline{f}_i^{(\gamma)}, \qquad (3.4.11)$$

где σ и γ – параметры схемы.

3.4.3. Метод сумматорных тождеств

Рассмотрим основные принципы МСТ на примере одномерной нелинейной (K = K(U,U')) неоднородной стационарной задачи теплопроводности с граничными условиями II-го рода. В области $D = \{s \in [0,1]\}$

$$-(K \cdot U'_{s})'_{s} = f(s), \qquad 0 < s < 1, \qquad (3.4.3.1)$$

$$-K \cdot U'_{s}(0) = q_{0}, \qquad K \cdot U'_{s}(1) = q_{1}$$
(3.4.3.2)

Здесь f(s) – заданная функция.

Задача 1. Найти функцию $U \in W_2^2$, удовлетворяющую уравнению (3.4.3.1) с граничными условиями (3.4.3.2).

Можно поставить другую задачу. Умножим (3.4.3.1) на $\upsilon \in W_2^1$, проинтегрируем по области *D* и с учетом граничных условий (3.4.3.2) получим интегральное тождество:

$$\upsilon(1)q_1 + \upsilon(0)q_0 - \int_0^1 Q \upsilon'_s \, ds + \int_0^1 f \upsilon \, ds = 0, \qquad (3.4.3.3)$$

где $Q = K \cdot U'_s$.

Задача 2. Найти функцию $U \in W_2^1$ – обобщенное решение задачи, удовлетворяющую интегральному уравнению (3.4.3.3) для любой функции $\upsilon \in W_2^1$.

Замечание. Интегральная формулировка ослабила требование на гладкость функции *U*, поэтому (3.4.3.3) называется <u>слабой формулировкой задачи</u>.

Теорема. Если существует решение задачи (3.4.3.1), (3.4.3.2), то существует решение задачи (3.4.3.3) и оба они совпадают. Обратное утверждение в общем случае не выполняется.

Построим на основе (3.4.3.3) разностную схему. Введем равномерную сетку

$$\omega_h = \left\{ \left(s_i \right) : s_{i+1} = s_i + ih, \ i = \overline{0, N-1}, \ h = 1/N, \ s_0 = 0, \ s_N = h \cdot N = 1 \right\}$$

Введем обозначения:

$$\hbar_{i} = \begin{cases} h/2, & i = 0, i = N \\ h, & i = \overline{1, N - 1} \end{cases},$$

$$[u, v] = \int_{0}^{1} uvds \approx \sum_{i=0}^{N} u_{i}v_{i}\hbar_{i} = \{(u, v] + [u, v)\}/2 - \phi \text{ормула трапеций,}$$
(3.4.3.4)
Где $(u, v] = \int_{0}^{1} uvds \approx \sum_{i=1}^{N} u_{i}v_{i}h - \phi \text{ормула левых прямоугольников,}$

$$[u, v) = \int_{0}^{1} uvds \approx \sum_{i=0}^{N-1} u_{i}v_{i}h - \phi \text{ормула правых прямоугольников.}$$

Заменяя в (3.4.3.3) интегралы квадратурными формулами (3.4.3.4), а производные – разностными соотношениями, перейдем теперь от интегрального к сумматорному тождеству:

$$\nu_0 q_1 + \nu_N q_0 - \frac{1}{2} \left\{ \left(Q^-, \nu_s \right) \right\} + \left[Q^+, \nu_s \right) \right\} + \left[f, \nu \right] = 0, \qquad (3.4.3.5)$$

или
$$\upsilon_0 q_1 + \upsilon_N q_0 - \frac{1}{2} \left\{ \sum_{i=1}^N Q_i^- \frac{\upsilon_i - \upsilon_{i-1}}{h} h + \sum_{i=0}^{N-1} Q_i^+ \frac{\upsilon_{i+1} - \upsilon_i}{h} h \right\} + \sum_{i=0}^N f_i \upsilon_i \hbar_i = 0,$$
 (3.4.3.6)

где верхние индексы (-) и (+) означают, что при аппроксимации $Q = K \cdot U'_s$ производная U'_s заменена разностями назад $u_{\bar{s}}$ и вперед u_s соответственно.

Сеточная функция $u = (u_0, u_1, ..., u_N)$, удовлетворяющая сумматорному тождеству для каждой сеточной пробной функции $\upsilon = (\upsilon_0, \upsilon_1, ..., \upsilon_N)$ – приближенное решение задачи (3.4.3.1), (3.4.3.2).

Построим с помощью (3.4.3.5) систему алгебраических уравнений, выбирая в качестве v разностный аналог δ – функции:

$$\upsilon(x_{i} - x_{m}) = \begin{cases} \hbar_{i}^{-1}, & i = k \\ 0, & i \neq k \end{cases}.$$
(3.4.3.7)

Очевидно, $\upsilon \to \infty$, $h \to 0$, при этом площадь прямоугольника $\upsilon (x_i - x_m) \cdot \hbar_i^{-1} = 1$.

1) i = 0: по определению (3.4.3.7) сеточная пробная функция $\upsilon = (2/h, 0, ..., 0)$. Тогда тождество (3.4.3.6) примет вид:

$$\frac{2}{h}q_{0} - \frac{1}{2}\left\{-Q_{1}^{-}\frac{2}{h} - Q_{0}^{+}\frac{2}{h}\right\} + f_{0}\frac{2}{h}\cdot\frac{h}{2} = 0, \quad \text{или} \quad -\frac{1}{2}\left\{Q_{1}^{-} + Q_{0}^{+}\right\} = q_{0} + \frac{h}{2}f_{0} \tag{3.4.3.8}$$

– разностный аналог граничного условия при s = 0.

2) i = N: сеточная пробная функция $\upsilon = (0, 0, ..., 2/h)$. Тождество (3.4.3.6) примет вид: $\frac{2}{h}q_1 - \frac{1}{2}\left\{-Q_N^-\frac{2}{h} - Q_{N-1}^+\frac{2}{h}\right\} + f_N\frac{2}{h}\cdot\frac{h}{2} = 0$, или $-\frac{1}{2}\left\{Q_N^- + Q_{N-1}^+\right\} = q_1 + \frac{h}{2}f_N$ (3.4.3.9)

– разностный аналог граничного условия при s = 1.

3) произвольный узел 0 < i < N: сеточная пробная функция $\upsilon = (0, 0, ..., 1/h, ...0, 0)$. Тождество (3.4.3.6) примет вид:

$$-\frac{1}{2}\left\{Q_{i}^{-}\frac{1}{h}-Q_{i+1}^{-}\frac{1}{h}+Q_{i-1}^{+}\frac{1}{h}-Q_{i}^{+}\frac{1}{h}\right\}+f_{i}\frac{1}{h}\cdot h=0, \text{ или}$$

$$\frac{1}{2}\left\{Q_{i}^{+}+Q_{i+1}^{-}\right\}-\frac{1}{2}\left\{Q_{i-1}^{+}+Q_{i}^{-}\right\}+hf_{i}=0, \quad i=\overline{1,N-1}$$
(3.4.3.10)

– алгебраические уравнения во внутренних узлах сетки.

Итак, полученная система (3.4.3.8) – (3.4.3.10) содержит (N+1) уравнение. Для нахождения сеточной функции $u = (u_0, u_1, ..., u_N)$ выразим Q_i^- и Q_i^+ через значения этой функции.

$$-\frac{1}{2}\left\{K_{1}u_{\bar{s},1}+K_{0}u_{s,0}\right\} = -\frac{1}{2}\left\{K_{1}+K_{0}\right\}u_{s,0} = -K_{1/2}\cdot u_{s,0} = q_{0} + \frac{h}{2}f_{0}, \qquad (3.4.3.11)$$

$$-\frac{1}{2}\left\{K_{N}u_{\overline{s},N}+K_{N-1}u_{s,N}\right\}=-\frac{1}{2}\left\{K_{N}+K_{N-1}\right\}u_{\overline{s},N}=-K_{N-1/2}\cdot u_{\overline{s},N}=q_{1}+\frac{h}{2}f_{N},\qquad(3.4.3.12)$$

$$\frac{1}{2} \Big\{ K_i u_{s,i} + K_{i+1} u_{\overline{s},i+1} \Big\} - \frac{1}{2} \Big\{ K_{i-1} u_{s,i-1} + K_i u_{\overline{s},i} \Big\} + hf_i = \frac{1}{2} \Big\{ K_i + K_{i+1} \Big\} u_{\overline{s},i+1} - \frac{1}{2} \Big\{ K_{i-1} + K_i \Big\} u_{\overline{s},i} + hf_i = 0,$$

так что

$$K_{i+1/2} \cdot u_{\bar{s},i+1} - K_{i-1/2} \cdot u_{\bar{s},i} + hf_i = 0 \text{ или } (\bar{K} \cdot u_{\bar{s}})_{s,i} = -f_i, \quad i = \overline{1, N-1}.$$
(3.4.3.13)

Замечание 1. При построении PC с помощью МСТ аппроксимация граничных условий II-го (а также III-го рода) и уравнений внутри области получается автоматически и имеет одинаковый порядок $O(h^2)$. При этом не требовалось информации о виде зависимости K(U), поэтому МСТ особенно удобен при построении PC для нелинейных задач.

Замечание 2. Полученные результаты без труда переносятся на нестационарные задачи. Например, если $U'_t = (K \cdot U'_s)'_s + f(s)$, то при этом достаточно положить $F = f(s) - U'_t$ и в полученных выше соотношениях заменить f_i на $F_i = f_i - u_{t,i}$.

Замечание 3. Так же, как и ИИМ, МСТ может приводить к неконсервативным схемам. Причина неконсервативности также может быть обусловлена несогласованностью выбора временных слоев при построении разностных уравнений.

3.5. Принципы построения полностью консервативных разностных схем

При проведении расчетов на практике часто приходится использовать довольно грубые сетки. С другой стороны, при этом необходимо обеспечить приемлемую точность расчетов. Последнее требует обеспечения консервативности всех разностных уравнений. Одним из принципов построения таких схем является выявление условий, при которых в РС не возникают дисбалансные источники.

С этой целью рассмотрим многопараметрическое семейство разностных схем на равномерной шахматной сетке $\omega_h = \{(s_i, t_j), (s_{i+1/2}, t_{j+1/2})\}, i = \overline{0, N-1}, s_0 = 0, s_N = h \cdot N = M, j = 0, 1, 2 \dots$ и, опуская индексы, запишем:

$$\begin{aligned}
\upsilon_t &= -\overline{p}_{\overline{s}}^{(\sigma_1)}, \\
x_t &= \upsilon^{(\sigma_2)}, \\
\end{aligned}$$
(3.5.1)
(3.5.2)

$$\hat{W} = -\hat{K}\hat{\rho}\hat{T}_{\bar{s}} , \qquad (3.5.3)$$

$$\hat{x}_s = 1/\bar{\rho}, \qquad (3.5.4_1)$$

или
$$(1/\bar{\rho}) = \upsilon_s^{(\sigma_3)}$$
, (3.5.4₂)

$$\overline{\varepsilon}_{t} = -\overline{p}^{(\sigma_{4})} \upsilon_{s}^{(\sigma_{5})} - W_{s}^{(\sigma)}, \qquad (3.5.5)$$

$$\hat{\overline{p}} = R\hat{\overline{\rho}}\overline{T} , \qquad (3.5.6)$$

$$\hat{\overline{\varepsilon}} = C_V \bar{\overline{T}} . \tag{3.5.7}$$

Найдем такие значения весов σ_m , $m = \overline{1,5}$, при которых в схеме (3.5.1) – (3.5.7) не будут возникать дисбалансные источники.

3.5.1. Анализ законов сохранения энергии

Получим ЗСПЭ из ЗСВЭ (3.5.5). Умножим уравнение (3.5.1) на
$$v^{(0.5)}$$

 $\left(v^{(0.5)} \cdot v_t = -v^{(0.5)} \cdot \overline{p}_{\overline{s}}^{(\sigma_1)}\right)$ и сложим с уравнением (3.5.5):

$$\left(\overline{\varepsilon} + \upsilon^2/2\right)_t = -\upsilon^{(0.5)} \cdot \overline{p}_{\overline{s}}^{(\sigma_1)} - \overline{p}^{(\sigma_4)}\upsilon_s^{(\sigma_5)} - W_s^{(\sigma)}.$$
(3.5.8)

По формуле (2.12.1) перехода от одного веса к другому преобразуем правую часть (3.5.8):

$$-W_{s}^{(\alpha)} - \upsilon^{(0.5)} \cdot \overline{p}_{\overline{s}}^{(\sigma_{1})} - (\overline{p} + h_{\tau} (\sigma_{4} - \sigma_{1}) \overline{p}_{t}) (\upsilon^{(0.5)} + (\sigma_{5} - 0.5) h_{\tau} \upsilon_{t})_{s} =$$

$$= -W_{s}^{(\alpha)} - \upsilon^{(0.5)} \cdot \overline{p}_{\overline{s}}^{(\sigma_{1})} - \overline{p}^{(\sigma_{1})} \upsilon_{s}^{(0.5)} - \delta_{\varepsilon} (\sigma_{1}, \sigma_{4}, \sigma_{5}), \qquad (3.5.9)$$

где
$$\delta_{\varepsilon} = h_{\tau} \left(\left(\sigma_5 - 0.5 \right) \overline{p}^{(\sigma_1)} \upsilon_{ts} + \left(\sigma_4 - \sigma_1 \right) \overline{p}_t \upsilon_s^{(\sigma_5)} \right).$$
 (3.5.10)

Применяя к (3.5.9) формулу разностного дифференцирования (2.11.1), из (3.5.8) получим:

$$\left(\overline{\varepsilon} + \upsilon^2/2\right)_t = -\left\lfloor \overline{p}^{(\sigma_1)} \left(-1\right) \upsilon^{(0.5)} \right\rfloor_s - W_s^{(\sigma)} - \delta_{\varepsilon} \left(\sigma_1, \sigma_4, \sigma_5\right).$$
(3.5.11)

Очевидно, что на сетке ЗСПЭ (3.5.11) не будет нарушен, если $\delta_{\varepsilon}(\sigma_1, \sigma_4, \sigma_5)=0$ во всех узлах сетки. Отсюда

$$\sigma_5 = 0.5, \quad \sigma_1 = \sigma_4 = \alpha \,. \tag{3.5.12}$$

При выполнении этого условия PC обладает замечательным свойством: как и в непрерывном случае, на сетке выполняются ЗСПЭ и ЭСВЭ, причем независимо от шагов h и h_r .

Уравнение сохранения внутренней энергии в непрерывном случае имеет также другую форму (см. уравнение (3.1.13₂)), которая получается с учетом уравнения неразрывности (3.1.11): $\frac{d\varepsilon}{dt} + p \frac{d}{dt} \left(\frac{1}{\rho} \right) = -\frac{\partial W}{\partial s}$. В сеточном соотношении (3.5.5) перейдем от веса σ_5

к весу σ_3 :

$$\overline{\varepsilon}_{t} = -\overline{p}^{(\alpha)} \upsilon_{s}^{(\sigma_{5})} - W_{s}^{(\sigma)} = -\overline{p}^{(\alpha)} \upsilon_{s}^{(\sigma_{3})} - \delta_{\varepsilon}^{*} (\sigma_{3}, \sigma_{5}) - W_{s}^{(\sigma)}, \qquad (3.5.13)$$

$$\delta_{\varepsilon}^{*}(\sigma_{3},\sigma_{5}) = (\sigma_{5}-\sigma_{3})h_{\tau}\upsilon_{t_{s}}.$$
(3.5.14)

Следовательно, эта форма ЗСВЭ (3.1.13₂) не будет нарушена, если источник (3.5.14) $\delta_{\varepsilon}^{*}(\sigma_{3},\sigma_{5})$ равен нулю во всех узлах сетки. Следовательно, $\sigma_{3} = \sigma_{5}$. (3.5.15)

3.5.2. Анализ уравнения неразрывности

Проверим теперь дискретные формы уравнения неразрывности (3.5.4₂) и закона изменения объема (3.5.4₁). По аналогии с дифференциальным случаем (см. параграф 3.1.2) на сетке будем иметь:

$$(1/\bar{\rho})_{t} = \upsilon_{s}^{(\sigma_{3})} = \upsilon_{s}^{(\sigma_{2})} + (\sigma_{3} - \sigma_{2})h_{\tau}\upsilon_{ts} = x_{ts} + \delta_{\rho}(\sigma_{3}, \sigma_{2}), \qquad (3.5.16)$$

$$\delta_{\rho} = (\sigma_3 - \sigma_2) h_{\tau} \upsilon_{t_s}, \qquad (3.5.17)$$

или $(1/\overline{\rho} - x_s)_t = \delta_{\rho}(\sigma_3, \sigma_2)$. Отсюда следует, что закон $1/\overline{\rho} = x_s$ на сетке будет выполняться лишь тогда, когда $\delta_{\rho}(\sigma_3, \sigma_2) = 0$, т.е. при

$$\sigma_3 = \sigma_2. \tag{3.5.18}$$

Окончательно с учетом (3.5.12), (3.5.15) и (3.5.18) консервативная двухпараметрическая PC запишется в виде:

$$\upsilon_{t} = -\overline{p}_{\overline{s}}^{(\alpha)}, \quad x_{t} = \upsilon^{(0.5)}, \quad (1/\overline{\rho}) = \upsilon_{s}^{(0.5)}, \quad \overline{\varepsilon}_{t} = -\overline{p}^{(\alpha)}\upsilon_{s}^{(0.5)} - W_{s}^{(\sigma)}, \quad \hat{W}_{i} = -\hat{a}_{i}\hat{T}_{\overline{s},i}, \quad (3.5.19)$$

где α и σ – свободные параметры.

Определение. Схемы, в которых выполняются все формы законов сохранения при отсутствии разностных дисбалансных источников, называются полностью консервативными.

Схема (3.5.19) при $\alpha = \sigma = 0.5$ имеет порядок аппроксимации $O(h^2 + h_\tau^2)$, при других сочетаниях весов α и σ ее точность $O(h^2 + h_\tau)$.

3.6. Методы решения разностных схем для изотермических задач газовой динамики

3.6.1. Алгоритм явного решения неявной схемы $(\alpha = \sigma = 0)$

Рассмотрим разностную схему (3.5.19) при $\alpha = \sigma = 0$ для задачи (3.1.11) – (3.1.18), в которой неявными являются все уравнения, кроме первого, и построим алгоритм ее явного решения. Он сводится к последовательному расчету по формулам:

$$\nu_i^{j+1} = \nu_i^j + h_r / h \cdot \left(p_{i+1/2}^{j+1/2} - p_{i-1/2}^{j+1/2} \right), \tag{3.6.1}$$

$$x_i^{j+1} = x_i^j + h_{\tau} / 2 \cdot \left(\upsilon_i^{j+1} + \upsilon_i^j \right), \tag{3.6.2}$$

$$\rho_{i+1/2}^{j+3/2} = h / \left(x_{i+1}^{j+1} - x_i^{j+1} \right), \tag{3.6.3}$$

$$W_i^j = -a_i^j \left(T_{i+1/2}^j - T_{i-1/2}^j \right) / h , \qquad (3.6.4)$$

$$T_{i+1/2}^{j+3/2} = T_{i+1/2}^{j+1/2} - h_{\tau} / (C_{v}h) p_{i+1/2}^{j+1/2} \cdot (v_{i+1}^{j+1} - v_{i}^{j+1}) - h_{\tau} / (C_{v}h) (W_{i+1}^{j} - W_{i}^{j}), \qquad (3.6.5)$$

$$p_{i+1/2}^{j+3/2} = R \cdot \rho_{i+1/2}^{j+3/2} \cdot T_{i+1/2}^{j+3/2}, \qquad (3.6.6)$$

где v_i^j , $p_{i+1/2}^{j+1/2}$, x_i^j , W_i^j , $\rho_{i+1/2}^{j+1/2}$, $T_{i+1/2}^{j+1/2}$ – значения сеточных функций с нижнего временного слоя. Алгоритм прост в реализации, однако явная схема устойчива лишь при очень жест-ких требованиях на шаги сетки:

$$\left(\left\|p_{i}^{j}\right\|^{2}+\left\|\upsilon_{i}^{j}\right\|^{2}\right) \leq e^{-3C_{0}T}\left(\left\|p_{i}^{0}\right\|^{2}+\left\|\upsilon_{i}^{0}\right\|^{2}\right), \quad h_{\tau} \leq C_{0}\frac{h^{2}}{2a^{2}}, \quad (3.6.7)$$

где C_0 – константа, не зависящая от шагов h и h_r , a – характерная скорость распространения малых возмущений в газе (скорость звука). При расчетах по явной схеме происходит нарастание погрешности во времени.

3.6.2. Метод простой итерации при решении неявной схемы $(\alpha = \sigma = 1)$

Рассмотрим чисто неявную разностную схему (3.5.19) при $\alpha = \sigma = 1$ для задачи (3.1.11) – (3.1.18), и построим итерационный алгоритм ее решения на основе неявной схемы (3.6.1) – (3.2.8), которая решается явным образом. В итерационных методах сеточное решение ищется как предел: $\hat{y} = \lim_{m \to \infty} y$, где m – номер итерации. Тогда можно записать следующую последовательность итерационных расчетов

$$\underbrace{\nu_{i}}_{i} = \nu_{i}^{j} + h_{\tau} / h \cdot (\underbrace{p_{i+1/2}}_{i-1/2} - \underbrace{p_{i-1/2}}_{i-1/2}),
 \tag{3.6.8}$$

$$x_{i}^{m+1} = x_{i}^{j} + h_{\tau} / 2 \cdot (\upsilon_{i}^{m+1} + \upsilon_{i}^{j}), \qquad (3.6.9)$$

$$\rho_{i+1/2}^{m+1} = h / (x_{i+1}^{m+1} - x_i^{m+1}), \qquad (3.6.10)$$

$$T_{i+1/2}^{m+1} = T_{i+1/2}^{j+1/2} - h_{\tau} / (C_{V}h) p_{i+1/2}^{m} \cdot (v_{i+1}^{m+1} - v_{i}^{m+1}) +$$
(3.6.11)

$$+h_{\tau}/(C_{V}h)[a_{i+1}(T_{i+3/2}-T_{i+1/2})/h-a_{i}(T_{i+1/2}-T_{i-1/2})/h],$$

$$p_{i+1/2}^{m+1} = R \cdot \rho_{i+1/2}^{m+1} \cdot T_{i+1/2}^{m+1}, \qquad (3.6.12)$$

где значения сеточных функций с предыдущей итерации обозначены верхним индексом *m*. В данном случае для нахождения температуры на каждой итерации требуется решить систему алгебраических уравнений (3.6.1) с трехдиагональной матрицей:

$$\frac{m}{A_{i}} \frac{m}{T_{i-1}}^{m-1} - \frac{m}{C_{i}} \frac{m+1}{T_{i}} + \frac{m}{B_{i}} \frac{m+1}{T_{i+1}} = -\frac{m}{F_{i}}, \quad i = \overline{1, N-1},$$

$$\frac{m}{A_{i}} = \frac{m}{a_{i}} h_{\tau} / (C_{V}h^{2}), \quad \overline{B_{i}}^{m} = \frac{m}{a_{i+1}} h_{\tau} / (C_{V}h^{2}), \quad \overline{C_{i}}^{m} = 1 + \overline{A_{i}}^{m} + \overline{B_{i}}, \quad \overline{F_{i}}^{m} = T_{i+1/2}^{j+1/2} - h_{\tau} / (C_{V}h) \stackrel{m}{p}_{i+1/2} \cdot (\stackrel{m+1}{U_{i+1}} - \stackrel{m+1}{U_{i}}).$$
Verophe exommetry interparation projects and interparation projects and interparation projects and interparation.

Условие сходимости итерационного процесса по динамическим уравнениям $0 < ah_{\tau}/h < 2^{-1/2}$.

3.6.3. Метод прогонки

Рассмотрим линейную систему алгебраических уравнений с трехдиагональной матрицей

$$A_m y_{m-1} - C_m y_m + B_m y_{m+1} = -F_m, \quad m = \overline{1, N-1}.$$
(3.6.13)

Система (3.6.13) решается методом прогонки. Сеточные функции y_m вычисляются по общей рекуррентной формуле

$$y_m = \alpha_{m+1} y_{m+1} + \beta_{m+1}, \qquad m = \overline{1, N-1},$$
 (3.6.14)

где α_m , β_m – неизвестные коэффициенты. С помощью (3.6.14) перепишем уравнения (3.6.13):

$$A_{m} \Big[\alpha_{m} (\alpha_{m+1} y_{m+1} + \beta_{m+1}) + \beta_{m} \Big] - C_{m} \Big[\alpha_{m+1} y_{m+1} + \beta_{m+1} \Big] + B_{m} y_{m+1} + F_{m} = \\ = \Big[(A_{m} \alpha_{m} - C_{m}) \alpha_{m+1} + B_{m} \Big] y_{m+1} + \Big[(A_{m} \alpha_{m} - C_{m}) \beta_{m+1} + (A_{m} \beta_{m} + F_{m}) \Big] = 0$$

Это равенство выполняется, если равны нулю квадратные скобки, откуда для $m = \overline{1, N-1}$ получим:

$$\alpha_{m+1} = B_m / (C_m - A_m \alpha_m), \quad \beta_{m+1} = (A_m \beta_m + F_m) / (C_m - A_m \alpha_m)$$
(3.6.15)

Из аппроксимации граничных условий имеем:

$$-C_0 y_0 + B_0 y_1 = -F_0, \quad A_N y_{N-1} - C_N y_N = -F_N$$

или $y_0 = \kappa_1 y_1 + \nu_1, \quad y_N = \kappa_2 y_{N-1} + \nu_2,$ (3.6.16)

где $v_1 = F_0 / C_0$, $v_2 = F_N / C_N$, $\kappa_1 = B_0 / C_0$, $\kappa_2 = A_N / C_N$.

Расчет начинается при $\alpha_1 = \kappa_1$, $\beta_1 = v_1$ с *прямой прогонки* по формулам (3.6.15), а затем по формулам (3.6.14) выполняется *обратная прогонка* при $y_N = (v_2 + \kappa_2 \beta_N)/(1 - \kappa_2 \alpha_N)$.

Параметры задачи должны удовлетворять условиям $A_m > 0$, $B_m > 0$, $C_m \ge A_m + B_m$, $0 \le \kappa_1, \kappa_2 \le 1$, $\kappa_1 + \kappa_2 < 2$,

обеспечивающим разрешимость и устойчивость метода.

3.6.4. Метод Ньютона линеаризации нелинейных систем алгебраических уравнений

Пусть f(x) = 0 – нелинейное уравнение, x_0 – его корень. Если в окрестности точки x_0 производные f'_x и f''_{xx} непрерывны, то по формуле Тейлора $f(x_0) = 0 = f(x + (x_0 - x)) \approx f(x) + f'_x(x) \cdot (x_0 - x)$.

Отсюда получается итерационный процесс (*m* – номер итерации) вычисления корня:

$$\binom{m+1}{x-x} \cdot f'_{x}(x) = -f(x)$$
(3.6.17)

или, обозначив
$$\delta x = x - x$$
: $\delta x \cdot f'_x(x) = -f(x)$. (3.6.18)

Геометрический смысл (3.6.18). По значению про-
изводной
$$f'_{x}(x)$$
 строится касательная к функции $f(x)$ в
точке x (рис.3.6.1). Ее пересечение с осью Ox дает точку
 x . Этот процесс повторяется до тех пор, пока не вы-
полнится условие $|\delta x| < \varepsilon$, где ε – заданная точность вы-
числения корня x_{0} . Действительно, из ΔABC :

 $BC \cdot tg\alpha = (x - x) \cdot tg\alpha = AB = f(x), tg\alpha = f'(x), oткуда следует соотношение (3.6.18).$

Рассмотрим теперь систему *n* нелинейных алгебраических уравнений (3.6.19). Требуется найти ее решение $(x_1^0, x_2^0, ..., x_n^0)$. По аналогии со случаем функции одной переменной линеаризация по методу Ньютона приводит к линейной системе:

$$\begin{cases} f_1(x_1, x_2, ..., x_n) = 0\\ ...\\ f_n(x_1, x_2, ..., x_n) = 0 \end{cases}$$
(3.6.19)

$$\begin{cases} \overset{m+1}{\delta x_{1}}, \overset{m}{f_{1,x_{1}}} + \overset{m+1}{\delta x_{2}}, \overset{m}{f_{1,x_{2}}} + \dots \overset{m+1}{\delta x_{n}}, \overset{m}{f_{1,x_{n}}} = -\overset{m}{f_{1}} \\ \dots \\ \overset{m+1}{\delta x_{1}}, \overset{m}{f_{n,x_{1}}} + \overset{m+1}{\delta x_{2}}, \overset{m}{f_{n,x_{2}}} + \dots \overset{m+1}{\delta x_{n}}, \overset{m}{f_{n,x_{n}}} = -\overset{m}{f_{n}} \end{cases}$$
(3.6.20)

Решение системы (3.6.20) может быть найдено, например, методом Гаусса. Запишем ее в матрично-векторном виде

$$\mathbf{A} \overset{m}{\delta} \mathbf{x} = -\mathbf{F}, \qquad \mathbf{A} = \left\{ f_{j,x_k}^{m} \right\}_{k,j=1}^{n}, \qquad \overset{m+1}{\delta} \mathbf{x} = \begin{pmatrix} m \\ \delta x_1 \\ \dots \\ m^{m+1} \\ \delta x_n \end{pmatrix}, \quad \mathbf{F} = \begin{pmatrix} m \\ f_1 \\ \dots \\ m \\ f_n \end{pmatrix}.$$
(3.6.21)

Здесь матрица $\mathbf{\tilde{A}}^{m}$ и вектор правой части вычисляются по значениям с предыдущей *m*-ой итерации.

3.6.5. Решение динамических уравнений методом Ньютона

Применим метод Ньютона для построения итерационного алгоритма решения нелинейной системы алгебраических уравнений (3.5.6), (3.5.7), (3.5.19), описывающих движение газа. Запишем ее сначала в виде (3.6.19):

$$\begin{cases} f_1(\hat{\nu}_i, \hat{p}_{i+1/2}, \hat{p}_{i-1/2}) &= h_{\tau} \left[\nu_{t,i} - \overline{p}_{\overline{s},i}^{(\alpha)} \right] &= 0, \\ f_2(\hat{x}_i, \hat{\nu}_i) &= h_{\tau} \left[x_{t,i} - \nu_i^{(0.5)} \right] &= 0, \\ f_3(\hat{x}_i, \hat{x}_{i+1}, \hat{\rho}_{i+1/2}) &= \left[\hat{x}_{s,i} - 1/\hat{\overline{\rho}}_i \right] &= 0, \\ f_4(\hat{p}_{i+1/2}, \hat{\rho}_{i+1/2}, T_{i+1/2}) &= \hat{p}_{i+1/2} - \mathcal{P}(\hat{\rho}_{i+1/2}, T_{i+1/2}) &= 0, \end{cases}$$

$$(3.6.22_1)$$

или в индексной форме

$$\begin{cases} f_1(\hat{\nu}_i, \hat{p}_{i+1/2}, \hat{p}_{i-1/2}) &= \hat{\nu}_i - \nu_i + \frac{\alpha h_r}{h} (\hat{p}_{i+1/2} - \hat{p}_{i-1/2}) + \frac{\alpha h_r (1 - \alpha)}{h} (p_{i+1/2} - p_{i-1/2}) &= 0, \\ f_2(\hat{x}_i, \hat{\nu}_i) &= \hat{x}_i - x_i + \frac{h_r}{2} (\hat{\nu}_i + \nu_i) &= 0, \\ f_3(\hat{x}_i, \hat{x}_{i+1}, \hat{\rho}_{i+1/2}) &= \frac{\hat{x}_{i+1} - \hat{x}_i}{h} - 1/\hat{\rho}_{i+1/2} &= 0, \\ f_4(\hat{p}_{i+1/2}, \hat{\rho}_{i+1/2}, T_{i+1/2}) &= \hat{p}_{i+1/2} - \mathcal{P}(\hat{\rho}_{i+1/2}, T_{i+1/2}) &= 0, \end{cases}$$

полагая температуру известной функцией. Применение метода Ньютона дает:

$$\begin{cases} \delta v_{i}^{m+1} + \frac{\alpha h_{r}}{h} \left(\delta p_{i+1/2}^{m+1} - \delta p_{i-1/2}^{m+1} \right) &= -f_{1,i}^{m}, \\ \delta x_{i}^{m+1} - \frac{h_{r}}{2} \delta v_{i}^{m+1} &= -f_{2,i}^{m}, \\ \frac{\delta x_{i+1}^{m+1} - \delta x_{i}}{h} + \rho_{i+1/2}^{-2} \delta \rho_{i+1/2}^{m+1} &= -f_{3,i}^{m}, \\ \frac{\delta p_{i+1/2}^{m+1} - \delta p_{i+1/2}^{m+1}}{h} + \rho_{i+1/2}^{-2} \delta \rho_{i+1/2}^{m+1} &= -f_{4,i}^{m}. \end{cases}$$
(3.6.22₃)

Для удобства дальнейшего анализа запишем эту систему в безындексной форме:

$$\begin{cases} \delta \upsilon + \alpha h_{\tau} \cdot \delta \overline{p}_{\overline{s}} &= -f_1, \\ \delta x - 0.5h_{\tau} \cdot \delta \upsilon &= -f_2, \\ \delta x_s + \overline{\rho}^{-2} \cdot \delta \overline{\rho} &= -f_3, \\ \delta \overline{p} - \mathcal{P}'_{\rho}(\overline{\rho}) \cdot \delta \overline{\rho} &= -f_4. \end{cases}$$

$$(3.6.22_4)$$

Решим систему уравнений (3.6.22₄) методом исключения, сведя ее к одному уравнению относительно δv . Во-первых,

$$\delta x = 0.5h_{\tau} \cdot \delta \upsilon - f_2. \tag{3.6.23}$$

Далее,

$$\delta \overline{\rho} = -\overline{\rho}^2 \cdot \left(\delta x_s + f_3\right) = -\overline{\rho}^2 \cdot \left(0.5h_\tau \cdot \delta \upsilon - f_2\right)_s - \overline{\rho}^2 f_3 = -0.5h_\tau \overline{\rho}^2 \cdot \delta \upsilon_s - F_3, \qquad (3.6.24)$$

где $F_3 = \overline{\rho}^2 \cdot (f_3 - f_{2,s})$. Теперь используем четвертое уравнение системы (3.6.22₄):

$$\delta \overline{p} = \mathcal{P}_{\rho}' \cdot \delta \overline{\rho} - f_4 = -\mathcal{P}_{\rho}' \cdot \left(0.5h_\tau \overline{\rho}^2 \cdot \delta \upsilon_s + F_3\right) - f_4 = -0.5h_\tau \overline{\rho}^2 \mathcal{P}_{\rho}' \cdot \delta \upsilon_s - F_4, \qquad (3.6.25)$$

$$F_4 = \mathcal{P}_{\rho}' F_3 + f_4.$$

Наконец, подставляя выражение для $\delta \bar{p}$ в первое уравнение системы (3.6.22₄), получим уравнение, содержащее только сеточную функцию δv :

$$\delta \upsilon - \alpha h_{\tau} \cdot \left(0.5h_{\tau} \overline{\rho}^2 \mathcal{P}_{\rho}' \cdot \delta \upsilon_s + F_4 \right)_{\overline{s}} = -f_1, \quad \delta \upsilon - 0.5 \alpha h_{\tau}^2 \cdot \left(\overline{\rho}^2 \mathcal{P}_{\rho}' \cdot \delta \upsilon_s \right)_{\overline{s}} = F, \quad (3.6.26)$$

где $F = -f_1 + \alpha h_{\tau} (F_4)_{\overline{s}}$. В индексной форме уравнение (3.6.26) будет иметь вид:

$$\overset{m}{A_{i}} \cdot \overset{m+1}{\delta \upsilon_{i-1}} - \overset{m}{C_{i}} \cdot \overset{m+1}{\delta \upsilon_{i}} + \overset{m}{B_{i}} \cdot \overset{m+1}{\delta \upsilon_{i+1}} = -\overset{m}{F_{i}}, \quad i = \overline{1, N-1},$$

$$\overset{m}{A_{i}} = 0.5\alpha \left(h_{\tau}/h \right)^{2} \overline{\rho}_{i-1}^{2} \overline{\varphi}_{\rho,i-1}', \quad \overset{m}{B_{i}} = 0.5\alpha \left(h_{\tau}/h \right)^{2} \overline{\rho}_{i}^{2} \overline{\varphi}_{\rho,i}' = A_{i+1}^{m}, \quad \overset{m}{C_{i}} = 1 + \overset{m}{A_{i}} + \overset{m}{B_{i}}.$$
(3.6.27)

Эта система уравнений на каждой итерации решается методом прогонки относительно $\overset{m+1}{\delta v_i}$, после чего по формулам (3.6.25), (3.6.24), (3.6.23) вычисляются приращения $\overset{m+1}{\delta \overline{p_i}}$, $\overset{m+1}{\delta \overline{$

$$\max_{0 \le i \le N} \left\{ \left| \stackrel{m+1}{\delta \nu_i} \right|, \left| \stackrel{m+1}{\delta \overline{\rho}_i} \right|, \left| \stackrel{m+1}{\delta \overline{p}_i} \right| \right\} < \varepsilon .$$
(3.6.28)

3.6.6. Метод разделения процессов ("динамические" и "тепловые" уравнения). Внутренний и внешний итерационный процессы

Для решения систем уравнений, описывающих несколько физических процессов, применяется метод разделения явления по процессам. Следуя этому принципу, в рассматриваемой задаче о неизотермическом течении газа выделим две группы уравнений:

1) «динамическая группа» (искомые функции v, p, x, ρ): уравнение неразрывности, закон сохранения количества движения, уравнение траекторий движения частиц и уравнение состояния $p = \mathcal{P}(\rho, T)$;

2) «*тепловая группа*» (искомые функции T, W): закон сохранения энергии, закон теплопроводности Фурье, уравнение состояния $\varepsilon = \zeta(\rho, T)$ и зависимость коэффициента теплопроводности $a = \mathcal{A}(\rho, T)$.

Уравнения каждой группы решаются отдельно итерационными методами. В частности, применение метода Ньютона для расчета динамического процесса изложено в предыдущем параграфе. Рассмотрим теперь алгоритм решения общей неизотермической задачи. В данном случае первые три уравнения системы (3.6.22₁) остаются в силе, в четвертом урав-

нении вместо функции $T_{i+1/2}$ следует взять искомую температуру на верхнем временном слое $\hat{T}_{i+1/2}$: $f_4(\hat{p}_{i+1/2}, \hat{T}_{i+1/2}) = \hat{p}_{i+1/2} - \mathcal{P}(\hat{\rho}_{i+1/2}, \hat{T}_{i+1/2}) = 0.$ (3.6.29)

Эта «динамическая» группа дополняется «тепловыми» уравнениями:

$$\begin{cases} f_{5}\left(\hat{\varepsilon}_{i+1/2},\hat{\upsilon}_{i},\hat{\upsilon}_{i+1},\hat{p}_{i+1/2},\hat{W}_{i},\hat{W}_{i+1}\right) &= h_{\tau}\left[\overline{\varepsilon}_{t,i}+\overline{p}_{i}^{(\alpha)}\upsilon_{s,i}^{(0.5)}+W_{s,i}^{(\sigma)}\right] &= 0, \\ f_{6}\left(\hat{\varepsilon}_{i+1/2},\hat{\rho}_{i+1/2},\hat{T}_{i+1/2}\right) &= \hat{\varepsilon}_{i+1/2}-\zeta\left(\hat{\rho}_{i+1/2},\hat{T}_{i+1/2}\right) &= 0, \\ f_{7}\left(\hat{W}_{i},\hat{a}_{i},\hat{T}_{i+1/2},\hat{T}_{i-1/2}\right) &= \hat{W}_{i}+\hat{a}_{i}\hat{T}_{\overline{s},i} &= 0, \\ f_{8}\left(\hat{a}_{i},\hat{\rho}_{i+1/2},\hat{T}_{i+1/2}\right) &= \hat{a}_{i}-\mathcal{A}\left(\hat{\rho}_{i+1/2},\hat{T}_{i+1/2}\right) &= 0. \end{cases}$$
(3.6.30₁)

Применим метод Ньютона к нелинейным уравнениям (3.6.22₁), (3.6.29), (3.6.30₁). В безындексной форме линеаризованная система будет иметь вид:

$$\begin{cases} \delta \upsilon + \alpha h_{\tau} \cdot \delta \overline{p}_{\overline{s}} &= -f_{1}, \\ \delta x - 0.5h_{\tau} \cdot \delta \upsilon &= -f_{2}, \\ \delta x_{s} + \overline{\rho}^{-2} \cdot \delta \overline{\rho} &= -f_{3}, \\ \delta \overline{p} - \mathcal{P}_{\rho}'(\overline{\rho}, \overline{T}) \cdot \delta \overline{\rho} - \mathcal{P}_{T}'(\overline{\rho}, \overline{T}) \cdot \delta \overline{T} &= -f_{4}. \end{cases}$$

$$\begin{cases} \delta \overline{\varepsilon} + \alpha h_{\tau} \upsilon_{\overline{s}} \cdot \delta \overline{p} + 0.5h_{\tau} \overline{p}^{(\alpha)} \cdot \delta \upsilon_{s} + \sigma h_{\tau} \cdot \delta W_{s} &= -f_{5}, \\ \delta \overline{\varepsilon} - \zeta_{\rho}'(\overline{\rho}, \overline{T}) \cdot \delta \overline{\rho} - \zeta_{T}'(\overline{\rho}, \overline{T}) \cdot \delta \overline{T} &= -f_{6}, \\ \delta W + \overline{T}_{\overline{s}} \cdot \delta a + a \cdot \delta \overline{T}_{\overline{s}} &= -f_{7}, \\ \delta a - \mathcal{A}_{\rho}'(\overline{\rho}, \overline{T}) \cdot \delta \overline{\rho} - \mathcal{A}_{T}'(\overline{\rho}, \overline{T}) \cdot \delta \overline{T} &= -f_{8}, \end{cases}$$

$$(3.6.32)$$

Выражая $\delta x = 0.5h_{\tau} \cdot \delta \upsilon - f_2$, $\delta \overline{\rho} = -0.5h_{\tau}\overline{\rho}^2 \cdot \delta \upsilon_s - F_3$ и $\delta \overline{p} = -0.5h_{\tau}\overline{\rho}^2 \mathscr{P}'_{\rho} \cdot \delta \upsilon_s + \overline{\mathscr{P}}'_T \cdot \delta \overline{T} - F_4$ через приращения $\delta \upsilon$ и $\delta \overline{T}$, из первого уравнения (3.6.31) получим

$$\delta \upsilon - 0.5 \alpha h_{\tau}^2 \cdot \left(\bar{\rho}^2 \mathcal{P}'_{\rho} \cdot \delta \upsilon_s \right)_{\bar{s}} + \alpha h_{\tau} \left(\bar{\mathcal{P}}'_T \cdot \delta \bar{T} \right)_{\bar{s}} = F$$
(3.6.33)

или в индексной форме

$${}^{m}_{A_{i}} \cdot \delta {}^{m+1}_{\nu_{i-1}} - {}^{m}_{C_{i}} \cdot \delta {}^{m+1}_{\nu_{i}} + {}^{m}_{B_{i}} \cdot \delta {}^{m+1}_{\tau_{i-1}} - {}^{m}_{E_{i}} \cdot \delta {}^{m+1}_{\overline{I}_{i}} = -{}^{m}_{F_{i}}, \quad i = \overline{1, N-1},$$
(3.6.34)

где $D_i^m = \alpha h_\tau \overline{\mathcal{P}}'_{T,i-1}, \quad E_i^m = \alpha h_\tau \overline{\mathcal{P}}'_{T,i} = D_{i+1}^m$. Из (3.6.34) видно, что динамический и тепловой процессы взаимосвязаны.

Перейдем теперь к анализу системы (3.6.32). Подставим $\delta a = \mathcal{A}'_{\rho} \cdot \delta \overline{\rho} + \mathcal{A}'_{T} \cdot \delta \overline{T} - f_{8}$ в третье уравнение (3.6.32): $\delta W = -(\overline{T}_{\overline{s}}\mathcal{A}'_{\rho}) \cdot \delta \overline{\rho} - (\overline{T}_{\overline{s}}\mathcal{A}'_{T}) \cdot \delta \overline{T} - a \cdot \delta \overline{T}_{\overline{s}} - F_{7}$, где $F_{7} = f_{7} - \overline{T}_{\overline{s}}f_{8}$. Исключим из первого уравнения (3.6.32) с помощью полученного соотношения для δW и выражения $\delta \overline{\varepsilon} = \zeta'_{\rho} \cdot \delta \overline{\rho} + \zeta'_{T} \cdot \delta \overline{T} - f_{6}$ приращения теплового потока и внутренней энергии:

$$\zeta_{\rho}^{\prime} \cdot \delta \overline{\rho} + \zeta_{T}^{\prime} \cdot \delta \overline{T} + \alpha h_{\tau} \upsilon_{\overline{s}} \cdot \delta \overline{p} + 0.5 h_{\tau} \overline{p}^{(\alpha)} \cdot \delta \upsilon_{\overline{s}} - -\sigma h_{\tau} \cdot \left[\left(\overline{T}_{\overline{s}} \mathcal{A}_{\rho}^{\prime} \right) \cdot \delta \overline{\rho} + \left(\overline{T}_{\overline{s}} \mathcal{A}_{T}^{\prime} \right) \cdot \delta \overline{T} + a \cdot \delta \overline{T}_{\overline{s}} \right]_{\overline{s}} = -f_{5} + f_{6} + \sigma h_{\tau} F_{7,\overline{s}}.$$

$$(3.6.35)$$

Теперь подставим в (3.6.35) $\delta \bar{\rho} = -0.5h_{\tau}\bar{\rho}^2 \cdot \delta \upsilon_s - F_3$ и $\delta \bar{p} = -0.5h_{\tau}\bar{\rho}^2 \mathscr{Q}_{\rho}' \cdot \delta \upsilon_s + \bar{\mathscr{Q}}_{T}' \cdot \delta \overline{T} - F_4$: $\left[\zeta_T' + \alpha h_{\tau} \upsilon_{\bar{s}} \cdot \bar{\mathscr{Q}}_{T}'\right] \cdot \delta \overline{T} - \sigma h_{\tau} \cdot \left[\left(\overline{T}_{\bar{s}} \mathscr{A}_{T}'\right) \cdot \delta \overline{T}\right]_s - \sigma h_{\tau} \cdot \left[a \cdot \delta \overline{T}_{\bar{s}}\right]_s + 0.5\sigma h_{\tau}^2 \left[\left(\bar{\rho}^2 \overline{T}_{\bar{s}} \mathscr{A}_{\rho}'\right) \cdot \delta \upsilon_s\right]_s + h_{\tau}/2 \left(\bar{p}^{(\alpha)} - \bar{\rho}^2 \zeta_{\rho}' - \alpha h_{\tau} \upsilon_{\bar{s}} \bar{\rho}^2 \mathscr{Q}_{\rho}'\right) \cdot \delta \upsilon_s = \Phi,$ (3.6.36)
где $\Phi = -f_5 + f_6 + \sigma h_r F_{7,S} + \left(\zeta'_{\rho} - \sigma h_r \overline{T}_{\overline{S}} \mathcal{A}'_{\rho}\right) F_3 + \alpha h_r \upsilon_{\overline{S}} F_4$. В индексной форме

$$\{D_{i}^{m}\cdot\delta\overline{T}_{i-1}^{m-1}-E_{i}^{m}\cdot\delta\overline{T}_{i}^{m+1}+G_{i}^{m}\cdot\delta\overline{T}_{i-1}^{m+1}\}+\{A_{i}^{m}\cdot\delta\upsilon_{i-1}^{m-1}-C_{i}^{m}\cdot\delta\upsilon_{i}^{m+1}+B_{i}^{m}\cdot\delta\upsilon_{i+1}^{m+1}+\Omega_{i}^{m}\cdot\delta\upsilon_{i+2}^{m+1}\}=-\Phi_{i}^{m},\qquad(3.6.37)$$

где коэффициенты D'_i , E'_i , G'_i , A'_i , C'_i , B'_i , Ω'_i и правая часть Φ_i^m нетрудно записать на основе соотношения (3.6.36). Из (3.6.37) также видна взаимосвязь температуры с характеристиками динамического процесса.

Для решения линеаризованных систем (3.6.34) и (3.6.37) применим метод разделения по процессам.

1 внутренний цикл итераций. В уравнениях 1-ой группы будем считать известным пространственное распределение температуры. Тогда итерационный расчет динамических функций сводится к решению методом прогонки системы

$$\overset{m}{A_{i}} \cdot \overset{m+1}{\delta \upsilon_{i-1}} - \overset{m}{C_{i}} \cdot \overset{m+1}{\delta \upsilon_{i}} + \overset{m}{B_{i}} \cdot \overset{m+1}{\delta \upsilon_{i+1}} = - \overset{m}{F_{i}} - \overset{l}{D_{i}} \cdot \overset{l}{\delta T_{i-1}} + \overset{l}{E_{i}} \cdot \overset{l}{\delta T_{i}}, \quad i = \overline{1, N-1}.$$
 (3.6.38)

Замечание. При первом выполнении итерационного процесса (3.6.38) в качестве начального приближения зададим значения сеточных функций с нижнего *j*-го временного слоя. При m = 0: $\overset{0}{\nu_i} = \nu_i^j$, $\overset{0}{\overline{p}_i} = \overline{p_i}^j$, $\overset{0}{\overline{\rho}_i} = \overline{\rho_i}^j$, $\overset{0}{x_i} = x_i^j$. При l = 0: $\overset{0}{\overline{T}_i} = \overline{T_i}^j$.

Пусть M – номер итерации, на которой достигается заданная точность $\varepsilon_1 \ll 1$ вычислений сеточных функций v_i^{m+1} , \overline{p}_i^{m+1} , \overline{p}_i^{m+1} , x_i^{m+1} , прекращается выполнение итерационного процесса по m (при **фиксированном** распределении температуры) и начинается

2 внутренний цикл итераций – аналогичный расчет распределение температуры:

$$\left\{ D_{i}^{k} \cdot \delta \overline{T}_{i-1} - E_{i}^{k} \cdot \delta \overline{T}_{i} + G_{i}^{k} \cdot \delta \overline{T}_{i-1} \right\} = -\Phi_{i}^{k} - \left\{ A_{i}^{M-1} \cdot \delta \overline{\upsilon}_{i-1} - C_{i}^{M-1} \cdot \delta \overline{\upsilon}_{i} + B_{i}^{M-1} \cdot \delta \overline{\upsilon}_{i+1} + \Omega_{i}^{M-1} \cdot \delta \overline{\upsilon}_{i+2} \right\}.$$
 (3.6.39)

При этом правая часть в уравнениях (3.6.39) вычисляется по найденным значениям динамических функций v_i^M , $\frac{M}{p_i}$, $\frac{M}{\rho_i}$, x_i^M на первом цикле. Итерационный процесс (3.6.39) по k(при **фиксированных** распределениях функций v_i^M , $\frac{M}{p_i}$, $\frac{M}{\rho_i}$, x_i^M) продолжается до достижения заданной точности $\varepsilon_2 \ll 1$ на некоторой итерации с номером K. В результате найдены значения $\frac{K}{T_i}$.

Внешний итерационный процесс – переход с *j*-го на (j+1)-ый временной слой – объединяет оба внутренних цикла. После вычисления сеточной функции $\overline{T}_i^{\underline{k}}$ переменная внешнего цикла увеличивается на единицу (l = l+1) и заново последовательно выполняются внутренние циклы, причем при решении системы (3.6.38) используются новый профиль температуры, т.е. $\overline{T}_i = \overline{T}_i^{\underline{k}}$ при вычислении правой части (3.6.38), а в качестве начального приближения при m=0: $\overline{v}_i^0 = \overline{v}_i^0$, $\overline{p}_i^0 = \overline{p}_i^M$, $\overline{o}_i^0 = \overline{p}_i^M$.

На некоторой итерации с номером L при достижении требуемой точности ε внешний цикл заканчивается. В качестве значений сеточных функций v_i^{j+1} , \bar{p}_i^{j+1} , $\bar{\rho}_i^{j+1}$, x_i^{j+1} , \bar{T}_i^{j+1} на (j+1)-м временном слое принимаются найденные при l = L распределения v_i^{k} , $\frac{M}{\bar{p}_i}$, $\frac{M}{\bar{\rho}_i}$, $\frac{M}{\bar{\rho}_i}$, $\frac{M}{\bar{r}_i}$.

Тема 4. ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ ИНТЕГРО - ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Для описания фильтрационных потоков воспользуемся моделью радиального пласта с учетом упругоемкости поровой среды и фильтрующейся жидкости. При этом на стенке скважины, вскрывающей пласт, должны выполняться условия сопряжения решений соответствующих задач в скважине и в области фильтрации, выражающие непрерывность давления и потока жидкости:

$$P\big|_{z=0} = P_{zab}(t), \qquad Q_n(t) = Q\big|_{r=R_0}(t) = -\frac{2\pi k \left(P_{zab}(t)\right) h_n}{\mu} R_o \frac{\partial P}{\partial r}\bigg|_{r=R_0}$$
(4.1)

где $P_{zab}(\tau)$ - давление на открытом забое скважины; абсолютная проницаемость $k(P_{zab}(t))$ в общем случае зависит от величины давления.

Рассмотрим наиболее простой случай однородного пласта, когда процесс фильтрации описывается известным линейным уравнением пьезопроводности. Оно имеет аналитическое решение, которое позволяет в явной форме записать соотношение (4.1) при k = const, определяющее объемный расход $Q_n(\tau)$ жидкости из пласта в скважину или из скважины в пласт (в зависимости от знака перепада давления между пластом и скважиной)

$$Q_{n}(\tau) = \frac{2\pi k h_{n}}{\mu} \frac{\partial}{\partial \tau} \int_{0}^{\tau} \left(P_{n}^{o} - P_{z=0}(s) \right) \Psi\left(\frac{\pi \kappa}{R_{o}^{2}}(\tau-s) \right) ds$$

$$(4.2)$$

$$\Psi(\tau) = 1/\ln\left(1 + \sqrt{\tau}\right) \tag{4.3}$$

Здесь $\Psi(\tau)$ - функция радиального притока к забою скважины из пласта при упругом режиме фильтрации. Перепишем уравнение (4.2) в виде

$$\mathbf{\Theta} = \int_{0}^{t} \mathbf{P}(s) \Psi \Big[K_{\kappa} \Big(t_{j+1} - s \Big) \Big] ds \,. \tag{4.4}$$

Численное решение интегрального уравнения. Остановимся теперь на построении сеточного представления интегрального члена в соотношении (4.4). Запишем этот интеграл в виде

$$\mathbf{\Theta}^{j+1} = \sum_{i=0}^{j} \int_{t_i}^{t_{i+1}} \mathbf{P}(s) \Psi \Big[K_{\kappa} \Big(t_{j+1} - s \Big) \Big] ds$$

$$(4.5)$$

и для обеспечения порядка $O(h_{\tau}^2)$ возьмем линейную интерполяцию искомой подынтегральной функции по ее значениям \mathbf{P}^i и \mathbf{P}^{i+1} на каждом интервале разбиения $[t_i, t_{i+1}]$:

$$\mathbf{P}(t) = \mathbf{P}^{i} + (t - t_{i}) \frac{\mathbf{P}^{i+1} - \mathbf{P}^{i}}{h_{\tau}}$$

Подставим это выражение в точное равенство (4.5) и вычислим интегралы под знаком суммы, сделав замену переменной интегрирования $u = (s - t_i)/h_{\tau}$:

$$\begin{split} \mathbf{\Theta}^{j+1} &= \sum_{i=0}^{j} \int_{t_{i}}^{t_{i+1}} \left\{ \mathbf{P}^{i} + \left(\mathbf{P}^{i+1} - \mathbf{P}^{i} \right) (s - t_{i}) / h_{\tau} \right\} \cdot \Psi \left(K_{\kappa} \left[t_{j+1} - s \right] \right) ds = \\ &= h_{\tau} \sum_{i=0}^{j} \int_{0}^{1} \left\{ \mathbf{P}^{i} + \left(\mathbf{P}^{i+1} - \mathbf{P}^{i} \right) u \right\} \cdot \Psi \left(K_{\kappa} \left[t_{j-i+1} - h_{\tau} u \right] \right) du = \\ &= h_{\tau} \sum_{i=0}^{j} \mathbf{P}^{i} \int_{0}^{1} (1 - u) \cdot \Psi \left(K_{\kappa} \left[t_{j-i} + h_{\tau} \left(1 - u \right) \right] \right) du + h_{\tau} \sum_{i=0}^{j} \mathbf{P}^{i+1} \int_{0}^{1} u \cdot \Psi \left(K_{\kappa} \left[t_{j-i+1} - h_{\tau} u \right] \right) du . \end{split}$$

С учетом того, что $\mathbf{P}^0 = 0$, сделав замену переменной v = 1 - u в интегралах первой суммы и изменив индекс суммирования во второй сумме, перепишем полученное выражение для $\mathbf{\Theta}^{j+1}$ в виде:

$$\begin{split} \mathbf{\Theta}^{j+1} &= h_{\tau} \sum_{i=1}^{j} \mathbf{P}^{i} \int_{0}^{1} v \cdot \Psi \left(K_{\kappa} \left[t_{j-i} + h_{\tau} v \right] \right) dv + h_{\tau} \sum_{k=1}^{j+1} \mathbf{P}^{k} \int_{0}^{1} u \cdot \Psi \left(K_{\kappa} \left[t_{j-k+2} - h_{\tau} u \right] \right) du = \\ &= h_{\tau} \sum_{i=1}^{j} \mathbf{P}^{i} \int_{0}^{1} v \left\{ \Psi \left(K_{\kappa} \left[t_{j-i} + h_{\tau} v \right] \right) + \Psi \left(K_{\kappa} \left[t_{j-i+2} - h_{\tau} u \right] \right) \right\} dv + \mathbf{P}^{j+1} h_{\tau} \int_{0}^{1} u \cdot \Psi \left(K_{\kappa} h_{\tau} \left(1 - u \right) \right) du . \end{split}$$

После несложных преобразований будем иметь:

$$\Theta^{j+1} = \mathbf{P}^{j+1} h_{\tau} \int_{0}^{1} (1-v) \cdot \Psi(K_{\kappa} h_{\tau} v) dv + + h_{\tau} \sum_{i=1}^{j} \mathbf{P}^{i} \int_{0}^{1} (1-u) \Big\{ \Psi(K_{\kappa} \Big[t_{j-i+1} + h_{\tau} u \Big] \Big) + \Psi(K_{\kappa} \Big[t_{j-i+1} - h_{\tau} u \Big] \Big) \Big\} du .$$
(4.6)

Введя обозначения:

$$A = K_{\Psi} \int_{0}^{1} (1 - v) \Psi \left(K_{\kappa} h_{\tau} v \right) dv \quad , \quad \Omega_{j} = \sum_{i=1}^{j} \mathbf{P}^{i} \cdot I_{j-i+1}$$

$$(4.7)$$

$$I_{j-i+1} = K_{\Psi} \int_{0}^{1} (1-u) \left\{ \Psi \left(K_{\kappa} \left[t_{j-i+1} + h_{\tau} u \right] \right) + \Psi \left(K_{\kappa} \left[t_{j-i+1} - h_{\tau} u \right] \right) \right\} du$$

$$(4.8)$$

получим окончательно:

 $\Theta^{j+1} = \mathbf{P}^{j+1} h_{\tau} \cdot A - h_{\tau} \Omega_j \tag{4.9}$

Вычисление определенных интегралов в выражениях для A (4.7) и I_{j-i+1} (4.8) требует применения специальных приемов, поскольку в силу специфики функции $\Psi(t)$ (10) подынтегральные функции в этих интегралах имеют особенности при v = 0 и u = 1 соответственно. Можно показать, что при $u \rightarrow 1$ предел подынтегральной функции (31) равен нулю, так что особенность во втором интеграле устраняется переопределением этой функции

$$F_{j-i+1}\left(u\right) = \begin{cases} \left(1-u\right)\left\{\Psi\left(K_{\kappa}\left[t_{j-i+1}+h_{\tau}u\right]\right)+\Psi\left(K_{\kappa}\left[t_{j-i+1}-h_{\tau}u\right]\right)\right\}, & u \neq 1\\ 0 & , & u=1 \end{cases}$$

Тогда интеграл (4.8) можно представить в виде:

$$I_{j-i+1} = K_{\Psi} \int_{0}^{1} F\left(t_{j-i+1}, u\right) du$$
(4.10)

Для устранения особенности интеграла (4.7) воспользуемся асимптотикой функции $\Psi(t)$ (4.3) при малых значениях v и в конечном итоге, переопределив подынтегральную функцию (4.7), будем иметь:

$$A = K_{\Psi} \int_{0}^{1} (1 - v) \cdot \Phi(v) dv + \frac{4}{3} K_{\Psi} \left(K_{\kappa} h_{\tau} \right)^{-1/2}$$
(4.11)

где
$$\Phi(v) = \begin{cases} \Psi(K_{\kappa}h_{\tau}v) - 1/\sqrt{K_{\kappa}h_{\tau}v}, & v > 0\\ 0, & v = 0 \end{cases}$$
 (4.12)

Теперь для приближенного вычисления интегралов I_{j-i+1} (4.10) и коэффициента A (4.11) можно воспользоваться стандартными методами численного интегрирования, например, методом Симпсона. Отметим, что коэффициент A не зависит от номера вре-

менного слоя и его достаточно определить один раз, в то время как расчет значений интегралов I_{i-i+1} необходимо выполнять на каждом временном слое.

Схема решения нелинейного уравнения пьезопроводности. Расчет гидродинамических характеристик жидкостного потока в нефтяной скважине с учетом взаимосвязи с пластом.

Тема 5. ЭКОНОМИЧНЫЕ РАЗНОСТНЫЕ СХЕМЫ РЕШЕНИЯ НЕСТАЦИОНАРНЫХ МНОГОМЕРНЫХ УРАВНЕНИЙ ПАРАБОЛИЧЕСКОГО ТИПА

Рассмотрим двумерную линейную (K = const) задачу теплопроводности на прямоугольнике $D = \{x \in [0, a], y \in [0, b]\}$ со сторонами a и b:

$$\frac{\partial U}{\partial t} = K \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \right) + f(x, y, t), \qquad 0 < x < a, \quad 0 < y < b, \qquad 0 < t < T, \tag{5.1}$$

с граничными условиями І-го рода

$$U(0, y, t) = \mu_1(y, t), \quad U(a, y, t) = \mu_2(y, t),$$
(5.2)

$$U(x,0,t) = v_1(x,t), \quad U(x,b,t) = v_2(x,t),$$
(5.3)

и начальным условием

$$U(x, y, 0) = \mu_0(x, y).$$
 (5.4)

Здесь f(x, y, t) – правая часть уравнения, $\mu_1(y, t)$, $\mu_2(y, t)$, $\nu_1(x, t)$, $\nu_2(x, t)$, $\mu_0(x, y)$ – заданные функции.

Введем равномерную сетку:

$$D_h = \left\{ \left(x_i, y_k, t_j\right), i = \overline{0, N_x}; k = \overline{0, N_y}; j = \overline{0, N_t}; h_x = a/N_x; h_y = a/N_y; h_t = T/N_t \right\},\$$

где $x_i = ih_x$, $y_k = kh_y$, $t_j = jh_t$ и h_x , h_y , h_t – узлы и шаги сетки по переменным x, y и t. Аппроксимируем задачу (5.1) – (5.5) разностной схемой с весом σ :

$$\frac{U_{ik}^{j+1} - U_{ik}^{j}}{h_{t}} = \frac{K}{h_{x}^{2}} \Big(U_{i-1k}^{(\sigma)} - 2U_{ik}^{(\sigma)} + U_{i+1k}^{(\sigma)} \Big) + \frac{K}{h_{y}^{2}} \Big(U_{ik-1}^{(\sigma)} - 2U_{ik}^{(\sigma)} + U_{ik+1}^{(\sigma)} \Big) + f_{ik}^{(\sigma)} =$$

$$= \Lambda_{x} U_{ik}^{(\sigma)} + \Lambda_{y} U_{ik}^{(\sigma)} + f_{ik}^{(\sigma)}, \qquad i = \overline{1, N_{x} - 1}, \qquad k = \overline{1, N_{y} - 1}, \qquad j = 0, 1, 2...,$$

$$U_{0,k}^{j+1} = \mu_{1k}^{j+1}, \quad U_{N_{x},k}^{j+1} = \mu_{2k}^{j+1}, \qquad k = \overline{1, N_{y} - 1}, \qquad (5.6)$$

$$U_{i,0}^{j+1} = v_{1i}^{j+1}, \quad U_{i,N_y}^{j+1} = v_{2i}^{j+1}, \quad i = \overline{0, N_x},$$
(5.7)

$$U_{i,k}^{j} = \mu_{0k}^{j}, \quad i = \overline{0, N_{x}}; k = \overline{0, N_{y}}.$$
(5.8)

Здесь

$$\Lambda_{x}U_{ik}^{(\sigma)} = \frac{K}{h_{x}^{2}} \Big(U_{i-1k}^{(\sigma)} - 2U_{ik}^{(\sigma)} + U_{i+1k}^{(\sigma)} \Big), \quad \Lambda_{y}U_{ik}^{(\sigma)} = \frac{K}{h_{y}^{2}} \Big(U_{ik-1}^{(\sigma)} - 2U_{ik}^{(\sigma)} + U_{ik+1}^{(\sigma)} \Big).$$

Погрешность аппроксимации разностных уравнений (5.5)

$$\psi_{ik}^{j} = O(h_{t}^{\alpha} + h_{x}^{2} + h_{y}^{2}), \quad \alpha = \begin{cases} 1, & \sigma \neq 0.5 \\ 2, & \sigma = 0.5 \end{cases},$$

условие устойчивости схемы (5.5) имеет вид

$$\sigma \ge 0.5 - \frac{1}{4Kh_t} \left[\frac{1}{h_x^2} + \frac{1}{h_y^2} \right]^{-1}.$$
(5.9)

Оценим общее количество N_o операций, которые нужно совершить для решения задачи (5.5) – (5.8).

1) Пусть $\sigma = 0$ (явная разностная схема) и $N_x = N_y = N$. В этом случае для решения задачи (5.5) – (5.8) на временном слое $\begin{bmatrix} t_j, t_{j+1} \end{bmatrix}$ требуется $N_C \sim N_x N_y \sim N^2$ операций. Из условия (5.9) следует, что схема устойчива, если $h_t \leq \frac{1}{2K} \left[\frac{1}{h_r^2} + \frac{1}{h_v^2} \right]^{-1} \sim N^{-2}$. Следовательно,

 $N_T \sim N^2$ - количество временных слоев на интервале [0,T], а $N_Q = N_T \cdot N_C \sim N^4$.

2) Пусть $\sigma \ge 0.5$ (неявная разностная схема). Тогда для решения методом Гаусса системы алгебраических уравнений (5.5) – (5.8) порядка N^2 с ленточной матрицей на слое $\begin{bmatrix} t_j, t_{j+1} \end{bmatrix}$ требуется $N_C \sim N^4$ операций. Схема устойчива при любых шагах h_t . Возьмем $h_t = h_x$. Следовательно, $N_T \sim N$, $N_O \sim N^5$.

В обоих случаях решение задач требует выполнения слишком большого количества операций – схемы не являются экономичными.

5.1. Продольно-поперечная схема (метод переменных направлений)

В методе переменных направлений решение задачи (5.5) – (5.8) находится за два шага из решения системы уравнений

$$\frac{U_{ik} - U_{ik}^{j}}{h_{t}/2} = \frac{K}{h_{x}^{2}} \left(\overline{U}_{i-1k} - 2\overline{U}_{ik} + \overline{U}_{i+1k} \right) + \frac{K}{h_{y}^{2}} \left(U_{ik-1}^{j} - 2U_{ik}^{j} + U_{ik+1}^{j} \right) + \overline{f}_{ik} , \qquad (5.10)$$

$$\frac{U_{ik}^{j+1} - \bar{U}_{ik}}{h_t/2} = \frac{K}{h_y^2} \left(U_{ik-1}^{j+1} - 2U_{ik}^{j+1} + U_{ik+1}^{j+1} \right) + \frac{K}{h_x^2} \left(\bar{U}_{i-1k} - 2\bar{U}_{ik} + \bar{U}_{i+1k} \right) + \bar{f}_{ik} , \qquad (5.11)$$

где \overline{U}_{ik} – вспомогательная функция, определенная на дробном временном слое $t = \overline{t} = t_{i+0.5}$.

Вычислительный алгоритм.

1 шаг. Схема (5.10) – неявная по направлению x и явная по направлению y. Из этой системы алгебраических уравнений с трехдиагональной матрицей методом одномерной прогонки определяется сеточная функция \overline{U}_{ik} . Схема (5.10) служит для перехода с целого j-го слоя t_i на дробный временной слой \overline{t} .

2 шаг. Схема (5.11) – неявная по направлению y и явная по направлению x. С использованием найденных на 1-ом шаге значений \overline{U}_{ik} из системы (5.11) уравнений с трехдиагональной матрицей методом одномерной прогонки определяется сеточная функция U_{ik}^{j+1} . Схема (5.11) служит для перехода с дробного временного слоя \overline{t} на целый (j+1)-ый слой t_{i+1} .

Расчет на шаге сетки $[t_j, t_{j+1}]$ по схеме (5.10), (5.11) требует $N_C \sim N^2$ операций. Это одна из лучших экономичных двумерных схем, которая может быть применена и для решения трехмерных задач.

Порядок аппроксимации схемы (5.10), (5.11). Покажем, что эта схема эквивалентна исходной неявной схеме (5.5) при $\sigma = 0.5$ и имеет тот же порядок аппроксимации. Складывая и вычитая уравнения (5.10), (5.11), получим:

$$\overline{U}_{ik} = \frac{1}{2} \Big(U_{ik}^{j+1} + U_{ik}^{j} \Big) - \frac{h_{t}}{4} \Lambda_{y} \Big(U_{ik}^{j+1} - U_{ik}^{j} \Big),$$
(5.12)

$$\frac{U_{ik}^{j+1} - U_{ik}^{j}}{h_{t}} = \Lambda_{y} \overline{U}_{ik} + \Lambda_{y} \left(\frac{U_{ik}^{j+1} + U_{ik}^{j}}{2}\right) + \overline{f}_{ik} .$$
(5.13)

Исключая функцию \overline{U}_{ik} из уравнения (5.13) с помощью соотношения (5.12), будем иметь:

$$\frac{U_{ik}^{j+1} - U_{ik}^{j}}{h_{t}} = \Lambda_{y} \left(\frac{U_{ik}^{j+1} + U_{ik}^{j}}{2} \right) + \Lambda_{y} \left(\frac{U_{ik}^{j+1} + U_{ik}^{j}}{2} \right) + \overline{f}_{ik} - \Delta$$
(5.13)

где $\Delta = \frac{h_t^2}{4} \Lambda_y \Lambda_y \left(\frac{U_{ik}^{j+1} - U_{ik}^j}{h_t} \right)$ – дисбалансный член схемы (5.10), (5.11), возникающий за счет расщепления исходной схемы (5.5) на две квазиодномерные подзадачи. Из (5.13) следует, что если производная $\frac{\partial^5 U}{\partial x^2 \partial y^2 \partial t}$ является непрерывной и ограниченной в точке (x_i, y_k, t_j) , то источник Δ имеет порядок $O(h_t^2)$. Таким образом, схема (5.10), (5.11) имеет тот же порядок аппроксимации $\psi_{ik}^j = O(h_t^2 + h_x^2 + h_y^2)$, что и неявная схема (5.5) при $\sigma = 0.5$.

Аппроксимация граничных условий для схемы (5.10), (5.11). Для решения системы (5.11) граничные условия на сторонах прямоугольника y = 0 и y = b определены в целых узлах сетки, так что разностные уравнения (5.11) дополняются граничными условиями (5.7):

$$U_{i,0}^{j+1} = v_{1i}^{j+1}, \quad U_{i,N_y}^{j+1} = v_{2i}^{j+1}, \quad i = \overline{0, N_x}.$$

Для решения системы (5.10) необходимо поставить граничные условия на сторонах прямоугольника x = 0 и x = a на дробном временном слое. Если дополнить разностные уравнения (5.10) граничными условиями вида $\overline{U}_{0,k} = \overline{\mu}_{1k}$, $\overline{U}_{N_x,k} = \overline{\mu}_{2k}$, $k = \overline{1, N_y - 1}$, аналогичными (5.6), то, как нетрудно убедиться с помощью разложения в ряд Тейлора, их порядок аппроксимации будет равен $O(h_t)$. Поэтому для согласования аппроксимации уравнений (5.10) и граничных условий при x = 0 и x = a необходимо использовать соотношение (5.12):

$$\bar{U}_{0,k} = \frac{1}{2} \left(U_{0,k}^{j+1} + U_{0,k}^{j} \right) - \frac{h_{t}}{4} \Lambda_{y} \left(U_{0,k}^{j+1} - U_{0,k}^{j} \right) = \frac{1}{2} \left(\mu_{1k}^{j+1} + \mu_{1k}^{j} \right) - \frac{h_{t}}{4} \Lambda_{y} \left(\mu_{1k}^{j+1} - \mu_{1k}^{j} \right),$$
(5.14)

$$\overline{U}_{N_{x},k} = \frac{1}{2} \Big(U_{N_{x},k}^{j+1} + U_{N_{x},k}^{j} \Big) - \frac{h_{t}}{4} \Lambda_{y} \Big(U_{N_{x},k}^{j+1} - U_{N_{x},k}^{j} \Big) = \frac{1}{2} \Big(\mu_{2k}^{j+1} + \mu_{2k}^{j} \Big) - \frac{h_{t}}{4} \Lambda_{y} \Big(\mu_{2k}^{j+1} - \mu_{2k}^{j} \Big).$$
(5.15)

Устойчивость схемы (5.10), (5.11). Схема равномерно и безусловно устойчива по начальным данным и по правой части.

Сходимость схемы (5.10), (5.11). Схема сходится в норме L_2 с погрешностью $O(h_t^2 + h_x^2 + h_y^2)$.

5.2. Локально-одномерная схема

Рассмотрим трехмерную задачу анизотропной теплопроводности в параллелепипеде $D = \{x \in [0, a], y \in [0, b], z \in [0, c]\}$ со сторонами a, b и c:

$$\frac{\partial U}{\partial t} = \sum_{\alpha=1}^{3} K_{\alpha} \frac{\partial^2 U}{\partial x_{\alpha}^2}, \qquad 0 < x \equiv x_1 < a, \quad 0 < y \equiv x_2 < b, \quad 0 < z \equiv x_3 < c, \quad 0 < t < T, \qquad (5.16)$$

с граничными условиями І-го рода

$$U(0, y, z, t) = \mu_1(y, z, t), \quad U(a, y, z, t) = \mu_2(y, z, t),$$
(5.17)

$$U(x,0,z,t) = v_1(x,z,t), \qquad U(x,b,z,t) = v_2(x,z,t),$$
(5.18)

$$U(x, y, 0, t) = \mathcal{G}_1(x, y, t), \quad U(x, y, c, t) = \mathcal{G}_2(x, y, t),$$
 (5.19)

и начальным условием

$$U(x, y, z, 0) = \mu_0(x, y, z).$$
(5.20)

Здесь K_{α} – постоянные значения коэффициента теплопроводности, $K_1 \neq K_2$, $K_2 \neq K_3$, $\mu_1(y, z, t)$, $\mu_2(y, z, t)$, $v_1(x, z, t)$, $v_2(x, z, t)$, $v_1(x, y, t)$, $v_2(x, y, t)$, $\mu_0(x, y, z)$ – заданные функции.

Введем равномерную сетку:

$$D_h = \left\{ \left(x_i, y_k, z_n, t_j \right), i = \overline{0, N_x}; k = \overline{0, N_y}; n = \overline{0, N_z}; j = \overline{0, N_t} \right\},$$

Then $x_i = ih_x, y_k = kh_x, z_n = nh_x, t_i = jh_x h_x = a/N_x, h_x = a/N_x, h_z = c/N_z, h_z = T/N_z$

где $x_i = ih_x$, $y_k = kh_y$, $z_n = nh_z$, $t_j = jh_t$ и $h_x = a/N_x$, $h_y = a/N_y$, $h_z = c/N_z$, $h_t = T/N_t$ – узлы и шаги сетки соответственно по переменным x, y, z и t. Аппроксимируем задачу (5.16) – (5.20) разностной схемой с весом σ :

$$\frac{U_{ikn}^{j+1} - U_{ikn}^{j}}{h_{t}} = \sum_{\alpha=1}^{3} \Lambda_{\alpha} U_{ikn}^{(\sigma)}, \qquad i = \overline{1, N_{x} - 1}, \qquad k = \overline{1, N_{y} - 1}, \qquad n = \overline{1, N_{z} - 1}, \qquad j = 0, 1, 2..., \qquad (5.21)$$

$$U_{0kn}^{j+1} = \mu_{1,kn}^{j+1}, \quad U_{N_x kn}^{j+1} = \mu_{2,kn}^{j+1}, \quad k = \overline{1, N_y - 1}, \quad n = \overline{1, N_z - 1}, \quad (5.22)$$

$$U_{i0n}^{j+1} = v_{1,in}^{j+1}, \quad U_{iN_yn}^{j+1} = v_{2,in}^{j+1}, \quad i = \overline{0, N_x}, \qquad n = \overline{0, N_z},$$
(5.23)

$$U_{ik0}^{j+1} = \mathcal{G}_{1,ik}^{j+1}, \quad U_{ikN_z}^{j+1} = \mathcal{G}_{2,ik}^{j+1}, \quad i = \overline{0, N_x}, \qquad n = \overline{0, N_z},$$
(5.24)

$$U_{ikn}^{j} = \mu_{0,kn}^{j}, \qquad i = \overline{0, N_{x}}, \quad k = \overline{0, N_{y}}, \quad n = \overline{0, N_{z}}.$$
(5.25)

Здесь
$$\Lambda_1 U_{ikn}^{(\sigma)} = \frac{K_1}{h_x^2} \left(U_{i-1kn}^{(\sigma)} - 2U_{ikn}^{(\sigma)} + U_{i+1kn}^{(\sigma)} \right), \quad \Lambda_2 U_{ikn}^{(\sigma)} = \frac{K}{h_y^2} \left(U_{ik-1n}^{(\sigma)} - 2U_{ikn}^{(\sigma)} + U_{ik+1n}^{(\sigma)} \right),$$

 $\Lambda_3 U_{ikn}^{(\sigma)} = \frac{K}{h_z^2} \left(U_{ikn-1}^{(\sigma)} - 2U_{ikn}^{(\sigma)} + U_{ikn+1}^{(\sigma)} \right).$

Погрешность аппроксимации разностной схемы (5.21) – (5.25)

$$\psi_{ikn}^{j} = O\left(h_{t}^{\varsigma} + \sum_{\alpha=1}^{3} h_{\alpha}^{2}\right), \quad \varsigma = \begin{cases} 1, & \sigma \neq 0.5\\ 2, & \sigma = 0.5 \end{cases},$$

В трехмерном случае локально-одномерная схема решения системы (5.21) – (5.25) при $\sigma = 0.5$ имеет вид:

$$\frac{\hat{\omega}_{1,ikn} - \omega_{1,ikn}}{h_t/3} = 3\Lambda_1 \left(\frac{\hat{\omega}_{1,ikn} + \omega_{1,ikn}}{2}\right),$$
(5.26)

$$\frac{\hat{\omega}_{2,ikn} - \omega_{2,ikn}}{h_i/3} = 3\Lambda_2 \left(\frac{\hat{\omega}_{2,ikn} + \omega_{2,ikn}}{2}\right),\tag{5.27}$$

$$\frac{\hat{\omega}_{3,ikn} - \omega_{3,ikn}}{h_t/3} = 3\Lambda_3 \left(\frac{\hat{\omega}_{3,ikn} + \omega_{3,ikn}}{2}\right),$$
(5.28)

где вспомогательные функции $\omega_{1,ikn}$ и $\omega_{2,ikn}$ определены на дробных временных слоях $t_{j+1/3}$ и $t_{j+2/3}$, а $\omega_{3,ikn}$ – на целом слое t_{j+1} так, что

$$\omega_{1,ikn} = U^{j}_{ikn}, \quad \omega_{2,ikn} = \hat{\omega}_{1,ikn}, \quad \omega_{3,ikn} = \hat{\omega}_{2,ikn}, \quad \hat{\omega}_{3,ikn} = U^{j+1}_{ikn}.$$
(5.29)

Отметим, что локально-одномерная схема может быть использована для решения задач размерности > 3.

Вычислительный алгоритм.

1 шаг. Схема (5.26) – неявная по направлению x и явная по направлениям y и z. С использованием известных на j-го слое t_j значений $\omega_{1,ikn} = U_{ikn}^j$ Из этой системы алгебраических уравнений с трехдиагональной матрицей методом одномерной прогонки определяется вспомогательная сеточная функция $\hat{\omega}_{1,ikn}$. Схема (5.26) служит для перехода с целого j-го слоя t_j на дробный временной слой $t_{i+1/3}$.

2 шаг. Схема (5.27) – неявная по направлению у и явная по направлениям x и z. С использованием найденных на 1-ом шаге значений $\omega_{2,ikn} = \hat{\omega}_{1,ikn}$ из системы (5.27) с трехдиагональной матрицей методом одномерной прогонки определяется сеточная функция $\hat{\omega}_{2,ikn}$. Схема (5.27) служит для перехода с дробного временного слоя $t_{j+1/3}$ на дробный слой $t_{j+2/3}$.

3 шаг. Схема (5.28) – неявная по направлению z и явная по направлениям y и z. С использованием найденных на 2-ом шаге значений $\omega_{3,ikn} = \hat{\omega}_{2,ikn}$ из системы (5.28) с трехдиагональной матрицей методом одномерной прогонки определяется сеточная функция $\hat{\omega}_{2,ikn}$. Схема (5.28) служит для перехода с дробного временного слоя $t_{j+2/3}$ на целый слой t_{j+1} . В результате оказывается найденной сеточная функция $U_{ikn}^{j+1} \equiv \hat{\omega}_{3,ikn}$.

Расчет на шаге сетки $[t_j, t_{j+1}]$ по схеме (5.26) – (5.28) требует $N_C \sim N^3$ операций, так что локально-одномерная сема является экономичной.

Порядок аппроксимации схемы (5.26) - (5.27). Покажем, что локально-одномерная схема эквивалентна исходной неявной схеме (5.21) при $\sigma = 0.5$ и имеет тот же порядок аппроксимации. Опуская индексы *i*, *k* и *n*, запишем уравнения (5.26) – (5.28) в виде:

$$\left(E - h_t/2\Lambda_1\right)\hat{\omega}_1 = \left(E + h_t/2\Lambda_1\right)\omega_1, \qquad (5.30)$$

$$\left(E - h_t/2\Lambda_2\right)\hat{\omega}_2 = \left(E + h_t/2\Lambda_2\right)\omega_2,\tag{5.31}$$

$$\left(E - h_t/2\Lambda_3\right)\hat{\omega}_3 = \left(E + h_t/2\Lambda_3\right)\omega_3, \qquad (5.32)$$

где Е – единичный оператор. Воспользовавшись определением функций из уравнений (5.31), (5.30) и (5.30) получим:

$$\hat{\omega}_2 \equiv \omega_3 = (E + h_t / 2\Lambda_3)^{-1} (E - h_t / 2\Lambda_3) U^{j+1},$$
(5.33)

$$\hat{\omega}_{1} \equiv \omega_{2} = \left(E + h_{t}/2\Lambda_{2}\right)^{-1} \left(E - h_{t}/2\Lambda_{2}\right) \hat{\omega}_{2}, \qquad (5.34)$$

$$U^{j} \equiv \omega_{1} = \left(E + h_{t}/2\Lambda_{1}\right)^{-1} \left(E - h_{t}/2\Lambda_{1}\right) \hat{\omega}_{1} .$$
(5.35)

Отсюда

$$U^{j} = (E + h_{t}/2\Lambda_{1})^{-1} (E - h_{t}/2\Lambda_{1}) (E + h_{t}/2\Lambda_{2})^{-1} (E - h_{t}/2\Lambda_{2}) (E + h_{t}/2\Lambda_{3})^{-1} (E - h_{t}/2\Lambda_{3}) U^{j+1}$$

Используя свойство перестановочности операторов Λ_{α} , в рассматриваемом случае постоянных значений K_{α} будем иметь:

$$\prod_{\alpha=1}^{3} (E - h_t / 2\Lambda_{\alpha}) U^{j+1} = \prod_{\alpha=1}^{3} (E + h_t / 2\Lambda_{\alpha}) U^j.$$
(5.36)

Раскроем произведения в соотношении (5.36) с точностью до $O(h_t^3)$:

$$\left(E - \frac{h_t}{2}\sum_{\alpha=1}^3 \Lambda_{\alpha} + \frac{h_t^2}{4}\sum_{\alpha\neq\beta}^3 \Lambda_{\alpha}\Lambda_{\beta} + O\left(h_t^3\right)\right)U^{j+1} = \left(E + \frac{h_t}{2}\sum_{\alpha=1}^3 \Lambda_{\alpha} + \frac{h_t^2}{4}\sum_{\alpha\neq\beta}^3 \Lambda_{\alpha}\Lambda_{\beta} + O\left(h_t^3\right)\right)U^j.$$
OTCHDA

$$\frac{U^{j+1} - U^{j}}{h_{t}} = \sum_{\alpha=1}^{3} \Lambda_{\alpha} U^{(0.5)} + \Delta + O(h_{t}^{2}),$$

$$(5.37)$$

$$h^{2} - \frac{3}{2} = U^{j+1} - U^{j}$$

где $\Delta = \frac{n_t}{4} \sum_{\alpha \neq \beta} \Lambda_{\alpha} \Lambda_{\beta} \frac{U^* - U^*}{h_t}$ - дисбалансный член схемы (5.26) – (5.28), возникающий за счет расщепления исходной схемы (5.21) на три квазиодномерные подзадачи. Из (5.37) следует, что если производные $\frac{\partial^5 U}{\partial x_{\alpha}^2 \partial x_{\alpha}^2 \partial t}$ являются непрерывными и ограниченными в точке (x_i, y_k, z_n, t_i) , то источник Δ имеет порядок $O(h_t^2)$. Таким образом, схема (5.26) – (5.28) имеет тот же порядок аппроксимации $\psi_{ikn}^{j} = O\left(h_{t}^{2} + \sum_{j=1}^{3}h_{\alpha}^{2}\right)$, что и неявная схема (5.21) при $\sigma = 0.5$.

Аппроксимация граничных условий для схемы (5.26) - (5.28). Для решения систем (5.28) граничные условия на гранях параллелепипеда z = 0, z = c и определены в целых узлах сетки, так что разностные уравнения (5.28) дополняются граничными условиями (5.24):

$$\hat{\omega}_{3,ik0} \equiv U_{ik0}^{j+1} = v_{1,ik}^{j+1}, \quad \hat{\omega}_{3,ikN_z} \equiv U_{ikN_z}^{j+1} = v_{2,ik}^{j+1}.$$

Для решения систем (5.26) и (5.27) необходимо поставить граничные условия на гранях x=0, x=a и y=0, y=b на дробных временных слоях $t_{i+1/3}$ и $t_{i+2/3}$. Если дополнить разностные уравнения (5.26) и (5.27) граничными условиями вида $\hat{\omega}_{1.0in} = \mu_{1.in} (t_{i+1/3}),$ $\hat{\omega}_{1,N,in} = \mu_{2,in} \left(t_{j+1/3} \right), \ \hat{\omega}_{2,i0n} = \mu_{1,in} \left(t_{j+2/3} \right), \ \hat{\omega}_{2,i0n} = \mu_{2,in} \left(t_{j+2/3} \right), \$ аналогичными (5.22) и (5.23), то их порядок аппроксимации будет равен $O(h_{c})$. Поэтому для согласования аппроксимации уравнений (5.26), (5.27) и соответствующих им граничных условий необходимо использо-

вать поправочные формулы, получаемые из соотношений (5.33) – (5.35), например:

$$\hat{\omega}_{1,0in} = (E + h_t/2\Lambda_2)^{-1} (E - h_t/2\Lambda_2) (E + h_t/2\Lambda_3)^{-1} (E - h_t/2\Lambda_3) U_{0in}^{j+1}, \text{ откуда}$$

$$\hat{\omega}_{1,0in} = (E + h_t/2\Lambda_2)^{-1} (E - h_t/2\Lambda_2) (E + h_t/2\Lambda_3)^{-1} (E - h_t/2\Lambda_3) \mu_{1,in}^{j+1}.$$
(5.38)

Устойчивость схемы (5.26) – (5.28). Схема равномерно и безусловно устойчива по начальным данным.

Сходимость схемы (5.26) – (5.28). Схема безусловно сходится в норме L_2 с погрешностью $O\left(h_t^2 + \sum_{\alpha=1}^3 h_{\alpha}^2\right)$.

5.3. Стационарные многомерные уравнения эллиптического типа. Счет на установление

Рассмотрим трехмерную задачу анизотропной теплопроводности, K(x, y, z) > 0, в области $D = \{x, y, z\}$

$$div \left[K(x, y, z) gradU \right] = -f(x, y, z), \qquad \mathbf{r} = (x, y, z) \in D, \qquad (5.3.1)$$

с граничными условиями І-го рода

$$U\big|_{\Gamma} = \mu(\mathbf{r}),\tag{5.3.2}$$

Здесь $\mu(\mathbf{r})$ – заданная функция.

AT 7

Пусть наряду с задачей (5.3.1), (5.3.2) относительно функции V(x, y, z, t) в области *D* имеет место нестационарная задача с теми же граничными условиями:

$$\frac{\partial V}{\partial t} = div \left[K(x, y, z) gradV \right] + f(x, y, z), \qquad \mathbf{r} = (x, y, z) \in D, \qquad t > 0, \tag{5.3.3}$$

$$V|_{\Gamma} = \mu(\mathbf{r}), \tag{5.3.4}$$

и произвольным начальным распределением функции V(x, y, z, t) при t = 0:

$$V(\mathbf{r},0) = V_0(\mathbf{r}), \qquad (5.3.5)$$

Пусть $\omega(x, y, z, t) = V(x, y, z, t) - V(x, y, z)$. Рассмотрим вспомогательную задачу относительно функции $\omega(x, y, z, t)$, которая представляет собой разность задач (5.3.1), (5.3.2) и (5.3.3) – (5.3.5). Учитывая, что $U'_t(x, y, z) = 0$, получим однородное уравнение теплопроводности с нулевыми граничными условиями

$$\frac{\partial \omega}{\partial t} = div \Big[K \big(x, y, z \big) grad \omega \Big], \qquad \mathbf{r} = \big(x, y, z \big) \in D, \quad t > 0, \tag{5.3.3}$$

$$\omega\big|_{\Gamma} = 0, \qquad (5.3.4)$$

и начальным условием

$$\omega(\mathbf{r},0) = V_0(\mathbf{r}) - U(\mathbf{r}) = \omega_0(\mathbf{r}), \qquad (5.3.5)$$

где $\omega_0(\mathbf{r})$ – произвольная функция.

Покажем, что решение (5.3.3) – (5.3.5) при больших временах стремится к решению задачи (5.3.1), (5.3.2). Запишем точное решение задачи (5.3.3) – (5.3.5) в виде

$$\omega(\mathbf{r},t) = \sum_{m=1}^{\infty} C_m e^{-\lambda_m t} \omega_m(\mathbf{r})$$
(5.3.5)

где λ_m и $\omega_m(\mathbf{r})$ – собственные значения и собственные функции задачи Штурма-Леувилля $div [K(\mathbf{r}) grad \omega_m(\mathbf{r})] + \lambda_m \omega_m(\mathbf{r}) = 0, \quad \mathbf{r} \in D, \qquad \omega_m(\mathbf{r})|_{\Gamma} = 0,$

 $C_{m} = \int_{D} \omega(\mathbf{r}, 0) \cdot \omega_{m}(\mathbf{r}) d\mathbf{r} - \kappa o \Rightarrow \phi \phi$ ициенты Фурье. При этом $0 < \lambda_{1} \le \lambda_{2} \le \lambda_{3} \dots$, а $\{\omega_{m}(\mathbf{r})\}_{m=1}^{\infty} - \sum_{m=1}^{\infty} (\omega_{m}(\mathbf{r})) = 0$

полная ортонормированная система в области $D(\mathbf{r})$. Тогда

$$\left\|\omega(\mathbf{r},t)\right\|_{L_{2}} = \left(\sum_{m=1}^{\infty} C_{m}^{2} e^{-2\lambda_{m}t}\right)^{1/2} \le e^{-\lambda_{1}t} \left(\sum_{m=1}^{\infty} C_{m}^{2}\right)^{1/2} = e^{-\lambda_{1}t} \left\|\omega_{0}\left(\mathbf{r}\right)\right\|_{L_{2}}.$$

Таким образом, при $t \to \infty$: $\|\omega(\mathbf{r},t)\|_{L_2} = \|V_0(\mathbf{r}) - U(\mathbf{r})\|_{L_2} \to 0$ со скоростью $e^{-\lambda_1 t}$. Следовательно, решение (5.3.3) – (5.3.5) при больших временах среднеквадратично стремится к решению задачи (5.3.1), (5.3.2). При заданной величине ε точности расчеты с помощью (5.3.3) – (5.3.5) должны проводиться до момента времени $T \approx \lambda_1^{-1} \ln \varepsilon^{-1}$.

Итак, вместо задачи (5.3.1), (5.3.2) можно любым из рассмотренных выше экономичных методов решать задачу (5.3.3) – (5.3.5).

Тема 6. ВАРИАЦИОННЫЕ МЕТОДЫ

6.1. Слабая формулировка задачи. Задача минимизации функционала

Рассмотрим основные принципы BM на примере одномерной неоднородной стационарной задачи теплопроводности. Пусть $K \equiv 1$. В области $D = \{x \in [0,1]\}$

$$-U''_{xx} = f(x), \qquad 0 < x < 1, \tag{6.1.1}$$

$$U(0) = U(1) = 0, (6.1.2)$$

Здесь f(x) – заданная функция.

Задача 1. Найти функцию $U \in W_2^2$, удовлетворяющую уравнению (6.1.1) с граничными условиями (6.1.2).

Решение задачи 1 единственно. Действительно,

$$U(x) = -\int_{0}^{x} ds \int_{0}^{s} f(t) dt + Ax + B,$$

где константы А и В определяются однозначно из условий (6.1.2).

Замечание. Для численного решения задачи (6.1.1), (6.1.2) можно использовать метод конечных разностей:

$$u_{\bar{x}x,i} = -\phi_i$$
, $i = 1, N_x - 1$, $u_0 = 0$, $u_{N_x} = 0$. (6.1.1)

Можно поставить другую задачу. Умножим (6.1.1) на $\upsilon \in W_2^1$, проинтегрируем по области D:

$$\int_{0}^{1} U'_{x} v'_{x} dx = \int_{0}^{1} f v dx$$
(6.1.3)

Определения. Линейная φ и билинейная а формы –

$$\varphi(\upsilon) = \int_{0}^{1} f \upsilon dx, \qquad \varphi \colon W_{2}^{0} \to R; \qquad (6.1.4)$$

$$a(U,\upsilon) = \int_{0}^{1} U'_{x} \upsilon'_{x} dx, \qquad a: \quad W_{2}^{1} \times W_{2}^{1} \to R.$$
(6.1.5)

Задача 2. Найти функцию $U \in W_2^1$, удовлетворяющую интегральному уравнению $a(U, \upsilon) = \varphi(\upsilon)$, (6.1.6)

для любой функции $\upsilon \in W_2^1$.

Решение задачи 2 единственно. Пусть U_1 и U_2 – решения, т.е. $a(U_1, \upsilon) = \varphi(\upsilon)$ и $a(U_2, \upsilon) = \varphi(\upsilon)$. Тогда $a(U_1 - U_2, \upsilon) = a(w, \upsilon) = 0$, где $w = U_1 - U_2$. Так как функция υ – произвольная, положим $\upsilon = w$: a(w, w) = 0 или $\int_{0}^{1} (w'_x)^2 dx = 0$. Отсюда $w'_x = 0$, $w \equiv 0$, $U_1 \equiv U_2$

Задача 2 называется слабой формулировкой задачи 1.

Замечание. Для численного решения задачи (6.1.3) можно использовать метод сумматорных тождеств, который приводит к системе алгебраических уравнений, аналогичных системе (6.1.1₁). **Теорема**. Пусть *a* – симметричная положительно определенная билинейная форма: *a*: $W_2^1 \times W_2^1 \to R$; φ – линейная форма: φ : $W_2^0 \to R$. Пусть $F(U) = 1/2a(U,U) - \varphi(U) - \varphi(U)$ – квадратичная форма: *F*: $W_2^1 \to R$. Тогда задача 2 эквивалентна задаче 3:

Задача 3. Найти такую функцию $U \in W_2^1$, что $F(U) \le F(\upsilon)$, $\forall \upsilon \in W_2^1$, т.е. $\min_{\upsilon \in W_2^1} F(\upsilon) = F(U).$ (6.1.7)

Доказательство. Пусть
$$U$$
 – решение задачи 3, следовательно $\forall |\varepsilon| \in R, \forall \upsilon \in W_2^1$:
 $F(U + \varepsilon \upsilon) = 1/2a(U + \varepsilon \upsilon, U + \varepsilon \upsilon) - \varphi(U + \varepsilon \upsilon) =$

$$= 1/2a(U,U) + \varepsilon a(U,\upsilon) + 1/2\varepsilon^2 a(\upsilon,\upsilon) - \varphi(U) - \varepsilon \varphi(\upsilon) =$$

$$= F(U) + \varepsilon a(U,\upsilon) + 1/2\varepsilon^2 a(\upsilon,\upsilon) - \varepsilon \varphi(\upsilon) \ge F(U).$$
(6.1.8)

Отсюда следует, что $\varepsilon [a(U,\upsilon) - \varphi(\upsilon)] + 1/2\varepsilon^2 a(\upsilon,\upsilon) \ge 0$, причем $1/2\varepsilon^2 a(\upsilon,\upsilon) \ge 0$. Но ε может быть отрицательным, поэтому для выполнения последнего неравенства необходимо, чтобы $[a(U,\upsilon) - \varphi(\upsilon)] = 0$ (ч.т.д.).

Замечание. Слагаемое $a(U, v) - \varphi(v)$ в соотношении (6.1.8) называется 1-ой вариацией функционала *F*.

Рассмотрим задачу численной минимизации функционала (6.1.7). Введем равномерное разбиение $\omega_h = \{x_i, i = \overline{0, N}\}$ отрезка [0,1]. Запишем функционал (6.1.7) в виде:

$$F(\upsilon) = \frac{1}{2} \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} (\upsilon'_x)^2 dx - \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} f \upsilon dx \approx \frac{1}{2} \sum_{i=1}^{N} h \left(\frac{\upsilon_i - \upsilon_{i-1}}{h} \right)^2 - \sum_{i=1}^{N} h \frac{f_{i-1} \upsilon_{i-1} + f_i \upsilon_i}{2},$$

где υ_i – значения функции $\upsilon(x)$ в узлах сетки ω_h . Условие минимума функции F: $\partial F/\partial \upsilon_i |_U = 0$, где $U = (u_0, u_1, ..., u_N)$ – искомая точка минимума. Отсюда

 $\frac{u_i - u_{i-1}}{h} - \frac{u_{i+1} - u_i}{h} - hf_i = 0$, следовательно, для нахождения сеточной минимизирующей функции необходимо решить систему уравнений, совпадающую с (6.1.1₁):

$$-\frac{u_{i+1}-2u_i+u_{i-1}}{h_x^2}=f_i, \quad i=\overline{1,N-1}, \quad u_0=0, \quad u_N=0.$$

6.2. Метод Бубнова-Галеркина. Метод Ритца

Рассмотрим приближенное решение задачи (6.1.6) на подпространстве $W_{2U^*}^{(1)} \in W_{2v^*}^{(1)}$ размерности N: найти функцию $U^* \in W_{2U^*}^{(1)}$, удовлетворяющую

$$a(U^*, \upsilon^*) = \varphi(\upsilon^*), \quad \forall \ \upsilon^* \in W^{(1)}_{2\upsilon^*}.$$
(6.2.1)

Пусть $\{\psi_i\}_{i=1}^N$ и $\{\phi_i\}_{i=1}^N$ – базисы $W_{2U^*}^{(1)}$ и $W_{2U^*}^{(1)}$ соответственно. Будем искать U^* в виде:

 $U^* = \sum_{i=1}^{N} C_i \psi_i$. Подставляя эту сумму в (6.2.1), получим систему уравнений относительно

коэффициентов C_i :

$$\sum_{i=1}^{N} C_i \cdot a(\psi_i, \phi_k) = \varphi(\phi_k), \quad k = \overline{1, N}.$$
(6.2.2)

Матрица **А** = $\{a(\psi_i, \phi_k)\}_{i,k=1}^N$ – матрица жесткости.

Метод Ритца – частный случай метода Бубнова-Галерк

$$\sum_{i=1}^{N} C_{i} \cdot a(\psi_{i}, \psi_{k}) = \varphi(\psi_{k}), \quad k = \overline{1, N}$$

$$\begin{array}{c} y_{1} & (x_{2}, y_{3}) \\ \hline x & e_{i} \\ (x_{1}, y_{1}) & (x_{2}, y_{2}) \end{array} \rightarrow \begin{array}{c} \eta_{1} \\ 1 \\ 1 \\ 0 \\ 1 \\ 5 \end{array}$$

Рис.6.3.2 В общем случае матрица жесткости в обоих методах заполненная, поэтому для решения системы алгебраических уравнений требуется ~ N⁴ операций.

6.3. Метод конечных элементов (МКЭ)

МКЭ – приближенный метод, основанный на методах Галеркина и Ритца. Он приводит к разреженной матрице жесткости **A** за счет специального построения базисных функций. В МКЭ исходная область D и ее граница ∂D разбиваются на такие подмножества $\{e_i\}_{i=1}^N$, что

1)
$$mes(e_i \cap e_j) = \begin{cases} 0, & i \neq j \\ \neq 0, & i = j \end{cases}$$
, 2) $\bigcup_{i=1}^N e_i = \overline{D} = D \cap \partial D$.

Здесь e_i – конечный элемент – носитель базисной функции ψ_i .

Определение. Множество $\{\psi_i\}_{i=1}^N$ называется конечно-элементным базисом, если число $M_i = \{j, mes(e_i \cap e_j) \neq 0\}$ мало, так что $a(\psi_i, \psi_j) = 0$, если $j \notin M_i$. В этом случае число элементов матрицы жесткости $a(\psi_i, \psi_j) \neq 0$ при $j \in M_i$ мало, матрица **A** – разреженная, что позволяет использовать быстрые методы решения систем линейных алгебраических уравнений для нахождения искомых функций в узлах сетки.

6.3.1. Примеры конечных элементов. Линейные преобразования элементов произвольной формы в базисные

Рассмотрим примеры базисных элементов одномерного и двумерного разбиений.

Рис.6.3.1

1) Одномерный случай: $\overline{D} = \{x \in [0,1]\}$. Разобьем эту область на конечные элементы – отрезки $[x_{i-1}, x_i]$ разной длины, $i = \overline{1, N}$, $x_0 = 0$, $x_N = 1$. Здесь $\{e_i\}_{i=1}^N = \{[x_{i-1}, x_i]\}_{i=1}^N$. Для удобства рассмотрим преобразование, которое переводит произвольный элемент e_i в отрезок единичной длины:

$$\xi = (x - x_{i-1})/(x_i - x_{i-1}) = (x - x_{i-1})/h_i \quad \text{или} \quad x = x_{i-1} + \xi (x_i - x_{i-1}) = x_{i-1} + \xi h_i.$$
(6.3.1)

2) Двумерный случай: $\overline{D} = \{(x, y): x \in [0,1], y \in [0,1]\}$. Разобьем квадрат на конечные элементы e_i – треугольники произвольного размера, $\{e_i\}_{i=1}^N$. Обозначим координаты вер-

шин некоторого треугольника e_i через (x_1, y_1) , (x_2, y_2) , (x_3, y_3) . Рассмотрим преобразование координат x и y, которое переводит произвольный элемент e_i в прямоугольный треугольник Δ с катетами единичной длины с координатами вершин (0,0), (1,0), (0,1) в системе координат ξ и η . Пусть

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{bmatrix} J_{11} & J_{12} \\ J_{21} & J_{22} \end{bmatrix} \begin{pmatrix} \xi \\ \eta \end{pmatrix},$$
(6.3.2)

где **J** – матрица преобразования. Найдем ее элементы из решения систем уравнений:

$$\begin{pmatrix} x_{2} \\ y_{2} \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \Rightarrow \begin{cases} x_{2} = x_{1} + J_{11} \\ y_{2} = y_{1} + J_{12} \end{cases} \Rightarrow \begin{cases} J_{11} = x_{2} - x_{1} \\ J_{12} = y_{2} - y_{1} \end{cases},$$

$$\begin{pmatrix} x_{3} \\ y_{3} \end{pmatrix} \rightarrow \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \Rightarrow \begin{cases} x_{3} = x_{1} + J_{21} \\ y_{3} = y_{1} + J_{22} \end{cases} \Rightarrow \begin{cases} J_{21} = x_{3} - x_{1} \\ J_{22} = y_{3} - y_{1} \end{cases},$$

$$\mathbf{J} = \begin{bmatrix} x_{2} - x_{1} & y_{2} - y_{1} \\ x_{3} - x_{1} & y_{3} - y_{1} \end{bmatrix}$$

$$(6.3.3)$$

Нетрудно видеть, что mes $e_i = \int_{e_i} dx dy = \int_{\Delta} |\mathbf{J}|_i d\xi d\eta = 1/2 \cdot |\mathbf{J}|_i$, откуда видно, что определи-

тель $|\mathbf{J}|_i$, составленный из координат треугольного элемента e_i , равен его удвоенной площади.

6.3.2. Примеры построения базисных функций

1) Одномерный случай. Пусть f_{i-1} и f_i – значения некоторой функции в узлах произвольного конечного элемента $[x_{i-1}, x_i]$. Ему соответствует отрезок $\xi \in [0,1]$. Обозначим f_{i-1} и f_i на этом отрезке через $f_1^{(i)} = f_{i-1}$ и $f_2^{(i)} = f_i$. Функция $f(\xi)$ может быть аппроксимирована на этом отрезке полиномом 1-го порядка:

$$f(\xi) = f_{i-1} + (f_i - f_{i-1})\xi = f_{i-1}(1 - \xi) + f_i\xi = f_1^{(i)}\Lambda_1(\xi) + f_2^{(i)}\Lambda_2(\xi) = \sum_{k=1}^{2} f_k^{(i)}\Lambda_k(\xi), \quad (6.3.4)$$

$$\Lambda_1(\xi) = 1 - \xi, \quad \Lambda_2(\xi) = \xi.$$
(6.3.5)

Соотношение (6.3.4) можно рассматривать как разложение функции $f(\xi)$ по базису $\Lambda_1(\xi)$ и $\Lambda_2(\xi)$. Вид базисных функций ψ_i показан на левом рисунке 6.3.3. Отрезок $[x_{i-1}, x_{i+1}]$, на котором эта функция отлична от нуля, называется ее носителем.

Рис.6.3.3

2) Двумерный случай. Пусть $f_1^{(i)}$, $f_2^{(i)}$ и $f_3^{(i)}$ – значения некоторой функции f(x, y) в вершинах (x_1, y_1) , (x_2, y_2) , (x_3, y_3) произвольного треугольного элемента e_i . В системе координат (ξ , η) ему соответствует прямоугольный треугольник Δ . Функция $f(\xi)$ может быть аппроксимирована на этом треугольнике поверхностью 1-го порядка в виде:

$$f\left(\xi,\eta\right) = \sum_{k=1}^{3} \mathbf{f}_{k}^{(i)} \Lambda_{k}\left(\xi,\eta\right), \tag{6.3.6}$$

$$\Lambda_1(\xi,\eta) = 1 - \xi - \eta, \quad \Lambda_2(\xi,\eta) = \xi, \quad \Lambda_3(\xi,\eta) = \eta.$$
(6.3.7)

Соотношение (6.3.6) – разложение функции $f(\xi,\eta)$ по базису Лагранжа $\{\Lambda_k(\xi,\eta)\}_{k=1}^3$. Вид базисной функции $\psi_i(\xi, \eta)$ и ее носитель показаны на правом рисунке 6.3.3.

6.3.3. Вычисление "вектора сил" на базисном элементе

1) Одномерный случай. Пусть $h_i = h = const$, $e_i = [x_{i-1}, x_i]$ – конечный элемент, $\mathbf{f}_{1}^{(i)} = f_{i-1}$ и $\mathbf{f}_{2}^{(i)} = f_{i}$ – значения сеточной функции, $\boldsymbol{\nu}_{1}^{(i)} = \boldsymbol{\nu}_{i-1}$ и $\boldsymbol{\nu}_{2}^{(i)} = \boldsymbol{\nu}_{i}$ значения пробной функции. Разложим $f(\xi) = \sum_{k=1}^{2} f_k^{(i)} \Lambda_k(\xi), \ \upsilon(\xi) = \sum_{k=1}^{2} \upsilon_k^{(i)} \Lambda_k(\xi)$ на элементе e_i и вычислим $\int f \upsilon dx = \int_{-\infty}^{\infty} f \upsilon dx = h \int_{-\infty}^{1} f \upsilon d\xi = h \int_{-\infty}^{1} \sum_{k=0}^{\infty} f_{m}^{(i)} \Lambda_{m}(\xi) \sum_{k=0}^{\infty} \nu_{k}^{(i)} \Lambda_{k}(\xi) d\xi =$ $=h\sum_{i=1}^{2}\nu_{k}^{(i)}\sum_{j=1}^{2}f_{m}^{(i)}\int_{0}^{1}(\Lambda_{k},\Lambda_{m})d\xi =h\sum_{i=1}^{2}\nu_{k}^{(i)}\left(\sum_{j=1}^{2}f_{m}^{(i)}\Phi_{km}^{(i)}\right)=h\sum_{i=1}^{2}\nu_{k}^{(i)}\mathcal{F}_{k}^{(i)}=h(\mathbf{v}^{(i)},\mathbf{F}^{(i)}),$ (6.3.8)

где $\mathbf{F}^{(i)} = \left(\mathcal{F}_1^{(i)}, \mathcal{F}_2^{(i)}\right) - "вектор сил" на базисном элементе, <math>\mathbf{v}^{(i)} = \left(\upsilon_1^{(i)}, \upsilon_2^{(i)}\right) -$ вектор пробной

функции. Подсчитаем элементы матрицы $\left(\Phi_{km}^{(i)} = \int_{0}^{1} (\Lambda_{k}, \Lambda_{m}) d\xi\right)_{km}$ $\Phi_{11}^{(i)} = \int (\Lambda_1, \Lambda_1) d\xi = \int (1-\xi)^2 d\xi = \frac{1}{3}, \qquad \Phi_{22}^{(i)} = \int (\Lambda_2, \Lambda_2) d\xi = \int \xi^2 d\xi = \frac{1}{3},$ $\Phi_{12}^{(i)} = \Phi_{21}^{(i)} = \int_{1}^{1} (\Lambda_1, \Lambda_2) d\xi = \int_{1}^{1} (1 - \xi) \xi d\xi = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}.$ Итак, $\Phi^{(i)} = \frac{1}{6} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ (6.3.9)

2) Двумерный случай. Пусть $f_1^{(i)}$, $f_2^{(i)}$ и $f_2^{(i)}$ – значения функции f(x, y) в вершинах $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ произвольного треугольного элемента e_i . Аналогично одномерному случаю

$$\int_{e_{i}} f \upsilon dx dy = |\mathbf{J}_{i}| \int_{\Delta} f \upsilon d\xi d\eta = |\mathbf{J}_{i}| \int_{\Delta} \sum_{m=1}^{3} f_{m}^{(i)} \Lambda_{m} \sum_{k=1}^{3} \upsilon_{k}^{(i)} \Lambda_{k} d\xi d\eta = |\mathbf{J}_{i}| \sum_{k=1}^{3} \upsilon_{k}^{(i)} \mathcal{F}_{k}^{(i)} = |\mathbf{J}_{i}| \left(\upsilon^{(i)}, \mathbf{F}^{(i)}\right), \quad (6.3.10)$$

где $\mathbf{F}^{(i)} = \left(\mathcal{F}_{1}^{(i)}, \mathcal{F}_{2}^{(i)}, \mathcal{F}_{3}^{(i)}\right)$ и $\upsilon^{(i)} = \left(\upsilon_{1}^{(i)}, \upsilon_{2}^{(i)}, \upsilon_{3}^{(i)}\right) -$ "вектор сил" и пробная функция на тре-
угольнике Δ , $|\mathbf{J}_{i}| = 2mes e_{i}$. Подсчитаем элементы матрицы $\left(\Phi_{km}^{(i)} = \int_{\Delta} (\Lambda_{k}, \Lambda_{m}) d\xi d\eta\right)_{k,m=1}^{3}$.

 $\int_{k,m=1}$

$$\Phi_{11}^{(i)} = \int_{0}^{1} \int_{0}^{1-\xi} \left(1-\xi-\eta\right)^2 d\xi d\eta = -\int_{0}^{1} \frac{\left(1-\xi-\eta\right)^3}{3} \bigg|_{0}^{1-\xi} d\xi = \int_{0}^{1} \frac{\left(1-\xi\right)^3}{3} d\xi = \frac{1}{12},$$

$$\Phi_{22}^{(i)} = \int_{0}^{1} \int_{0}^{1-\xi} \xi^{2} d\xi d\eta = \int_{0}^{1} \xi^{2} (1-\xi) d\xi = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}, \qquad \Phi_{33}^{(i)} = \int_{0}^{1} \int_{0}^{1-\xi} \eta^{2} d\xi d\eta = \int_{0}^{1} \frac{(1-\xi)}{3} d\xi = \frac{1}{12},$$

$$\Phi_{12}^{(i)} = \Phi_{21}^{(i)} = \int_{0}^{1} \int_{0}^{1-\xi} \xi (1-\xi-\eta) d\xi d\eta = -\int_{0}^{1} \xi \frac{(1-\xi-\eta)^{2}}{2} \Big|_{0}^{1-\xi} d\xi = \int_{0}^{1} \frac{\xi (1-\xi)^{2}}{2} d\xi = \frac{1}{24},$$

$$\Phi_{13}^{(i)} = \Phi_{31}^{(i)} = \int_{0}^{1} \int_{0}^{1-\xi} \eta (1-\xi-\eta) d\xi d\eta = \frac{1}{24}. \qquad \text{Итак}, \qquad \Phi^{(i)} = \frac{1}{24} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}. \qquad (6.3.10)$$

6.3.4. Вычисление матрицы жесткости на базисном элементе

1) Одномерный случай. Пусть
$$h_i = h = const$$
, $e_i = [x_{i-1}, x_i]$ – конечный элемент,
 $u_1^{(i)} = u_{i-1}$ и $u_2^{(i)} = u_i$ – значения искомой сеточной функции $\{u_i\}_{i=0}^N$. Вычислим
 $\int_{e_i} u'_x v'_x dx = \int_{x_{i-1}}^{x_i} u'_x v'_x dx = \frac{1}{h} \int_0^1 u'_{\xi} v'_{\xi} d\xi = \frac{1}{h} \sum_{k=1}^2 v_k^{(i)} \sum_{m=1}^2 u_m^{(i)} \int_0^1 (\Lambda'_k, \Lambda'_m) d\xi =$
 $= \frac{1}{h} \sum_{k=1}^2 v_k^{(i)} \left(\sum_{m=1}^2 u_m^{(i)} a_{km}^{(i)} \right) = \frac{1}{h} \sum_{k=1}^2 v_k^{(i)} (A \cdot u)_k^{(i)} = \frac{1}{h} \left(v^{(i)}, (Au)^{(i)} \right),$ (6.3.11)
где $\left(a_{km}^{(i)} = \int_0^1 (\Lambda'_k, \Lambda'_m) d\xi \right)_{k,m=1}^2$ – матрица жесткости.
 $a_{11}^{(i)} = \int_0^1 (\Lambda'_1, \Lambda'_1) d\xi = \int_0^1 (-1)(-1) d\xi = 1,$ $a_{22}^{(i)} = \int_0^1 (\Lambda'_2, \Lambda'_2) d\xi = \int_0^1 1 \cdot 1 d\xi = 1,$
 $a_{12}^{(i)} = a_{21}^{(i)} = \int_0^1 (\Lambda'_1, \Lambda'_2) d\xi = \int_0^1 (-1)(1) \xi d\xi = -1.$ Итак, $\mathbf{A}^{(i)} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ (6.3.12)

Таким образом, дискретный аналог интегрального тождества (6.1.6) на конечном элементе *e*, будет иметь вид:

$$h(\mathbf{v}^{(i)}, \mathbf{F}^{(i)}) = \frac{1}{h}(\mathbf{v}^{(i)}, (\mathbf{A}\mathbf{u})^{(i)}), \quad i = \overline{1, N}.$$
(6.3.13)

2) Двумерный случай. Пусть $u_1^{(i)}$, $u_2^{(i)}$ и $u_3^{(i)}$ – значения искомой функции u(x, y) в вершинах (x_1, y_1) , (x_2, y_2) , (x_3, y_3) произвольного треугольного элемента e_i . В данном случае $a(u, v) = \int_{a}^{a} (\nabla u, \nabla v) dx dy$. При переходе к координатам (ξ, η) учтем, что

$$\nabla_{(x,y)} u = (\mathbf{J}^{-1})^T \nabla_{(\xi,\eta)} u, \text{ где } \mathbf{J}^{-1} - \text{обратная к } \mathbf{J} \text{ матрица, } «T » \text{ означает транспонирование,}$$
$$(\mathbf{J}^{-1})^T = \frac{1}{|\mathbf{J}|} \begin{pmatrix} J_{22} & -J_{21} \\ -J_{12} & J_{11} \end{pmatrix} = \frac{1}{|\mathbf{J}|} \mathbf{\Omega}, \quad \mathbf{\Omega} = \begin{pmatrix} J_{22} & -J_{21} \\ -J_{12} & J_{11} \end{pmatrix}$$
(6.3.14)

$$\int_{e_i} (\nabla u, \nabla v) dx dy = |\mathbf{J}_i| (\mathbf{J}_i^{-1})^T (\mathbf{J}_i^{-1})^T \int_{\Delta} (\nabla_{(\xi,\eta)} u, \nabla_{(\xi,\eta)} v) d\xi d\eta =$$
(6.3.15)

$$= \frac{1}{|\mathbf{J}_{i}|} \sum_{k=1}^{3} \upsilon_{k}^{(i)} \sum_{m=1}^{3} u_{m}^{(i)} \int_{\Delta} (\mathbf{\Omega}_{i} \nabla_{(\xi,\eta)} \Lambda_{k}, \mathbf{\Omega}_{i} \nabla_{(\xi,\eta)} \Lambda_{m}) d\xi d\eta =$$

$$= \frac{1}{|\mathbf{J}_{i}|} \sum_{k=1}^{3} \upsilon_{k}^{(i)} \left(\sum_{m=1}^{3} u_{m}^{(i)} a_{km}^{(i)} \right) = \frac{1}{|\mathbf{J}_{i}|} \sum_{k=1}^{3} \upsilon_{k}^{(i)} (A \cdot u)_{k}^{(i)} = \frac{1}{h} (\upsilon^{(i)}, (\mathbf{A}\mathbf{u})^{(i)}),$$

где
$$\left(a_{km}^{(i)} = \int_{\Lambda} \left(\Omega_i \nabla_{(\xi,\eta)} \Lambda_k, \Omega_i \nabla_{(\xi,\eta)} \Lambda_m\right) d\xi d\eta \right)_{k,m=1}^2 = -$$
 матрица жесткости. При вычислении
ее элементов учтем, что $\int_{0}^{1-\xi} \int_{0}^{1-\xi} d\xi d\eta = \int_{0}^{1} (1-\xi) d\xi = 1/2$,
 $\nabla_{(\xi,\eta)} \Lambda_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \quad \Omega_i \nabla_{(\xi,\eta)} \Lambda_1 = \begin{pmatrix} J_{21} - J_{22} \\ J_{12} - J_{11} \end{pmatrix}_i;$
 $\nabla_{(\xi,\eta)} \Lambda_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \Omega_i \nabla_{(\xi,\eta)} \Lambda_2 = \begin{pmatrix} J_{22} \\ -J_{12} \end{pmatrix}_i; \quad \nabla_{(\xi,\eta)} \Lambda_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad \Omega_i \nabla_{(\xi,\eta)} \Lambda_3 = \begin{pmatrix} -J_{21} \\ J_{11} \end{pmatrix}_i.$
 $a_{11}^{(i)} = 0.5 \left[(J_{21} - J_{22})_i^2 + (J_{12} - J_{11})_i^2 \right] > 0,$
 $a_{22}^{(i)} = 0.5 \left[(J_{22})_i^2 + (J_{12})_i^2 \right] > 0,$
 $a_{12}^{(i)} = a_{21}^{(i)} = 0.5 \left\{ (J_{22})_i \left[(J_{21})_i - (J_{22})_i \right] + (J_{12})_i \left[(J_{11})_i - (J_{12})_i \right] \right\},$
 $a_{13}^{(i)} = a_{31}^{(i)} = (J_{21})_i \left[(J_{22})_i - (J_{21})_i \right] + (J_{11})_i \left[(J_{12})_i - (J_{11})_i \right],$
 $a_{23}^{(i)} = a_{32}^{(i)} = -0.5 \left\{ (J_{22})_i (J_{21})_i + (J_{11})_i \right\}.$

Таким образом, дискретный двумерный аналог интегрального тождества (6.1.6) на треугольном конечном элементе e_i будет иметь вид:

$$|\mathbf{J}_{i}|(\mathbf{v}^{(i)},\mathbf{F}^{(i)}) = \frac{1}{|\mathbf{J}_{i}|}(\mathbf{v}^{(i)},(\mathbf{A}\mathbf{u})^{(i)}), \quad i = \overline{1,N}.$$
(6.3.16)

6.3.5. Построение расширенных векторов и глобальных матрицы жесткости и вектора сил

1) Одномерный случай. С учетом соотношения (6.3.13) запишем дискретный аналог интегрального тождества (6.1.6) во всей области $\overline{D} = \{x \in [0,1]\}$:

$$\frac{1}{h}\sum_{i=1}^{N} \left(\mathbf{v}^{(i)}, (\mathbf{A}\mathbf{u})^{(i)} \right) = h\sum_{i=1}^{N} \left(\mathbf{v}^{(i)}, \mathbf{F}^{(i)} \right).$$
(6.3.17)

Локальные вектора $\mathbf{v}^{(i)}$, $\mathbf{u}^{(i)}$, $(\mathbf{A}\mathbf{u})^{(i)}$ и $\mathbf{F}^{(i)}$, соответствующие конечному элементу $e_i = [x_{i-1}, x_i]$ с номером i, имеют только две компоненты. Образуем из векторов $\mathbf{u}^{(i)}$, $(\mathbf{A}\mathbf{u})^{(i)}$ и $\mathbf{F}^{(i)}$ *расширенные вектора* $\mathbf{\vec{u}}$, $\mathbf{A}\mathbf{\vec{u}}$ и $\mathbf{\vec{F}}$. Например, вектор $\mathbf{\vec{F}}$ строим по компонентам вектора $f_1^{(i)}$ и $f_2^{(i)}$ так, что среди компонент $\mathbf{\vec{F}}$ будут отличны от нуля только те, которые соответствуют номерам узлов элемента $e_i: \mathbf{\vec{F}} = (0, 0, ..., 0, f_1^{(i)}, f_2^{(i)}, 0, ..., 0)$. Аналогичным образом введем также в рассмотрение *глобальный вектор* $\mathbf{\vec{v}} = (\upsilon_0^{(i)}, \upsilon_1^{(i)}, ..., \upsilon_N^{(i)})$, определенный во всех узлах области D. Тогда в соотношении (6.3.17) в силу построения расширенных векторов

$$\left(\mathbf{v}^{(i)}, \left(\mathbf{A}\mathbf{u}\right)^{(i)}\right) = \left(\vec{\mathbf{v}}, \left(\vec{\mathbf{A}}\mathbf{u}\right)\right)^{(1)}, \quad \left(\mathbf{v}^{(i)}, \mathbf{F}^{(i)}\right) = \left(\vec{\mathbf{v}}, \vec{\mathbf{F}}\right)^{(i)}.$$
 (6.3.18)

Подставив (6.3.18) в (6.3.17) и определив расширенные вектора

$$\vec{\mathbf{A}}\mathbf{u} = \sum_{i=1}^{N} \left(\vec{\mathbf{A}}\mathbf{u}\right)^{(i)}, \qquad \vec{\mathbf{F}} = \sum_{i=1}^{N} \vec{\mathbf{F}}^{(i)}$$
(6.3.19)

в силу произвольности пробной функции $\vec{\upsilon}$ получим систему уравнений МКЭ

$$\vec{A}\mathbf{u} = \vec{F}$$
(6.3.20)

для нахождения сеточной функции \vec{u} . Нетрудно видеть, что в одномерном случае сборка матрицы жесткости **A** и вектора сил \vec{F} сводится к суммированию локальных матриц (6.3.9) и (6.3.12), так что

$$\vec{\mathbf{Au}} = \frac{1}{h^2} \begin{bmatrix} 1 & -1 & 0 & \dots & \dots & \dots & 0 \\ -1 & 2 & -1 & \dots & & 0 \\ 0 & -1 & 2 & -1 & & & 0 \\ 0 & \dots & \dots & & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & & & -1 & 2 & -1 \\ 0 & \dots & \dots & & & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \dots \\ u_N \end{bmatrix},$$
(6.3.21)
$$\vec{\mathbf{F}} = \frac{1}{6} \begin{bmatrix} 2 & 1 & 0 & \dots & \dots & \dots & 0 \\ 1 & 4 & 1 & \dots & & 0 \\ 0 & 1 & 4 & 1 & & & 0 \\ 0 & \dots & \dots & \dots & \dots & 0 \\ 0 & \dots & \dots & & 1 & 4 & 1 \\ 0 & \dots & \dots & & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ f_2 \\ f_3 \\ \dots \\ f_N \end{bmatrix}.$$
(6.3.22)

Здесь **А** – глобальная трехдиагональная матрица. В данном случае в регулярных узлах $i = \overline{1, N-1}$ систему (6.3.21) можно представить в виде обычного разностного уравнения $-(u_x)_{\overline{x},i} = \gamma_i, \qquad \gamma_i = (f_{i-1} + 4f_i + f_{i+1})/6.$ (6.3.23)

Тема 7. ДВУМЕРНАЯ ПЛОСКОПАРАЛЛЕЛЬНАЯ ФИЛЬТРАЦИЯ В РАЗРЕЗЕ СЛОИСТО-НЕОДНОРОДНОГО ПЛАСТА

Рис. 7.1. Схема слоистого пласта

Уравнения двухфазной фильтрации:

$$m\frac{\partial S}{\partial t} + \frac{\partial}{\partial x} \left(f(S) \cdot U_x \right) + \frac{\partial}{\partial z} \left(f(S) \cdot U_z \right) = 0,$$
(7.1)

$$\frac{\partial}{\partial x} \left(\sigma(S) \frac{\partial P}{\partial x} \right) + \frac{\partial}{\partial z} \left(\sigma(S) \frac{\partial P}{\partial z} \right) = 0.$$
(7.2)

где *S* – насыщенность порового пространства водой (водонасыщенность), *P* – давление, $\sigma = k \cdot K^*$ – коэффициент гидропроводности, $K^*(S) = k_1(S)/\mu_1 + k_2(S)/\mu_2$, $k_1(S)$ и $k_2(S)$ – относительные фазовые проницаемости воды и нефти:

$$k_{1} = \begin{cases} 0, & 0 \le S \le S_{*} \\ \left(\left(S - S_{*} \right) / S^{*} \right)^{3}, & S_{*} \le S \le 1 \\ 0, & S^{*} \le S \le 1 \end{cases}, \qquad k_{2} = \begin{cases} \left(\left(S^{*} - S \right) / \left(S^{*} - S_{*} \right) \right)^{3}, & 0 \le S \le S^{*} \\ 0, & S^{*} \le S \le 1 \end{cases}$$

где S_* и S^* – значения связанной и предельной водонасыщенности.

Уравнение (7.1) используется для определения водонасыщенности S, а квазистационарное уравнение (7.2) – для определения давления P.

На границах разрыва γ_i абсолютной проницаемости k должны выполняться условия сопряжения:

$$[P] = 0, \qquad \left[\sigma \frac{\partial P}{\partial n}\right] = 0, \qquad [f] = 0 \tag{7.3}$$

где $[F] = F^+ - F^-$ - скачок произвольной функции F. Граничные условия для давления:

- на левой границе (нагнетательная ГС):

$$P\Big|_{x=0} = P_0, \qquad x \in \gamma_L \tag{7.4}$$

либо

$$Q_0: \qquad Q_0 = \int_0^H \mathbf{U}_x \Big|_{x=0} \, dz \,, \qquad \frac{\partial P}{\partial Z} \Big|_{x=0} = 0 \,, \quad x \in \gamma_L$$
(7.5)

- на правой границе (добывающая ГС):

$$P\Big|_{x=L} = P_L, \qquad x \in \gamma_R \tag{7.6}$$

Условия непроницаемости кровли и подошвы пласта, а также боковых границ Γ_L и Γ_R :

$$\frac{\partial P}{\partial z}\Big|_{z=0} = \frac{\partial P}{\partial z}\Big|_{z=H} = \frac{\partial P}{\partial x}\Big|_{z\in\Gamma_L} = \frac{\partial P}{\partial x}\Big|_{z\in\Gamma_R} = 0$$
(7.7)

Граничные условия для насыщенности *S* задаются на боковой границе, вскрытой нагнетательной горизонтальной скважиной (ГС):

$$S(0,t) = S^*, \quad t > 0$$
 (7.8)

Начальное условие для функции *S* имеет вид:

$$S(x, z, 0) = S^0 \ge S_* , (7.9)$$

Решение системы (7.1), (7.2) с условиями (7.3) – (7.9) отыскивается в области $D = \{0 < x < L, 0 < z < H\}$ при $t \in (0, T)$, где H – толщина пласта, а T – время его экс-плуатации.

При разработке пластов добывающие скважины эксплуатируются только до определенной их обводненности θ^* , представляющей собой предельную долю воды в дебите скважины, выраженную в процентах. Затем скважина закрывается, то есть ее дебит становится равным нулю вне зависимости от режима ее работы до этого момента. Величина текущей обводненности θ вычисляется по формуле

$$\theta(t) = \int_{\gamma_R} f \cdot \sigma \frac{\partial P}{\partial x} dz \bigg/ \int_{\gamma_R} \sigma \frac{\partial P}{\partial x} dz$$
(7.10)

В числителе этого выражения стоит величина текущего дебита воды, а в знаменателе – значение суммарного дебита жидкости.

7.1. Разностная схема

Введем сеточное разбиение $D_h = \{(x_i, z_k), (x_{i+1/2}, z_{k+1/2})\}$ исходной области D решения задачи с элементами разбиения, представленными на Рис. 7.2, и шагами сетки: по времени h_{τ} и по пространственным переменным: $h_x = L/N_x$, $h_p = H_p/N_p$, $p = \overline{1, N}$, где H_p – толщина p-го слоя, N - число слоев пласта.

Ясно, что шаг по оси Ог может быть переменным:

Рис. 7.2.	$\left(\begin{array}{c}h_{N}, 1+\sum_{p=1}N_{p}\leq k\leq N_{z}\end{array}\right)$
$ \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\longrightarrow}}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\longleftarrow}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\longleftarrow}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\longleftarrow}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\longleftarrow}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\longleftarrow}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\longleftarrow}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\overset{\bullet}{\longleftarrow}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\longleftarrow}} \stackrel{\bullet}{\underset{i=1}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{\overset{\bullet}{$	$n_z = 1$
	$h_2, 1+N_1 \le k \le N_1+N_2$
k+1/2	$\int h_1, \qquad 1 \le k \le N_1$
$\Phi \rightarrow \Phi \kappa + I$	

С целью улучшения аппроксимации потоков будем рассматривать сдвинутую на полшага сетку как по x, так и по z в каждом слое. Тогда на границах области D и слоев будут располагаться не узлы

сетки D_h , а границы элементарных ячеек $D_{i,k}$. Всего сетка будет содержать $N_x \cdot N_z$ внутренних узлов, где $N_z = \sum_{p=1}^N N_p$.

Построим РС для исходной задачи.

<u>Аппроксимация уравнений (7.2)</u> $div \mathbf{v} = 0, \mathbf{v} = \sigma \cdot \nabla P$ <u>для давления</u>. Запишем консервативную разностную схему

$$h_{k}h_{k}L[V]_{i,k} = V_{i+1/2,k} - V_{i-1/2,k} + V_{i,k+1/2} - V_{i,k-1/2} = 0, \quad i = \overline{1, N_{x}}, \quad k = \overline{1, N_{z}}.$$
(7.1.1)

Здесь введены обозначения:

$$V_{i+1/2,k} = \frac{h_k}{h_x} \sigma_{i+1/2,k} \left(P_{i+1,k} - P_{i,k} \right), \tag{7.1.2}$$

$$V_{i,k+1/2} = \frac{h_k}{h_x} \sigma_{i,k+1/2} \left(P_{i,k+1} - P_{i,k} \right)$$
(7.1.3)

Разностные уравнения (7.1.1) - (7.1.3) будут использоваться *для расчета давления* в узлах сетки.

Аппроксимация уравнения (7.1)
$$m \frac{\partial S}{\partial t} + div\mathbf{v}_1 = 0, \ \mathbf{v}_1 = -f(S)\mathbf{v}$$
 для S:
 $h_x h_k L[fV]_{i,k} - m_k \frac{h_x h_k}{\tau} (J_{i,k}^{t+\tau} - J_{i,k}^t) = 0,$ (7.1.4)

Здесь использовались обозначения $J_{i,k}$ среднеинтегрального значения насыщенности в элементарной ячейке:

$$J_{i,k} = (h_x h_k)^{-1} \int_{D_{i,k}} S dx dy$$
(7.1.5)

и для величин V_1 :

$$V_{1,i+1/2,k} = (fV)_{i+1/2,k}, \qquad V_{1,i,k+1/2} = (fV)_{i,k+1/2}, \qquad (7.1.6)$$

$$\sigma_{i,k+1/2} = K_{i,k+1/2} \cdot K_{i,k+1/2}^{*}, \qquad \sigma_{i+1/2,k} = K_{i+1/2,k} \cdot K_{i+1/2,k}^{*}, \qquad (7.1.7)$$

$$K_{i+1/2,k}^{*} = K^{*}(S_{i+1/2,k}), \qquad S_{i+1/2,k} = 0.5(J_{i+1,k} + J_{i,k}), \qquad (7.1.8)$$

$$K_{i,k+1/2}^{*} = K^{*}(S_{i,k+1/2}), \qquad S_{i,k+1/2} = 0.5(J_{i,k} + J_{i,k+1}).$$
(7.1.9)

Существенным моментом задачи является наличие линий разрыва абсолютной проницаемости K(x, z). В этом случае для расчета проницаемости в дробных узлах сетки целесообразно воспользоваться ее среднегеометрической аппроксимацией:

$$K_{i,k+1/2} = 2K_{i,k+1} \cdot K_{i,k} / (K_{i,k+1} + (h_{k+1}/h_k)K_{i,k}), \quad K_{i+1/2,k} = 2K_{i+1,k} \cdot K_{i,k} / (K_{i+1,k} + K_{i,k}).$$
(7.1.10)

7.2. Итерационный метод расчета давления

7.2.1. Построение системы уравнений с пятидиагональной матрицей

Будем использовать систему $h_x h_k L[V]_{i,k} = V_{i+1/2,k} - V_{i-1/2,k} + V_{i,k+1/2} - V_{i,k-1/2} = 0$ (7.1.1) разностных уравнений суммарного потока для определения давления $P_{i,k}$ и решать ее итерационным методом при заданных $J_{i,k}$. Рассмотрим пару уравнений (7.1.1) $L[V]_{1,k} = 0$ и $L[V]_{2,k} = 0$ при $k = \overline{1, N_z - 1}$. С учетом (7.1.2) и (7.1.3) запишем:

$$L[V]_{1,k} = \frac{h_k}{h_x} \sigma_{3/2,k} \left(\hat{P}_{2,k} - \hat{P}_{1,k} \right) - \frac{h_k}{h_x} \sigma_{1/2,k} \left(\hat{P}_{1,k} - \hat{P}_{0,k} \right) +$$

$$+ \frac{h_x}{h_k} \sigma_{1,k+1/2} \left(\hat{P}_{1,k+1} - \hat{P}_{1,k} \right) - \frac{h_x}{h_k} \sigma_{1,k-1/2} \left(\hat{P}_{1,k} - \hat{P}_{1,k-1} \right) = 0$$

$$L[V]_{2,k} = \frac{h_k}{h_x} \sigma_{5/2,k} \left(\hat{P}_{3,k} - \hat{P}_{2,k} \right) - \frac{h_k}{h_x} \sigma_{3/2,k} \left(\hat{P}_{2,k} - \hat{P}_{1,k} \right) +$$

$$+ \frac{h_x}{h_k} \sigma_{2,k+1/2} \left(\hat{P}_{2,k+1} - \hat{P}_{2,k} \right) - \frac{h_x}{h_k} \sigma_{2,k-1/2} \left(\hat{P}_{2,k} - \hat{P}_{2,k-1} \right) = 0$$

$$(7.2.1)$$

Здесь значения $P_{0,k}$ определены из граничных условий, а остальные сеточные функции определим так: $\hat{P}_{3,k} \rightarrow P_{3,k}^{(n-1)}$, $\hat{P}_{1,k} \rightarrow P_{1,k}^{(n)}$, $\hat{P}_{2,k} \rightarrow P_{2,k}^{(n)}$. Переходя к одномерной нумерации и вводя обозначения $U_{2k+1} = P_{1,k}^{(n)}$ и $U_{2k} = P_{2,k}^{(n)}$, $k = \overline{0, N_z} \implies$ перестроим систему уравнений.

1) Пусть k=1, тогда $L[V]_{1,1} = 0$ будет иметь вид (см. Рис.7.3): $a_3U_1 + 0 \cdot U_2 - c_3U_3 + b_4U_4 + a_5U_5 = -\varphi_3$ $a_3 = \sigma_{1,1/2} h_x/h_1$, $b_3 = 0$, $c_3 = (\sigma_{3/2,1} + \sigma_{1/2,1})h_1/h_x + (\sigma_{1,3/2} + \sigma_{1,1/2})h_x/h_1$, $b_4 = \sigma_{3/2,1} \cdot h_x/h_1$, $a_5 = \sigma_{1,3/2} \cdot h_x/h_1$, $\varphi_3 = \sigma_{1/2,1}\widehat{P}_{0,1} \cdot h_1/h_x$

2) Пусть k=1, тогда $L[V]_{2,1} = 0$ будет иметь вид:

$$\frac{a_4 U_2 + b_4 U_3 - c_4 U_4 + 0 \cdot U_5 + a_6 U_6 = -\varphi_4}{a_4 = \sigma_{2,1/2} h_x / h_1, \quad b_4 = \sigma_{3/2,1} \cdot h_x / h_1, \quad c_4 = (\sigma_{3/2,1} + \sigma_{5/2,1}) h_1 / h_x + (\sigma_{2,1/2} + \sigma_{2,3/2}) h_x / h_1, \\ b_5 = \mathbf{0}, \quad a_6 = \sigma_{2,3/2} \cdot h_x / h_1, \quad \varphi_4 = \sigma_{5/2,1} \cdot P_{3,1}^{(n-1)} \cdot h_1 / h_x$$

Далее, при k=2 перепишем уравнения $L[V]_{1,2} = 0$ и $L[V]_{2,2} = 0$, при k=3 перепишем уравнения $L[V]_{1,3} = 0$ и $L[V]_{3,2} = 0$, и т.д. В итоге получим систему уравнений с пятидиагональной матрицей (рис. 7.4).

Замечание. Коэффициенты двух первых и двух последних строк матрицы, а также значения правых частей φ_1 , φ_2 , φ_{2N_z+1} и φ_{2N_z+2} , должны быть образованы за счет граничных условий (18) непроницаемости границ пласта.

Запишем систему уравнений в общем виде

$$a_m U_{m-2} + b_m U_{m-1} - c_m U_m + b_{m+1} U_{m+1} + a_{m+2} U_{m+2} = -\varphi_m, \quad m = \overline{3, 2N_z}, \quad (7.2.2)$$

аналогичном системе с трехдиагональной матрицей:

 $A_{m}y_{m-1} - C_{m}y_{m} + B_{m}y_{m+1} = -F_{m}, \quad m = \overline{1, N-1}.$

-c ₁	b ₂	a ₃								
b ₂	-c ₂	0	a ₄							
a ₃	0	-c ₃	b ₄	a ₅				0		
	a ₄	b ₄	-c ₄	0	a ₆					
		a ₅	0	-c ₅	b ₆	a ₇				
						•••				
					a_{2N_z-1}	0	-c _{2Nz} -1	\mathbf{b}_{2N_z}	\mathbf{a}_{2N_z+1}	
		0				a _{2Nz}	\boldsymbol{b}_{2N_z+1}	-c _{2Nz}	0	a_{2N_z+2}
							a_{2N_z+1}	0	-c _{2Nz+1}	b_{2N_z+2}
								a_{2N_z+2}	\mathbf{b}_{2N_z+2}	-c _{2Nz+2}

Рис.	7.4	
------	-----	--

7.2.2. Метод пятидиагональной прогонки

Сеточные функции $U_{\scriptscriptstyle m}$ системы (7.2.2) вычисляются по общей рекуррентной формуле

$$U_m = \alpha_m U_{m+1} + \beta_m U_{m+2} + \gamma_m, \quad \left(i = \overline{1, 2N_z}\right)$$
(7.2.3)

Перепишем уравнение (7.2.2) с помощью (7.2.3):

$$\begin{aligned} a_{m}(\alpha_{m-2}U_{m-1} + \beta_{m-2}U_{m} + \gamma_{m-2}) + b_{m}U_{m-1} - c_{m}U_{m} + b_{m+1}U_{m+1} + a_{m+2}U_{m+2} + \varphi_{m} &= \\ &= (a_{m}\alpha_{m-2} + b_{m})U_{m-1} + (a_{m}\beta_{m-2} - c_{m})U_{m} + b_{m+1}U_{m+1} + a_{m+2}U_{m+2} + \varphi_{m} + a_{m}\gamma_{m-2} &= \\ &= \left[(a_{m}\alpha_{m-2} + b_{m})\alpha_{m-1} + (a_{m}\beta_{m-2} - c_{m})\right]U_{m} + \left[\beta_{m-1}(a_{m}\alpha_{m-2} + b_{m}) + b_{m+1} \right]U_{m+1} + a_{m+2}U_{m+2} + \\ &+ \varphi_{m} + a_{m}\gamma_{m-2} + (a_{m}\alpha_{m-2} + b_{m})\gamma_{m-1} &= \end{aligned}$$

$$= \left[\left(a_m \alpha_{m-2} + b_m \right) \alpha_{m-1} + a_m \beta_{m-2} - c_m \right] \left[\alpha_m U_{m+1} + \beta_m U_{m+2} + \gamma_m \right] + \dots =$$

Обозначим $\textit{R}_{m} = c_{m} - lpha_{m-1} \left(b_{m} + a_{m} lpha_{m-2}
ight) - a_{m} eta_{m-2}$, тогда

$$\begin{bmatrix} \beta_{m-1} (a_m \alpha_{m-2} + b_m) + b_{m+1} - R_m \alpha_m \end{bmatrix} U_{m+1} + \begin{bmatrix} a_{m+2} - R_m \beta_m \end{bmatrix} U_{m+2} + \\ + \begin{bmatrix} \varphi_m + a_m \gamma_{m-2} + (a_m \alpha_{m-2} + b_m) \gamma_{m-1} - R_m \gamma_m \end{bmatrix} = 0$$

Это равенство выполняется, если равны нулю квадратные скобки, откуда получим, что прогоночные коэффициенты определяются соотношениями:

$$\alpha_{m} = (b_{m+1} + \beta_{m-1} (b_{m} + a_{m} \alpha_{m-2})) / R_{m}, \qquad \beta_{m} = a_{m+2} / R_{m},$$

$$\gamma_{m} = (\varphi_{m} + a_{m} \gamma_{m-2} + \gamma_{m-1} (b_{m} + a_{m} \alpha_{m-2})) / R_{m}, \qquad m = \overline{3, 2N_{z}}$$
(7.2.4)

Из аппроксимации граничных условий на подошве пласта (первая и вторая строки матрицы) в общем случае следует, что

$$-c_1U_1 + b_2U_2 + a_3U_3 = -\varphi_1, \quad b_2U_1 - c_2U_2 + a_4U_4 = -\varphi_2.$$

Сравнивая первое выражение с рекуррентной формулой (7.2.4) при m=1, найдем значения коэффициентов прямой прогонки $\alpha_1 = b_2/c_1$, $\beta_1 = a_3/c_1$, $\gamma_1 = \varphi_1/c_1$. Аналогично из второго выражения получим

$$\alpha_2 = \beta_1 b_2 / (c_2 - \alpha_1 b_2), \qquad \beta_2 = a_4 / (c_2 - \alpha_1 b_2), \quad \gamma_2 = (\varphi_2 + \gamma_1 b_2) / (c_2 - \alpha_1 b_2).$$

<u>Самостоятельное задание.</u> Показать, что при $m = \overline{1, 2N_z}$ $c_m > a_m + b_m + a_{m+2} + b_{m+1}$, и, следовательно, условие устойчивости метода пятидиагональной прогонки выполнено.

Решив систему (7.2.3) для i = 1 и i = 2, аналогичным образом рассмотрим и решим следующую "пару" $L[V]_{3,k} = 0$, $L[V]_{4,k} = 0$, $k = \overline{1, N_z}$ и т.д.

Замечание. Из построения метода следует, что число N_x должно быть четным. Тогда в результате решения $N_x/2$ систем вида (7.2.3) найдем давление во всех узлах сетки на n -ой итерации. Обозначим их через

$$\overline{\overline{P}_{i,k}} = P_{i,k}^{(n)} \quad , \quad i = \overline{1, N_x} \quad , \quad k = \overline{1, N_z} \quad .$$

$$(7.2.5)$$

7.2.3. Уточнение итераций по давлению

Прежде, чем перейти к уточнению найденных значений $\overline{P}_{i,k}$, проинтегрируем уравнение (7.2) по *z* от 0 до H (по всей толщине пласта), учитывая, что $U_x = \sigma(S)P'_x$, $U_z = \sigma(S)P'_z$:

$$\int_{0}^{H} \left(\frac{\partial U_x}{\partial x} + \frac{\partial U_z}{\partial z} \right) \cdot dz = \int_{0}^{H} \frac{\partial U_x}{\partial x} \cdot dz + U_z \Big|_{0}^{H} = \int_{0}^{H} \frac{\partial U_x}{\partial x} \cdot dz = \frac{\partial}{\partial x} \int_{0}^{H} U_x \cdot dz = 0$$

Здесь учтено, что в силу непроницаемости кровли и подошвы суммарный поток на границах z = 0 и z = H отсутствует, см. граничные условия (7.7). Очевидно, величина $\int_{0}^{H} U_x \cdot dz$ в любом сечении x не зависит от этой координаты. Тогда на сетке должно вы-

полняться соответствующее условие независимости суммы $\sum_{k=1}^{N_z} V_{i+1/2,k}$ от индекса i .

Используем это свойство для уточнения вычисленных значений $\overline{P}_{i,k}$. Пусть $P_{i,k}^{(n)} = \overline{P}_{i,k} + B_i$, $i = \overline{1, N_x}$, $k = \overline{1, N_z}$, где B_i - некоторые поправки к найденным значениям давления $\overline{P}_{i,k}$. Тогда из (7.1.2), (7.1.3) $V_{i+1/2,k} = \frac{h_k}{h_x} \sigma_{i+1/2,k} \left(P_{i+1,k} - P_{i,k} \right)$, $V_{i,k+1/2} = \frac{h_k}{h_x} \sigma_{i,k+1/2} \left(P_{i,k+1} - P_{i,k} \right)$ будем иметь: $V_{i,k+1/2}^{(n)} = \overline{V}_{i,k+1/2}$, $V_{i+1/2,k}^{(n)} = \overline{V}_{i+1/2,k} = \overline{V}_{i+1/2,k} + \frac{h_k}{h} \sigma_{i+1/2,k} \left(B_{i+1} - B_i \right)$ (7.2.6).

Независимость суммы $\sum_{k=1}^{N_z} V_{i+1/2,k}$ от индекса *i* означает, что должно выполняться равен-

ство $\sum_{k=1}^{N_z} V_{i+1/2,k}^{(n)} = \sum_{k=1}^{N_z} V_{i-1/2,k}^{(n)}$. Подставляя сюда соотношение (7.2.6), получим:

$$\sum_{k=1}^{N_z} \overline{V}_{i+1/2,k} + \sum_{k=1}^{N_z} \frac{h_k}{h_x} \sigma_{i+1/2,k} B_{i+1} - \sum_{k=1}^{N_z} \frac{h_k}{h_x} \sigma_{i+1/2,k} B_i = \sum_{k=1}^{N_z} \overline{V}_{i-1/2,k} + \sum_{k=1}^{N_z} \frac{h_k}{h_x} \sigma_{i-1/2,k} B_i - \sum_{k=1}^{N_z} \frac{h_k}{h_x} \sigma_{i-1/2,k} B_i - \sum_{k=1}^{N_z} \frac{h_k}{h_x} \sigma_{i-1/2,k} B_i = \sum_{k=1}^{N_z} \overline{V}_{i-1/2,k} + \sum_{k=1}^{N_z} \frac{h_k}{h_x} \sigma_{i-1/2,k} B_i - \sum_{k=1}^{N_$$

Вводя обозначения $A_i = \sum_{k=1}^{N_z} \frac{h_k}{h_x} \sigma_{i+1/2,k}$, $\Phi_i = \sum_{k=1}^{N_z} (\overline{V}_{i-1/2,k} - \overline{V}_{i+1/2,k})$, перепишем это разностное

соотношение в виде:

$$A_{i-1}B_{i-1} - (A_{i-1} + A_i)B_i + A_iB_{i+1} = \Phi_i, \quad i = \overline{1, N_x}$$

где $B_0 = 0, \quad B_{N_r+1} = 0.$ (7.2.7)

Полученная система (7.2.7) линейных уравнений с трехдиагональной матрицей решается методом прогонки. Таким образом, вычислив B_i для всех $i = \overline{1, N_x}$, на *n*-ой итерации окончательно получим значения давления $P_{i,k}^{(n)}$ при $i = \overline{1, N_x}$, $k = \overline{1, N_z}$.

Итерационный процесс (вычисление "фонового" поля давления во всем пласте методом пятидиагональной прогонки по вертикали, а затем уточнение найденного поля при помощи трехдиагональной прогонки по горизонтали) продолжается до тех пор, пока не выполнится условие сходимости.

Тема 8. УРАВНЕНИЕ ПЕРЕНОСА

8.1. Формулировка задач переноса

Линейное уравнение переноса, возникающее в задачах теплопроводности, фильтрации, диффузии и т.д., имеет вид

$$\frac{\partial u}{\partial t} + \mathbf{a}(\mathbf{x}, t) \nabla u = -f(\mathbf{x}, t), \quad \mathbf{x} = (x_1, \dots, x_n), \tag{8.1.1}$$

где $\mathbf{a}(\mathbf{x},t)$ – скорость переноса.

Рассмотрим простейшую постановку задачи Коши при a = const > 0, f = 0:

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \quad -\infty < x < \infty, \quad t > 0;$$
(8.1.2)

$$u(x,0) = \upsilon(x) \tag{8.1.3}$$

где v(x) – заданное начальное распределение функции *и*. Точное решение этой задачи может быть найдено методом характеристик

$$u(x,t) = v(x-at),$$
 (8.1.4)

и представляет собой бегущую волну, распространяющиеся вдоль оси Ox с постоянной скоростью a. Профиль волны задается начальным условием (8.1.4). Прямые линии x-at = const - xapaktepuctuku уравнения (8.1.2). Решение (8.1.4) постоянной вдоль такой линии, поэтому говорят, что начальные условия переносятся по характеристикам. В данном случае решение легко строится без использования численных методов (рис. 8.1).

Смешанная задача Коши (a = const > 0):

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \qquad 0 < x < X, \qquad 0 < t < T; \qquad (8.1.5)$$

H.y.:
$$u(x,0) = v(x)$$
, $0 \le x \le X$; (8.1.6)

$$\Gamma.y.: \quad u(0,t) = \mu(t), \qquad 0 \le t \le T; \tag{8.1.7}$$

$$\upsilon(0) = \mu(0) \,.$$

8.1. Разностные схемы

Рассмотрим сначала явные разностные схемы, аппроксимирующие уравнения (8.1.2), (8.1.3) и (8.1.5) – (8.1.7) при a > 0 с порядком $O(h_r + h_x)$:

$$\frac{y_i^{j+1} - y_i^j}{h_r} + a \frac{y_i^j - y_{i-1}^j}{h_x} = 0, \qquad \left(y_{t,i} + a \cdot y_{\bar{x},i} = 0\right), \quad i = 1, 2, 3, \dots \qquad j = 0, 1, 2, \dots;$$
(8.1.9)

$$\frac{y_i^{j+1} - y_i^j}{h_r} + a \frac{y_{i+1}^j - y_i^j}{h_x} = 0, \qquad \left(y_{t,i} + a \cdot y_{x,i} = 0\right), \quad i = 0, 1, 2, \dots \qquad j = 0, 1, 2, \dots$$
(8.1.10)

T.y.:
$$y_0^{j+1} = \mu^{j+1}, \quad j = 0, 1, 2, \dots.$$
 (8.1.11)

$$j+1$$
 а $j+1$ Шабло
 j $i-1$ i $j+1$ b обозна

Шаблоны схем (8.1.9) и (8.1.10) показаны на рис.8.2. Введя бозначение

 $\lambda = ah_{\tau}/h_{x}$,

(8.1.8)

Рис. 8.2

H.y.: $y_i^0 = v_i$, i = 0, 1, 2, ...;

$$y_i^{j+1} = y_i^j (1-\lambda) + \lambda y_{i-1}^j, \quad i = 1, 2, 3, \dots \quad j = 0, 1, 2, \dots$$
(8.1.13)

$$y_i^{j+1} = y_i^j (1+\lambda) - \lambda y_{i+1}^j, \quad i = 0, 1, 2, \dots \quad j = 0, 1, 2, \dots$$
 (8.1.14)

Критерий Куранта. Необходимым и достаточным условием устойчивлсти схем (8.1.9) и (8.1.10) является выполнение неравенства

$$h_{\tau} \le h_x/a \,. \tag{8.1.15}$$

Рассмотрим геометрическую интерпретацию устойчивости явных схем. По схеме (8.1.9) значение разностного решения переносится в узел (x_i, t_{j+1}) по характеристике AA' с нижнего слоя из некоторой точки (x_*, t_j) , которая на слое t_j в общем случае не совпадает ни с одним из узлов (x_k, t_j) . Значение y_*^j в точке x_* определяется по значениям сеточной функции в соседних узлах сетки: $y_i^{j+1} = y^j (x_*) = y_*^j$. Если $\lambda < 1$, то $x_* \in [x_{i-1}, x_i]$. При этом $y_*^j = y_i^j (1-\lambda) + \lambda y_{i-1}^j$. (8.1.16)

Покажем, что в устойчивой схеме у^{*j*}_{*} определяется <u>интерполяцией</u> сеточной функ-

ции по ее значениям y_{i-1} и y_i в узлах x_{i-1} и x_i . Действительно, пусть характеристика AA' проходит через узел x_i на верхнем слое t_{j+1} , а на нижнем слое – через некоторую точку $x_* = x_i - ah_{\tau}$ (см. рис.8.3, а). По фор-

муле линейной интерполяции можно записать

$$y_{*}^{j} = y_{i-1}^{j} \frac{x_{i} - x_{*}}{h_{x}} + y_{i}^{j} \frac{x_{*} - x_{i-1}}{h_{x}} = y_{i-1}^{j} \frac{ah_{\tau}}{h_{x}} + y_{i}^{j} \left(1 - \frac{ah_{\tau}}{h_{x}}\right) = y_{i}^{j} \left(1 - \lambda\right) + \lambda y_{i-1}^{j}, \qquad (8.1.17)$$

что совпадает с формулой (8.1.16). Это значение без изменения перенесем по характеристике AA' в узел (x_i, t_{i+1}) , т.е. положим $y_i^{j+1} = y_*^j$.

Если $\lambda > 1$, то $x_* \notin [x_{i-1}, x_i]$, рис. 8.3, **b**. В этом случае значение y_*^j , определяемое по формуле (8.1.16), является результатом экстраполяции, которая приводит к большим погрешностям. Это и есть причина неустойчивости схемы (8.1.9) при невыполнении критерия Куранта.

Устойчивость схемы (8.1.9) по начальным данным. Пусть теперь j = 0, что соответствует начальным условиям. Если внести возмущение начальных данных в окрестности точки x_* , то, очевидно, точное решение u(x,t) в узлах (x_k,t_{j+1}) изменится. В то же время решение y_i^{j+1} разностной задачи при $\lambda < 1$ не изменится, т.к. оно определяется только по значениям y_{i-1} и y_i .

Схема (8.1.10). Это абсолютно неустойчивая схема, т.к. при любых соотношениях между шагами h_x и h_τ точка x_* лежит вне интервала $[x_{i,}x_{i+1}]$, рис. 8.4.

Рассмотрим случай a < 0. Наклон характеристик меняется: теперь схема (8.1.10) будет устойчивой при условии $h_{\tau} \leq h_x/|a|$, (8.1.18)

а схема (8.1.9) будет абсолютно неустойчивой (рис. 8.5).

Схемы (8.1.9) и (8.1.10) называются также схемами бегущего счета типа «уголок». В первой из них для производной u'_x используется аппроксимация «против потока» (схема устойчива), во второй – «по потоку» (схема неустойчива). Алгоритм вычислений очень прост, см. рис. 8.6.

Рис. 8.6. Порядок вычислений по схеме (8.1.9)

В случае для знакопеременной скорости переноса a = a(x,t) используется комбинированная разностная схема, обеспечивающая при изменении направления скорости аппроксимацию «против потока»:

$$y_{t,i} + a_{+}y_{\overline{x},i} + a_{-}y_{x,i} = 0$$
(8.1.19)
rge $a_{-} = 0.5(a - |a|) = \begin{cases} 0, & a \ge 0 \\ a, & a < 0 \end{cases}$
 $a_{+} = 0.5(a + |a|) = \begin{cases} a, & a \ge 0 \\ 0, & a < 0 \end{cases}$

Эта схема переходит в схемы (8.1.9) и (8.1.10) соответственно при $a \ge 0$ и a < 0.

ЛИТЕРАТУРА

- 1. Самарский А.А. Теория разностных схем. М.: Наука, 2004.
- 2. Самарский А.А., Попов Ю.П. Разностные схемы газовой динамики. М.: Наука, 2003. 352 с.
- 3. *Калиткин М.И*. Численные методы. М.: Наука, 2005. 412 с.
- Конюхов В.М. Дисперсные потоки в нефтяных скважинах. Казань: Издво КГУ, 1990. – 160 с.
- 5. Конюхов В.М., Храмченков М.Г.Чекалин А.Н. Миграция разноплотностных жидкостей в водоносных пластах сложной структуры. Изд-во Казанского математ. общества, Казань, 2005.
- 6. Волков Ю.А., Конюхов В.М., Костерин А.В., Чекалин А.Н. Математическое моделирование имплозионного воздействия на пласт. Казань: Изд-во "Плутон", 2004. 96 с.
- 7. *Мазо А.Б.* Математическое моделирование процессов горячей обработки металлов. Изд-во Казанский фонд "Математика", 1996.
- 8. Чекалин А.Н., Конюхов В.М., Костерин А.В. Двухфазная многокомпонентная фильтрация в нефтяных пластах сложной структуры. – Казань: Изд–во Казанского гос. ун-та, 2009. – 180с.
- 9. *Карчевский М.М., Лапин А.В.* Некоторые вопросы теории метода конечных элементов. Изд-во КГУ, 1995.

ЛАБОРАТОРНЫЕ ЗАДАНИЯ

1. Численные методы решения обыкновенных дифференциальных уравнений (ОДУ)

ОДУ возникают в задачах движения системы взаимодействующих материальных точек, химической кинетики, электрических цепей и т.д. Общий вид ОДУ:

$$\frac{\partial U}{\partial t} = f(t,U), \ U(t^0) = U^0, \ t^0 < t < T.$$
⁽¹⁾

1. Метод Эйлера (схема ломаных). Вводится сеточное разбиение области $[t^0, T]$ с узлами t_i , $i = \overline{0, N-1}$, $t_0 = t^0$, $t_{i+1} = t_i + h$, $h = (T - t^0)/N$. Решение U(t) разлагается на отрезке $[t_i, t_{i+1}]$ в ряд Тейлора:

$$U_{i+1} = U_i + h \left(\frac{\partial U}{\partial t} \right)_i + O(h^2)$$
, где $U_i = U(t_i)$.

Отсюда получается приближенное разностное уравнение Эйлера 2-го порядка точности:

$$Y_{i+1} = Y_i + h_i f(t_i, Y_i), \ i = \overline{0, N-1}, \ Y_0 = U^0.$$
⁽²⁾

2. Метод Рунге-Кутта. Наиболее часто употребляется схема 4-го порядка точности. Для неравномерной сетки с шагом h_i она имеет вид:

$$Y_{i+1} = Y_i + \frac{h}{6} \left(K_{1,i} + 2K_{2,i} + 2K_{3,i} + K_{4,i} \right), \quad i = \overline{0, N-1}, \quad Y_0 = U^0,$$
(2.1)
FINE $K_{1,i} = f\left(t, Y_i \right), \quad K_{2,i} = f\left(t_i + \frac{h}{2}, Y_i + \frac{h}{2}K_{1,i} \right),$
(2.2)

где
$$K_{1,i} = f(t_i, Y_i), \quad K_{2,i} = f(t_i + \frac{h}{2}, Y_i + \frac{h}{2}K_{1,i}),$$
 (2.2)
 $K_{3,i} = f(t_i + \frac{h}{2}, Y_i + \frac{h}{2}K_{2,i}), \quad K_{4,i} = f(t_i + h, Y_i + hK_{3,i}).$ (2.3)

3. Неявные разностные схемы. Записываются на произвольном отрезке $[t_i, t_{i+1}]$ в виде:

$$Y_{i+1} = Y_i + \frac{h}{2} \Big[f(t_i, Y_i) + f(t_{i+1}, Y_{i+1}) \Big], \ i = \overline{0, N-1}.$$
(3)

3.1. Метод последовательных приближений. Алгебраическое уравнение (3) в общем случае является нелинейным. Если выполняется условие $h |f'_{U}(t_i)| < 2$, то решение уравнения (3) в каждой точке t_{i+1} $(i = \overline{0, N-1})$ можно найти с заданной точностью ε методом последовательных приближений:

$$Y_{i+1}^{(s+1)} = Y_i + \frac{h}{2} \Big[f\left(t_i, Y_i\right) + f\left(t_{i+1}, Y_{i+1}^{(s)}\right) \Big], \quad s = 0, 1, 2...S^*,$$
(3.1)

где S^* - номер итерации, на которой выполнилось условие сходимости $\left\|Y_{i+1}^{(s+1)} - Y_{i+1}^{(s)}\right\| < \varepsilon$.

3.2. Схема типа «предиктор-корректор». Используется, если трудно проверить условие сходимости метода последовательных приближений. В этих схемах задается нулевое приближение $Y_{i+1}^{(0)} = Y_i$, а первая и вторая итерации выполняются соответственно по схеме Эйлера и по схеме Рунге-Кутта 2-го порядка точности:

$$Y_{i+1}^{(1)} = Y_i + hf(t_i, Y_i), \quad Y_{i+1}^{(2)} = Y_i + \frac{h}{2} \Big[f(t_i, Y_i) + f(t_{i+1}, Y_{i+1}^{(1)}) \Big], \quad i = \overline{0, N-1}.$$
(3.2)

Задание.

- а) Реализовать в программе методы 1-3, предусмотрев визуализацию расчетов.
- б) Исследовать сходимость методов с помощью точного решения задачи.
- в) Исследовать устойчивость разностного решения по начальным данным.

Варианты заданий

Вари- ант	f(t,U)	t^0	U^{0}	Т
1	-U-t	0	1	10
2	-2U + 4t	0	0	3
3	$4/t^2 - U/t - U^2$	1	3	4
4	$1+U(2t-1)/t^2$	1	1	10
5	$\cos t - U$	1	1	9.5
6	$\sec(t) + tg(t) \cdot U$	0	0	1.5
7	$\sin t + U$	0	1	12.5
8	$-t+U(2t+1)/t+U^2/t$	1	3	18.2
9	$U^{2}/t^{2}-2$	1	1	10.2
10	U/t + t/U	1	1	2.3
11	$0.5 \cdot \sin(2t) - U\cos t$	0	1	5.2
12	$(\sin(\ln U) + \cos(\ln t) + 1) \cdot U$	1	1	6.3
13	$\exp(-\sin t) - U\cos t$	0	1	9.3
14	$tU^2 + 3tU$	0	3	5.5

2. Решение уравнений параболического типа (УПТ)

УПТ возникают в задачах теплопроводности, фильтрации, диффузии и т.д. Общий вид УПТ:

$$\frac{\partial U}{\partial t} = \frac{\partial}{\partial x} \left(a(U) \frac{\partial U}{\partial x} \right) + f(x, t, U), \qquad x_0 < x < x_1, \quad t_0 < t < T;$$
(1)

H.y.:
$$U(x,t_0) = U^0(x)$$
, *I.y.*: $U(x_0,t) = q_0(t)$ $a(U)\frac{\partial U}{\partial x}(x_1,t) = q_1(t)$. (2)

- 1. Построить неявные разностные схемы вида $y_{t,i} = (k_{i+0.5} \cdot y_x^{(\sigma)})_{\bar{x},i}$, где $k_{i+0.5} = 0.5 \cdot (a_i^{(\sigma)} + a_{i+1}^{(\sigma)})$ с порядком аппроксимации $O(h_\tau + h_x^2)$ и $O(h_\tau^2 + h_x^2)$ для произвольной правой части f(x,t,U) и коэффициента a(U).
- Составить программу решения задачи (1), (2) предусмотрев визуализацию расчетов на отрезке [x₀, x₁] в каждый момент времени при решения системы уравнений с трехдиагональной матрицей вида:

$$A_m y_{m-1} - C_m y_m + B_m y_{m+1} = -F_m, \quad m = \overline{1, N-1}.$$
 (a)

Формулы трехдиагональной прогонки.

Сеточные функции у_т вычисляются по общей рекуррентной формуле:

$$y_m = \alpha_{m+1} y_{m+1} + \beta_{m+1}, \quad \left(m = \overline{0, N-1}\right), \tag{b}$$

где α_m , β_m - неизвестные коэффициенты, которые вычисляются по формулам:

$$\alpha_{m+1} = B_m / (C_m - A_m \alpha_m), \quad \beta_{m+1} = (A_m \beta_m + F_m) / (C_m - A_m \alpha_m), \quad m = 1, N - 1$$
 (c)

Из аппроксимации граничных условий имеем:

$$-C_0 y_0 + B_0 y_1 = -F_0, \quad A_N y_{N-1} - C_N y_N = -F_N$$

или $y_0 = \kappa_1 y_1 + \nu_1, \quad y_N = \kappa_2 y_{N-1} + \nu_2,$ (d)

где $v_1 = F_0 / C_0$, $v_2 = F_N / C_N$, $\kappa_1 = B_0 / C_0$, $\kappa_2 = A_N / C_N$.

Расчет начинается при $\alpha_1 = \kappa_1$, $\beta_1 = v_1$ с *прямой прогонки* по формулам (с), а затем по формулам (b) выполняется *обратная прогонка* при $y_N = (v_2 + \kappa_2 \beta_N)/(1 - \kappa_2 \alpha_N)$.

Параметры задачи должны удовлетворять условиям

 $A_m > 0, \quad B_m > 0, \quad C_m \ge A_m + B_m, \quad 0 \le \kappa_1, \kappa_2 \le 1, \quad \kappa_1 + \kappa_2 < 2,$

обеспечивающим разрешимость и устойчивость метода.

3. Решить задачу теплопроводности (1), (2) на полупрямой $x_0 < x < \infty$ для случая: $a(U) = a_0 U^m$, $a_0 > 0$, m > 0; $f \equiv 0$,

H.y.:
$$U(x,0) = 0$$
, $x \ge x_0$; Γ .y.: $U(x_0,t) = (c^2 m t / a_0)^{1/m}$, $t > 0$

и исследовать сходимость и устойчивость численного решения с помощью точного автомодельного решения:

$$U(x,t) = \begin{cases} \left(\frac{cm}{a_0}(x_0 - x + ct)\right)^{1/m}, & x < x_0 + ct, \\ 0, & x > x_0 + ct \end{cases}$$

которое представляет собой температурную волну, бегущую с постоянной скоростью по нулевому фону температуры. Скорость движения волны c определяется скоростью роста температуры на границе из исходного граничного условия: $U(x_0,t) = U_0(t)$, t > 0. 4. Решить задачу теплопроводности (1), (2) на отрезке $x_0 < x < x_1$ для заданной правой части и численно исследовать ее сходимость и устойчивость.

№ вар	f(t,U)	t ₀	q_0	q_1	Т
1	-U-t	0	$\sin(t)$	$\cos(t)$	10
2	$-\sqrt{U+t}$,	0	$\exp(-t)$	1/(1+t)	3
3	$-\sqrt{t}+U^2$	1	1	$\cos(t^2)$	3
4	$t^2 + \exp(-U)$	1	$\exp(-t)\sin(t)$	1	10
5	$\cos t - U$	0	$\exp(-\sqrt{t+t^2})$	$ \cos(t) $	10.
6	$\exp(-t) + \sqrt{U}$,	0	$\sqrt{\cos^2(t) + \exp(-t)}$	0	1.5
7	$\sin t + U$	0	$\cos(2t)$	$t/(1+t^2)$	4π .
9	$\exp(t+U)+U^2$	1	1	$\exp(-t \cdot \cos(t))$	20
10	$2U^2\cos(t)$	1	$1/t^{2}$	$\exp(-\sqrt{t})\sin(t)$	10
11	$U \cdot \sin(t)$	0	$\sqrt{ \sin(t) }$	$\sqrt{2/(1+t^2)}$	2

Варианты заданий

3. Решение уравнения переноса (УП)

УП возникают в задачах теплопроводности, фильтрации, диффузии и т.д. Рассмотрим две задачи переноса, отличающиеся направлением скорости *a* :

$$\frac{\partial U}{\partial t} + a \frac{\partial U}{\partial x} = 0, \qquad 0 < x < X, \quad t > 0; \qquad (1_1)$$

H.y.:
$$U(x,0) = U^0(x)$$
, *I.y.*: $U(0,t) = \mu(t)$, $t > 0$; $U^0(0) = \mu(0)$. (2₁)

$$a = const < 0$$

$$\frac{\partial U}{\partial t} + a \frac{\partial U}{\partial x} = 0, \qquad 0 < x < X, \quad t > 0; \tag{1}_2$$

H.y.:
$$U(x,0) = U^0(x)$$
, ***I.y.:* $U(X,t) = \mu(t), t > 0$; $U^0(X) = \mu(0)$. (2₂)**

5. Для решения задач (1₁), (2₁) и (1₂), (2₂) воспользуемся явными разностными схемами бегущего счета типа «уголок» с аппроксимацией «против потока» с порядком $O(h_r + h_r)$:

1.1.
$$a > 0$$
: $\frac{y_i^{j+1} - y_i^j}{h_\tau} + a \frac{y_i^j - y_{i-1}^j}{h_x} = 0$, $(y_{t,i} - a \cdot y_{\bar{x},i} = 0)$, $i = 1, 2, 3, ..., j = 0, 1, 2, ...;$ (3)

$$y_i^{j+1} = y_i^j (1-\lambda) + \lambda y_{i-1}^j, \quad \lambda = ah_\tau / h_x, \quad i = 1, 2, 3, \dots \quad j = 0, 1, 2, \dots$$
 (31)

Аппроксимация начального и граничного условий для схемы (3):

H.y.:
$$y_i^0 = U^0(x_i), i = 0, 1, 2, ...;$$
 I.y.: $y_0^{j+1} = \mu(t_{j+1}), j = 0, 1, 2, ...$ (4)

1.2.
$$a < 0$$
: $\frac{y_i^{j+1} - y_i^j}{h_r} + a \frac{y_{i+1}^j - y_i^j}{h_x} = 0$, $(y_{t,i} - a \cdot y_{x,i} = 0)$, $i = N - 1, N - 2, ..., j = 0, 1, 2,$ (5)

Аппроксимация начального и граничного условий для схемы (5):
H.y.:
$$y_i^0 = U^0(x_i), i = 0, 1, 2, ...;$$
 I.y.: $y_N^{j+1} = \mu(t_{j+1}), j = 0, 1, 2, ...$ (6)

- 6. Составить программу решения задач (1₁), (2₁) и (1₂), (2₂), предусмотрев визуализацию расчетов на заданном отрезке [0, *X*] в каждый момент времени *t*.
- 7. Показать условную устойчивость численных решений задач (1₁), (2₁) и (1₂), (2₂) при выполнении критерия Куранта

$$h_{\tau} \le h_{x} / |a| \tag{7}$$

и абсолютную неустойчивость в противном случае.

8. Сравнить приближенное решение задач (1₁), (2₁) и (1₂), (2₂) с точными их решениями **4.1.** при a > 0 на отрезке 0 < x < X:

$$U(x,t) = \begin{cases} U^{0}(x-at), & x \ge at \\ \mu(t-x/a), & x < at \end{cases},$$
(8)

4.2. при a < 0 на отрезке 0 < x < X:

$$U(x,t) = \begin{cases} U^{0} (X - x - |a|t), & X - x \ge |a|t \\ \mu (t - (X - x)/|a|), & X - x < |a|t \end{cases},$$
(82)

которые представляют собой волны, распространяющиеся вдоль оси Ox с постоянной скоростью a.

Исходные данные для задач (1₁), (2₁) и (1₂), (2₂): $\mu(t)$, $U^0(x)$, X – вариант таблицы, a – произвольный параметр.

9. Решить задачу (1₁), (2₁) для знакопеременной скорости a = a(x,t) с помощью комбинированной разностной схемы:

$$y_{t,i} + a_{+}y_{\bar{x},i} + a_{-}y_{x,i} = 0$$

$$rge \ a_{-} = 0.5(a - |a|) = \begin{cases} 0, & a \ge 0 \\ a, & a < 0 \end{cases}, \qquad a_{+} = 0.5(a + |a|) = \begin{cases} a, & a \ge 0 \\ 0, & a < 0 \end{cases}.$$

$$(9)$$

Эта схема переходит в схемы (3) и (5) соответственно при $a \ge 0$ и a < 0.

При реализации схемы (9) учесть, что

а) если в точке $x_N = X$ скорость a(X,t) < 0 (приток в область), то $y_N^{j+1} = y_N^j$;

б) если в точке $x_0 = 0$ скорость a(0,t) < 0 (вытекание из области), то значение функции y_0^{j+1} должно вычисляться по схеме (5);

в) временной шаг в силу изменения модуля скорости |a(x,t)| должен пересчитываться по критерию Куранта на каждом временном слое

$$h_{\tau}^{j+1} = \begin{cases} h_{x} / \max_{i=1,N_{x}} |a_{i}^{j+1}|, & \max_{i=1,N_{x}} |a_{i}^{j+1}| \neq 0\\ h_{x}, & \max_{i=1,N_{x}} |a_{i}^{j+1}| = 0 \end{cases}$$

Исходные данные для задачи (9): $\mu(t)$, $U^0(x)$, X – вариант таблицы, скорость для всех вариантов $a(x,t) = \sin(t/4.5 - x/2)$.

Варианты заданий

№ вар	$U^{0}(x)$	X	$\mu(t)$
1	0	10	$\exp(-t/20)\cdot \sin(t) $
2	$x/X \cdot \sin(x) $	10	$\exp(-\sqrt{t}/15)\cdot\left \sin\left(t/5\right)\right $
3	$x/X \cdot \sqrt{ \sin(x) }$	10	$1 - \exp(-t/10)$
4	$(x/X)^2 \cdot \cos(x-1) $	10	$(1-\exp(-t/10))\cdot \cos(t) $
5	$(x/X)^3 \cdot \sin(x/5) $	10	$\sqrt{t/60} \cdot \left \cos(t) \right $
6	$\left(x/X\right)^2 \cdot \sin^2\left(2x\right)$	10	$\left(t/50\right)^{1/5} \cdot \left \cos\left(2t+1\right)\right $
7	$\sqrt{x/X} \cdot \left \cos(2x-1) \right $	10	$\left(t/50\right)^{1/6}\cdot\sin^2\left(t/6\right)$
8	$\sqrt{1-x/X} \cdot \left \sin\left(3x\right)\right $	10	$1/(1+t/100)\cdot \sin^2(t/8)$
9	$\sqrt{x/X} \cdot \sqrt{\sin(x)}$	10	$(1-\exp(-t/10))\cdot\cos^2(t)$
10	$\sqrt{1-x/X} \cdot \sqrt{ \sin(x) }$	10	$(1 - \exp(-t/10)) \cdot \sqrt{\cos(t)}$
11	$(1-x/X)^5 \cdot \left \sin(x/2)\right $	10	$\exp(-t/20)\cdot\sqrt{\sin(t/5)}$
12	$x/X \cdot \left(1 - x/X\right)^{3/2} \cdot \left \sin\left(x\right)\right $	10	$\exp(-t/20) \cdot \left \sin(t) \cdot \left(1 - t^{1/3}\right) \right $
13	$x/X \cdot \sqrt{\cos(x/3)}$	10	$\sqrt{\left \cos\left(t\right)\right }\cdot\left(1+t\right)^{-1/4}$
14	$\left \sin^{1/3}(x/X)\right \cdot (1 + x/X)^{-1/3}$	10	$\left \cos(t)\right ^{1/4} \cdot (t/100)^{1/3}$
15	0.5	10	$\left(1.5 - \exp\left(-\sqrt{t}/20\right)\right) \cdot \cos^4(t)$
16	1	10	$\exp(-t/30)\cdot\sqrt{\cos(2t)}$